XX, № 4, 1967

УЛК 542.955+547.431.4+547.728.2

химия непредельных соединений

УІІ. ПРИСОЕДИНЕНИЕ 2-ГАЛОИДАЛКИЛОВЫХ ЭФИРОВ И 2-ХЛОРЭТИЛБЕНЗОЛА К 1,1,3,3-ТЕТРАМЕТИЛ-4-ВИНИЛФТАЛАНУ И .НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ ПОЛУЧЕННОГО 1,1,3,3,-ТЕТРАМЕТИЛ--4-(-2-ХЛОР-γ-МЕТОКСИПРОПИЛФТАЛАНА)

С. А. ВАРТАНЯН и Ф. В. ДАНГЯН

2-Хлор-(бром)-эфиры и 2-хлорэтилбензол в присутствии хлористого цинка в растворе эфира присоединяются к 1,1,3,3-тетраметил-4-винилфталану с образованием 1.1,3,3-тетраметил-4-(хлор(бром)-ү-алкоксипропил)фталанов и 1,1,3,3-тетраметил-4-(ү-фенилбутил)фталана. Изучены пекоторые превращения полученного 1,1,3,3-тетраметил-4-(-2-хлор-ү-метоксипропил)фталана (II, R=CH₃).

Известно, что а-хлорэфиры в присутствии различных катализаторов присоединяются к олефинам [1], диолефинам [2], ениновым и диениновым [3] системам с образованием соответствующих алкокси-хлоридов. Эти хлориды очень реакционноспособны и на их основе можно получить соединения, интересные для органического синтеза.

В настоящей работе показано, что α-галоидалкиловые эфиры в присутствии безводного хлористого цинка в сухом эфире присоединяются к 1,1,3,3-тетраметил-4-винилфталану с образованием с хорошими выходами 1,1,3,3-тетраметил-4-[α-хлор(бром)-γ-алкоксипропил] фталанов:

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2 \qquad (H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$-CH = CH_2 + XCH_2OR \longrightarrow -CHX(CH_2)_2OR$$
II

X=C1; $R=CH_3$, C_2H_5 , C_3H_7 , C_4H_9 ; X=Br; $R=CH_3$, C_2H_5 .

Строение жлоридов (II) доказано на примере хлорида (II, R= CH₃=III): нагреванием его в спиртовом растворе этилата натрия. Отщеплен хлористый водород с получением 1,1,3,3-тетраметил-4-(үметоксиметилвинил)фталана (IV), окислением которого выделены 1,1,3,3-тетраметилизокумаран-4-карбоновая (V) и метоксиуксусная (VI) кислоты:

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$-CHCI(CH_2)_2OCH_3 \xrightarrow{IV}$$

$$-CH=CHCH_2OCH_3$$

$$IV$$

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$CH_3OCH_2COOH + \xrightarrow{V}$$

$$V$$

α-Хлорэтилбензол присоединяется к 1,1,3,3-тетраметил-4-винилфталану с образованием хлорида (VII). Однако, при перегонке в вакууме от хлорида отщепляется хлористый водород и получается 1,1, 3,3-тетраметил-4-(γ-фенил-α,β-бутенил)фталан (VIII):

$$I + CH_3CHCIC_6H_5 \longrightarrow (H_3C)_2C \bigcirc C(CH_3)_2$$

$$-CHCICH_2CH(CH_3)C_6H_5$$

$$VII$$

$$V + C_6H_6COCH_3 \xrightarrow{KMnO_4} CH = CHCH(CH_3)C_6H_5$$

$$IX$$

$$VIII$$

структура которого доказана окислением перманганатом калия. При этом выделены кислота (V) и ацетофенон (IX).

Из хлорида (II, $R=CH_3$) нагреванием с водным раствором едкого кали получен спирт (X); при его нагревании в растворе метилового и этилового спиртов в присутствии алкоголята калия образуются эфиры (XI, $R'=CH_3$; C_2H_3), а в растворе уксусной кислоты он вступает в реакцию с уксуснокислым натрием с образованием ацетата (XII):

$$(H_3C)_3C \xrightarrow{O} C(CH_3)_2$$

$$-CH(OR')(CH_2)_2OCH_3 \leftarrow II \xrightarrow{} -CH(OH)(CH_2)_2OCH_3$$

$$XI$$

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

$$XII$$

$$X$$

$$XIII$$

Хлорид (II, R=CH₃) в сухом эфире вступает в реакцию с магнием с образованием магний-органического комплекса (XIII). Взаимодействием углекислого газа с этим комплексом получены кислота (XIV) и димер (XV):

$$(H_3C)_2C \xrightarrow{O} C(CH_3)_2$$

Экспериментальная часть

1,1,3,3-Тетраметил-4-[а-хлор(брож)-ү-алкоксипропил]фталаны (II). К смеси 100 мл сухого эфира, 0,3 моля а-хлорэфира и 1 г свежеплавленного хлористого цинка при непрерывном перемешивании через капельную воронку при 20—22° вносилось 0,3 моля 1,1,3,3-тет-4*

раметил-4-винилфталана [4]. Перемешивание продолжалось 6 часов, и смесь оставлялась на ночь. В течение двух дней смесь перемешивалась еще 14 часов, а затем прибавлялся эфир, эфирный экстракт промывался водой, высушивался сульфатом магния, и после отгонки эфира остаток перегонялся в вакууме.

Константы полученных т-галондэфиров (II) приведены в таблице.

1,1,3,3-Тетраметил-4-(α -хлор- γ -фенилбутил)фталан (VII). К смеси 21 г α -хлорэтилбензола и 0,3 г свежеплавленного хлористого цинка при $22-24^\circ$ из капельной воронки добавлено 30 г 1,1,3,3-тетраметил-4-винилфталана, смесь перемешивалась 3 дня при $23-24^\circ$, затем экстрагирована эфиром, экстракт промыт водой, высушен сульфатом магния и после удаления эфира получено 32 г $(62,7^0/_0)$ кристаллов алкоксихлорида (VII); т. пл. $120-121^\circ$ (из n-октана), найдено $0/_0$: С 77,32; Н 8,60. С22 Н27 ОСІ. Вычислено $0/_0$: С 77,08; Н 7,88.

При перегонке этих кристаллов в вакууме отщепляется хлористый водород и получается 1,1,3,3-тетраметил-4- $(\gamma$ -фенил-2,3-бутенил)фталан (VIII); т. кип. $169-170^{\circ}/1$ мм; n_D^{20} 1,5585. Найдено 0/0: С 86,36; Н 8,75; $C_{22}H_{20}O$. Вычислено 0/0: С 86,27; Н 8,46.

1,1,3,3-Тетраметил- $(\gamma$ -метоксиметилвинил)фталан (IV). В 60 мл этилата натрия (65 мл спирта, 4 г Na) внесено 12 г γ -хлорэфира (II, R=CH₃), после чего смесь перемешивалась в течение 14 часов при 80°. После отгонки основной части этилового спирта продукт реакции подкислен соляной кислотой, экстрагирован эфиром, высушен сульфатом магния, и после удаления эфира остаток разогнан в вакууме. Получено 8 г $(76,4^0/_0)$ 1,1,3,3-тетраметил-4- $(\gamma$ -метокси-1-пропенил)фталана (IV); т. кип. 107—108° при 2 мм: n_D^{20} 1,5220; d_4^{20} 0,9881; М R_D найдено 75,91, вычислено 73,11. Найдено $0/_0$: С 77,99; Н 9,50. $C_{16}H_{22}O_3$. Вычислено $0/_0$: С 78,04; Н 8,94.

Окисление 1,1,3,3-тетраметил-4-(γ -метоксиметилвинил)фталана (IV). В 60 мл воды внесено 3 г непредельного эфира (IV) и при непрерывном перемешивании в течение 80 минут при 8—10° добавлено 5,15 г перманганата калия. Смесь перемешивалась 3 часа при 22—23°. На следующий день перекись марганца отфильтрована, многократно промыта горячей водой, водный раствор экстрагирован эфиром, эфирный экстракт высушен сульфатом магния, после отгонки эфира в колбе ничего не осталось. Водный раствор солей выпарен досуха на водяной бане. Остаток подкислен, тщательно экстрагирован эфиром, экстракт высушен сульфатом магния и после отгонки эфира получено 1,3 г 1,1,3,3-тетраметилфталан-4-карбоновой кислоты [4]; т. пл. 190—191° (из бензола) и 2—3 капли метоксиуксусной кислоты [5]; т. кип. 88—90° при 10 мм, n_D^{10} 1,4190. Эти константы хорошо совпадают с литературными данными [4, 5].

Окисление 1,1,3,3-тетраметил-4- $(\gamma$ -фенил- α , β -бутенил) ϕ талана (VIII). К 10 г 1,1,3,3-тетраметил-4- $(\gamma$ -фенил- α , β -бутенил) ϕ та-

x	R	0/0		Т. пл. в С	Молекулярная формула	n ²⁰	d ²⁰	MR _D		Cl (Br)	
		Выход в	Т. кип. в °С/-и.и					найдено	вычис- лено	найдено	вычис-
CI	CH ₃	74	128-129/2	59—60	C ₁₆ H ₂₃ CIO ₂	1,5125	-		-	12,73	12,56
.CI	C ₂ H ₃	75	133—134/1	41-42	C11H25C1O2	1,5065	4.	-53	_	11,73	11,97
CI	C ₃ H ₄	74,6	142—143/2		C ₁₈ H ₂₁ ClO ₂	1,5000	1,022	89,37	87,68	11,36	11,10
CI	H-C4H	65	148149/2	8 -3	C19H29CIO	1,5010	1,015	94,19	92,29	10,76	10,94
Br	CH ₃	64.3	145/3	54-55	C ₁₆ H ₂₃ BrO ₂	3- "		-	-	24,64	24,77
Br	C ₂ H ₅	70	154/4	-5	C ₁₇ H ₂₅ BrO ₂	1,5210	1,167	88,96	85,96	23,20	23,46

лана (VIII) в 150 мл воды прибавлено 13,9 г перманганата калия при $8-10^{\circ}$. Смесь обработана, как описано выше.

Из нейтральной фракции получено 2 г ацетофенона, 2,4-динитрофенилгидразон которого плавится при 237—238° (из бензола); в литературе указано 237° [6].

Из кислой фракции получена кислота (V) с т. пл. 190—191°; в

литературе указано 190-191° [4].

1,1,3,3-Тетраметил-4-(α -окси- γ -метоксипропил)фталан (X). Смесь 40 мл 10° /0-го водного раствора едкого кали и 10 г хлорида (II, R=CH₃) нагревалась с обратным холодильником в течение 35 часов при 90°. Охлажденная реакционная масса нейтрализована соляной кислотой, экстрагирована эфиром, экстракт высушен сульфатом магния и после удаления эфира получено 7 г $(75^{\circ}$ /0) кристаллов 1,1,3,3-тетраметил-4-(α -окси- γ -метоксипропил)фталана (X); т. пл. $81-82^{\circ}$ (из бензина с т. кип. $80-100^{\circ}$). Найдено 0/0: С 72,27; Н 8,93. С₁₆Н₂₄О₃. Вычислено 0/0: С 72,72; Н 9,08.

1,1,3,3-Тетраметил-4-(α , β -диметоксипропил)фталан (XI). К смеси 5 г порошкообразного едкого кали и 50 мл безводного метилового спирта при перемешивании по каплям добавлено 8 г хлорида (II, $R=CH_3$). Реакционная масса нагревалась при 65° в течение 12 часов. Затем перегнана основная часть метилового спирта, остаток растворен в эфире и раствор высушен сульфатом магния. После удаления эфира остаток перегнан в вакууме. Получено 6 г (77^0 /₀) 1,1,3,3-тетраметил-4-(α , γ -диметоксипропил)фталана (XI) с т. кип. $135-136^\circ$ /5 мм, n_D^{20} 1,5240; Найдено n_D^{20} С 73,69; Н 8,98. n_D^{20} Вычислено n_D^{20} С 73,38; Н 9.34.

1,1,3,3-Тетраметил-4-(α -этокси- γ -метоксипропил)фталан (XI, R'=C₂H₅). Из 40 мл сухого этилового спирта, 5 г едкого кали, 5,5 г хлорида (II, R=CH₃) вышеописанным способом получено 4 г (70%), 1,1,3,3-тетраметил-4-(α -этокси- γ -метоксипропил)фталана (XI, R'=C₂H₃); т. кип. 131—132°/1 мм; n_D^{20} 1,5250. Найдено %: С 73,30; Н 9,30.

C₁₈H₂₈O₃. Вычислено ⁰/₀: С 73,99; Н 9,69.

1,1,3,3- Тетраметил - 4 - (τ -ацетокси- τ -метоксипропил) фталан (XII). Смесь 40 мл уксусной кислоты, 7 г ацетата натрия и 10 г хлорида (II, $R = CH_3$) нагревалась в колбе с обратным холодильником в течение 36 часов при 100° . После охлаждения прибавлено 30 мл воды, смесь экстрагирована эфиром, экстракт высушен сульфатом магния и разогнан в вакууме. Получено 8 г ($73,8^\circ$ /0) ацетата (XII): т. кип. $117-118^\circ$ при 1 мм; n_D^{20} 1,5148. Найдено n_D^0 0: С 70,77; Н 8,40. n_D^{20} 0. Вычислено n_D^0 0: С 70,58; Н 8,50.

1, 1, 3, 3 - Тетраметил - 4-(а-карбокси-ү-метоксипропил) фталан (XIV). Из 25 г ү-хлорэфира (II, R=CH₃) и 2,4 г магния известным способом получено магнийорганическое соединение. На следующий день в течение 3-х часов через этот комплекс пропущен углекислый газ, высушенный серной кислотой. Реакционная смесь гидролизована разбавленной соляной кислотой, экстрагирована эфиром, экстракт вы-

сушен сульфатом магния. После отгонки эфира остаток частично закристаллизовался.

Получено 7 г кристаллического димера (XV); т. пл. $183-184^\circ$ (из спирта). Найдено $^\circ$ / $_0$: С 77,76; Н 9,72; $^\circ$ С $_{32}$ Н $_{46}$ О $_4$. Вычислено $^\circ$ / $_0$: С 77,76; Н 9,31; 8 г (31,2 $^\circ$ / $_0$) кислоты (XIV) с т. кип. $230-231^\circ$ /1 мм. Найдено $^\circ$ / $_0$: С 70,31; Н 7,90; С $_{17}$ Н $_{24}$ О $_4$. Вычислено $^\circ$ / $_0$: С 69,86; Н 8,22.

Институт органической химии АН АрмССР

Поступило 21 XII 1965

ՉՀԱԳՆՑԱԾ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՔԻՄԻԱ

V[]. α-2ԱԼՈԳԵՆԱԼԿԻԼԵԹԵՐՆԵՐԻ ԵՎ α-ՔԼՈՐԷԹԻԼԲԵՆԶՈԼԻ ՄԻԱՑՈՒՄԸ
1,1,3,3-ՑԵՏՐԱՄԵԹԻԼ-4-ՎԻՆԻԼՖՏԱԼԱՆԻՆ ԵՎ ՍՏԱՑՎԱԾ
1,1,3,3-ՏԵՏՐԱՄԵԹԻԼ-4 (α-ՔԼՈՐ- γ-ՄԻԹՕՔՍԻՊՐՈՊԻԼՖՏԱԼԱՆԻ)
ՄԻ ՔԱՆԻ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

Ս. Հ. ՎԱՐԴԱՆՑԱՆ և Ֆ. Վ. ԴԱՆՂՑԱՆ

Udhnhnid

Աշխատանքում ցույց է տրված, որ α-քլոր(բրոմ)ալկիլեԹերները և α-քլորէԹիլբենզոլը ցինկի քլորիդի ներկալությամբ միանում են 1,1,3,3-տետ-րամեթիլ-4-վինիլֆտալանին, առաջացնելով համապատասխան 1,1,3,3-տետ-րամեթիլ-4-[-α-քլոր(բրոմ)-γ-ալկօքսիպրոպիլ)-ֆտալաններ (II) և 1,1,3,3-տետրամեթիլ-4-(-α-քլոր-γ-ֆենիլբուտիլ) ֆտալան (VII)։ Վերջինիս Թորման ժամանակ անջատվում է քլորաջրածին, առաջացնելով 1,1,3,3-տետրամեթիլ-4-(-γ-ֆենիլ-α,β-բուտենիլ)ֆտալան (VIII)։ Ստացված քլորիդների (II և VII) կառուցվածքը հաստատված է քլորաջրածին պոկելով և ստացված (IV և VIII) միացություններն օքսիդացնելով։

8ույց է տրված, որ (II) քլորիդը $(R=CH_3)$ հիմնալին միջավալրում հիդրոլիզևիս ստացվում է սպիրտ (X), սպիրտալին լուծուլ θ ում ալկոհոլատ-ների հետ առաջանում են եքերներ $(XI,\,R=CH_3,\,C_2H_5)$, իսկ քացախաքնվի միջավալրում նատրիումի ացետատի հետ տալիս է ացետատ (XII)։ (II) Քլորիդը $(R=CH_3)$ չոր եքերի միջավալրում մետաղական մագնեզիումի հետ առաջացնում է Գրինլարի կոմպլևքսը, որի միջով չոր ածխաժքվական գազանցկացնելիս ստացվում է համապատասխան քքուն (XIV) և դիմեր (XV)։

ЛИТЕРАТУРА

- 1. С. А. Вартанян, Ф. В. Дангян, Изв. АН АрмССР, ХН, 15, 443 (1962).
- 2. С. А. Вартанян, Ш. А. Геворкян, Ф. В. Дангян, Изв. АН АрмССР, ХН, 15, 63 (1962).
- 3. А. А. Петров, Усп. химин, 29, 1063 (1960); С. А. Вартанян, В. Н. Жамагорцян, А. О. Тосунян, Изв. АН АрмССР, 14, 139 (1961).
- 4. И. Н. Назаров, Г. П. Верхолетова, Изв. АН СССР, ОХН 1941, 556.
- Словарь орг. соед. II, ИЛ, Москва, 1949, стр. 598.
- 6. Словарь орг. соед. 1, ИЛ, Москва, 1949, стр. 15.