XX, № 12, 1967

УДК 518.5+547.211+547.314.2

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НА ЭВМ ПРОЦЕССА НЕИЗОТЕРМИЧЕСКОГО ПРЕВРАЩЕНИЯ МЕТАНА В АЦЕТИЛЕН

Б. А. КОСТАНДЯН, А. А. МАНТАШЯН, А. Б. НАЛБАНДЯН и В. К. САРКИСЯН

Приводятся результаты анализа динамики процесса образования ацетилена из метана в условиях адиабатического сжатия реагирующего газа и влияния режима изменения температуры на ход процесса путем натематического моделирования на ЭВМ "Раздан-3".

Успешное развитие техники получения высоких и сверхвысоких температур поставило перед химиками проблему осуществления с их помощью направленных синтезов, которые в ряде случаев, даже в присутствии катализаторов, протекают медленно. Неизотермические условия протекания высокотемпературных процессов часто осложняют понимание кинетики превращения. Между тем, именно изменением степени неизотермичности удается проводить процесс в нужном направлении [1, 2]. С этой точки зрения является существенным нахождение условий оптимального проведения процесса. Эти условия можно установить, применяя известные математические методы оптимизации (принцип максимума, динамическое программирование, метод скорейшего спуска и т. д.), с использованием современной вычислительной техники.

В данной работе приводятся результаты анализа динамики процесса образования ацетилена из метана в условиях адиабатического сжатия реагирующего газа и влияния режима изменения температуры на ход процесса путем математического моделирования.

Решение системы дифференциальных уравнений кинетики и изменения температуры производилось методом численного интегрирования (метод Рунге-Кутта с переменным шагом интегрирования) на электронной вычислительной машине "Раздан-З". С целью опытной проверки полученных результатов была использована модель температурного режима, реализуемого на установке адиабатического сжатия конструкции Рябинина [3], используемой для исследований химических превращений.

Принципиальная схема установки приводится на рисунке 1. Сжатие реагирующей газовой системы, заключенной в зоне между поршнем и глухим торцом ствола, осуществляется движением поршня вправо. Поршень приводится в движение открытием клапана ресивера с инертным газом под заданным давлением. Газ вытекает в зону TOTONS DUTOT VIGHOUS PAUGOT US

между поршнем и летающим "клапаном". Вылет "клапана" влияет на ход изменения температуры.

Математическая модель процесса в установке аднабатического сжатия состоит из системы дифференциальных уравнений кинетики химического превращения и уравнения движения поршия, характеризующего режим изменения температуры в зоне реакции. В модели

режим сжатия (изменение температурного режима) варьировался путем изменения веса поршня и исходного давления в ресивере.

Процесс сжатия на установках подобного типа подчиняется закону адиабаты [4]; следовательно, температуру в зоне реакции, как функцию сжатия, можно представить в виде:

Рис. 1. Принципиальная схема установки адиабатического сжатия-*1*-ресивер, 2-сжимающий поршень, 3-летающий клапан.

$$T(x) = T_0 \left(\frac{l}{x}\right)^{\tau-1}$$

где x — расстояние поршня от глухого торца, T_0 — начальная температура, l — длина II зоны ствола, $\gamma = \frac{C_p}{C_r}$.

Давление в зонах 1 и II обозначим соответственно через $P_1(x)$ и $P_2(x)$. Давление $P_1(x)$ определяется по формуле:

$$P_{1}(x) = \begin{cases} \frac{P}{\left[1 + \frac{Sl}{V_{0}} \left(1 - \frac{x}{l}\right)\right]} & \text{до вылета клапана } \Pi_{2} \\ P_{0} & \text{после вылета клапана } \Pi_{2}, \end{cases}$$
(2)

где P — исходное давление в ресивере, S — площадь сечения ствола, V_0 — объем ресивера, P_0 — атмосферное давление (давление сжимаемого газа до начала сжатия).

Согласно уравнению адиабаты давление в зоне II по мере изменения сжатия определяется формулой:

$$P_2(x) = P_0 \left(\frac{l}{x}\right)^{\mathsf{T}} \tag{3}$$

Для простоты выкладок предположим, что ү не меняется с изменением температуры (взято среднее значение), и, что химическое превращение не влияет на давление газа в зоне реакции. Такое предположение справедливо при сильном разбавлении реагирующей системы инертным газом, либо при нулевых значениях теплового эффекта.

Уравнение движения поршня можно представить в виде:

$$m \frac{d^2 x}{dt^2} + \eta \frac{dx}{dt} = S[P_1(x) - P_2(x)], \tag{4}$$

где *m* — масса поршня, η — коэффициент трения.

Значение температуры в зоне реакции определяется согласно формуле (1), где *х* является искомым параметром при решении дифференциального уравнения (4).

Изменение концентрации исходных веществ и промежуточных продуктов во времени описывается системой дифференциальных уравнений:

$$\frac{dA_i}{dt} = F_i(A_1, A_2, \cdots A_n, k_1, k_2 \cdots k_n, t)$$
(5)

при заданных начальных условиях

$$t = t_0, \qquad A_l(t_0) = A_l^\circ; \qquad l = 1, \ 2 \cdots n$$
 (6)

Здесь $A_i(t)$ — концентрация *i*-го реагента. Функции $k_i(T)$ в общем объеме задаются законом Аррениуса

$$k_l(1) = k_l^{\circ} \exp\left(-\frac{E_l}{RT}\right), \qquad (7)$$

и становятся известными функциями времени, как только будет задано T(t).

Математическая модель процесса химического превращения в установке аднабатического сжатия представляется совокупностью дифференциальных уравнений (4) и (5), при соответствующих начальных условиях, причем предполагается, что функции $K_I(T)$ выражены как функции x согласно формуле (1), т. е.

$$k_{l}(T) = k_{l}^{\circ} \exp\left[-\frac{E_{l}}{RT} \left(\frac{x}{l}\right)^{\tau-1}\right]$$

Моделирование процесса на ЭВМ, т. е. решение систем нелинейных дифференциальных уравнений (4) и (5) при различных параметрях (давление в ресивере и масса поршня) позволит установить картину динамики процесса, а также выбрать такие значения этих параметров, при которых химическое превращение в интересующем нас направлении протекает более эффективно.

В работе [2] были рассмотрены возможные пути превращения метана в ацетилен в неизотермических условиях и предложена следующая брутто схема процесса для широкого интервала температур (вплоть до 7000-8000°К)

$$CH_4 \rightarrow C_2H_3 \rightleftharpoons ca \pi + H_2$$

$$A_1 \rightarrow A_3 \rightleftharpoons A_3 + A_4,$$
(8)

где A₁ — метан, A₂—ацетилен, A₃—сажа, A₄ — молекулярный водород.

Математическую модель этого процесса на установке адиабатического сжатия без учета трения ($\eta = 0$) после несложных преобразований можно представить в виде:

$$\begin{aligned} \frac{dy}{dt} &= z \\ \frac{dz}{dt} &= -2500 \, r \left[\frac{15q\theta}{1+\beta (1-y)} + (1-\theta) - y^{-\tau} \right] \\ \frac{dA_1^*}{dt} &= -k_1^* A_1^* \\ \frac{dA_2}{dt} &= k_1^* A_1^* - k_2^* A_2^* + k_3^* (1-A_1^* - A_2^*)^2, \end{aligned}$$

где $y = \frac{x}{l}$, $A_1^* = \frac{A_1}{A_0}$, $A_2^* = \frac{A_2}{A_0}$ – безразмерные концентрации, A_0 – начальная концентрация исходного вещества – метана,

$$p = \frac{P}{15P_0}; \quad r = \frac{SP_0}{2500 \, lm}; \quad \beta = \frac{Sl}{v}$$

$$k_1^* = \exp(13\ln 10 - 171,666 \, y^{\tau-1})$$

$$k_2^* = \exp(13\ln 10 - 150 \, y^{\tau-1})$$

$$k_3^* = \exp(8\ln 10 - 66,666 \, y^{\tau-1})$$

Параметр $\theta = 1$ до вылета клапана Π_2 , и $\theta = 0$ после вылета. В формулах для k_1^* , k_2^* и k_2^* использованы следующие численные значения энергии активации и предэкспоненциальных множителей:

 $E_1 = 103$ ккал/моль, $k_1^\circ = 10^{13}$ сек⁻¹ согласно данным работы [5]:

$$E_2 = 90$$
 ккал/моль, $k_2^\circ = 10^{13}$ сек⁻¹, $E_3 = 40$ ккал/моль, $k_3^\circ = 10^{-11}$ см³/част. сек.

по предварительным данным, полученным в ЛХВ АН АрмССР.

Согласно схеме, выдвинутой в работе [2], в процессе крекинга метана при $T = 4000^{\circ}$ К образование ацетилена происходит из элементов (сажи и водорода). Поэтому для широкого интервала температур предлагается вышеприведенная брутто схема (8) образования ацетилена. На рисунке 2 приводится температурная зависимость образования ацетилена, полученная на установке адиабатического сжатия [2]. Из этих данных видно, что накопление ацетилена проходит через максимум при $T = 1800 - 2000^{\circ}$ К, минимум — при $T = 4000^{\circ}$ К, затем при более высоких температурах наблюдается непрерывный рост с повышением температуры. Если наблюдаемая температурная зависимость действительно обусловлена брутто схемой (8), то она должна подтвердится при решении системы приведенных выше дифференциальных уравнений. В таблицах 1, 2, 3 приводятся результаты решений на ЭВМ при различных значениях и комбинациях параметров r и q. Для наглядности данные таблицы 1, полученные на параметрах r = 1 и q = 1,

Таблица 1

Рис. 2. Зависимость образования ацетилена от максимальной степени сжатия. Состав исходной смеси: СН₄ — 0,1%): аргон — 99,9%.

<i>t</i> ∙ 104 сек	y · 102	A º/o	B %	Примечания
1,2	99,97	100	0	
3,66	99,76	100	0	
23	90,6	100	0	
40	71,9	100	0	1 m 1 m
57	43,89	100	10-36	
70	16,7	100	10-17	14 15
75,3	7,4	100	10-7	-
77,5	3,8	99,5	0,47	
77,6	3,6	98,8	0,98	33
78,7	2,6	30,3	7,2	
78,84	-	-	7,3	І максимум
79,4	2,39	0,08	6,3	
80	2,97	10-5	15,95	
85	10,9	10-6	42,23	
96	-	-	42,24	II максимум и прекращение реакции
109	70	10-6	42,24	

r = 1; q = 1

	[a	бл	uu	a	2
--	----	----	----	---	---

Таблица З

r = 1; q = 2				r = 2; q = 1					
ℓ · 104 сек	y • 104	A %	B %	Примечания	<i>t</i> -10 ⁴ сек	y - 10 ²	A º;0	B º/o	Примечания
38	_	10 0	0		39	_	100	0	
53	2,7	78,6	6,6		55	3,2	95,8	2,99	1.00
53	-	-	6,8	І макснмум	55,8		_	6,8	І максимум
53,5	1,8	0	1,9		56,1	_	-	6,3	Seal and
53,6	1,5	0	0,7		56,6	2,6	0,01	9,2	
53,7	1,3	0	0,5		_	_	_	_	
53,9	1,0	υ	0,19		67,4	-	-	38,25	II максимум
54	0,86	0	0,12		85,7	100	0	38,25	
54,2	0,81		0,1			E 19	1.1.1		_
_	-	-							
86,8	1,17	0	33,6	II максимум					

представлены на рисунке 3. Кривая (1) характеризует изменение параметра $\frac{x}{l}$, т. е. обратной величины степени сжатия во времени,

946

кривая (2) — изменение концентрации ацетилена во времени, кривая (3) — изменение концентрации метана. Как видно, в ходе процесса с некоторой температуры концентрация метана начинает уменьшаться и с повышением температуры падает довольно резко; при этом

наблюдается появление промежуточного продукта-ацетилена, выход которого достигает максимума в момент, когда еще не достигнут максимум по сжатию, т. е. при температуре ниже максимальной. Выход его при этом составляет 7,5% от исходного метана. При дальнейшем сжатии выход ацетилена падает, достигая некоторого минимума и затем снова растет, продолжая рост уже в процессе расширения, уменьшения температуры (обратный ход поршня). Этот рост тормозится при дальнейшем понижении температуры, начиная с некоторого ее значения (в данном случае это практически достигается при временах ≈85.10⁻⁴ сек.). Это значение

Рис. 3. Зависимость изменения содержания исходных и промежуточных продуктов от степени сжатия (времени). 1-x/l; 2 — ацетилен; 3— метан.

температуры очевидно определяется совокупностью кинетических параметров, входящих в дифференциальные уравнения. Важно отметить, что максимальное значение промежуточного продукта теперь достигает 42,24% от исходного вещества (при r = 1 и q = 1), а при параметрах r = 1, q = 2 и r = 2, q = 1 соответственно 33,6% и 38,25%, как это следует из данных таблиц 1, 2 и 3.

Как видим, результаты, полученные на ЭВМ, подтверждают характер температурной зависимости накопления ацетилена, наблюденной в работе [2]. Правда, рисунок 2 построен по максимальным температурам сжатия, т. е. по образовавшемуся ацетилену при различных максимальных степенях сжатия. Однако следует отметить, что в ходе одного сжатия система проходит через все эти температуры. Таким образом, совокупность полученных результатов подтверждает справедливость выдвинутой в работе [2] гипотезы относительно путей образобания ацетилена из метана при его адиабатическом сжатии. Кроме того, полученная информация указывает на пути управления процессом с целью достижения максимального выхода целевого продукта ацетилена. Весьма интересным результатом является и то, что процесс при заданных параметрах и кинетических константах продолжает протекать при охлаждении (расширении) реагирующей системы, что не было заранее очевидно. Наконец, выягляется необходимость рассмотрения задачи при различных степенях асимметрии осуществления

процесса сжатия и расширения. Это обстоятельство может существенно повлиять на динамику процесса химического превращения независимо от модели установки.

Полученные результаты следует рассматривать как пример подхода к анализу кинетики химического процесса в неизотермических условиях методом математического моделирования с примененнем вычислительной техники.

В ходе выполнения данной работы и при анализе результатов возникла ндея постановки задачи об оптимальном ведении неизотермических процессов в общем виде, которую можно будет решить с помощью современной вычислительной техники.

В общей постановке задачи управление неизотермическими процессами явится предметом наших дальнейших исследований.

Лаборатория Химической физики АН АрмССР

Поступило 16 XI 1967

ሆዕዎԱՆԸ በՉ ԻԶՈԹԵՐՄԻԿ ՊԱՅՄԱՆՆԵՐՈՒՄ ԱՑԵՏԻԼԵՆԻ ՓՈԽԱՐԿԵԼՈՒ ՊՐՈՑԵՍԻ ՄԱԹԵՄԱՏԻԿԱԿԱՆ ՄՈԴԵԼԱՎՈՐՈՒՄԸ «ՀՐԱԶԴԱՆ—3» ԷԼԵԿՏՐՈՆԱՑԻՆ ՀԱՇՎԻՉ ՄԵՔԵՆԱՅՈՎ

Բ. Ա. ԿՈՍՏԱՆԴՑԱՆ, Ա. Հ. ՄԱՆԹԱՇՑԱՆ, Ա. Բ. ՆԱԼԲԱՆԴՑԱՆ Ե Վ. Կ. ՍԱՐԳՍՑԱՆ

Ամփոփում

Հիմնվելով տվլալ պրոցեսի համար նախկինում առաջարկված գումարալին սխեմալի՝ CH₄ → C₂H₂ = մուր + H₂ վրա, մաթեմատիկական մոդելավորման եղանակով կատարված է ադհարատիկ սեղմման պայմաններում ռեակցիալի մեջ մոնող մեթանից ացետիլենի գոլացման դինամիկալի անալիզը, Կինետիկական և ջերմաստիճանի փոփոխման դիֆերենցիալ հավասարումների սիստեմի լուծումը կատարված է թվալին ինտեգրման եղանակով, «Հրազդան-3» էլեկտրոնալին հաշվիչ մեջենալի օգնութլամը, Ստացված արդլունջները հաստատում են մեթանից ացետիլենի առաջացման պրոցեսում վերը բերված ճանապարհի գոլութլունը,

Աշխատանքի արդլունջները հարկավոր է դիտել որպես մախեմատիկական մոդելավորման եղանակով և հաշվողական տեխնիկայի կիրառմամբ ոչ իզոխերմիկ պայմաններում ջիմիական պրոցեսի կինետիկայի անալիզի օրինակ։

ЛИТЕРАТУРА

1. Я. Б. Зельдович, П. Я. Садовников, Д. А. Франк-Каменецкий, .Окнсленне азота при горении^{*}. Изд. АН СССР, Москва—Ленинград, 1947; А. М. Маркевич, И. И. Тамм, Ю. Н. Рябинин, ЖФХ, 33, 559, 764 (1959); А. М. Маркевич, Арм. хим. ж., 19, 111 (1966).

- 2. А. А. Манташян. В. К. Саркисян, ДАН АрыССР, 41, 147 (1965).
- Ю. Н. Рябинин, Газы при больших плотностях и высоких температурах. Физматгиз, Москва, 1959; Ю. Н. Рябинин, Докторская диссертация, ИХФ АН СССР, Москва, 1950.
- 4. А. М. Маркевич, В. В. Азатян, Н. А. Соколова, Кин. и кат., 3, 431 (1662).
- 5. И. Е. Волохонович, А. М. Маркевич, И. Ф. Мастеровой, В. В. Азатян, ДАН СССР, 146, 387 (1962).

Same and the second second second