XX, № 11, 1967

УДК 541.69

СИНТЕЗ 2-АЛКОКСИ-5-БРОМБЕНЗИЛ-БИС-(β-ХЛОРЭТИЛ)-АМИНОВ И ИССЛЕДОВАНИЕ ИХ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТИ

А. А. АРОЯН, Б. Т. ГАРИБДЖАНЯН, С. А. САРКИСЯН и Г. М. СТЕПАНЯН

С целью изучения противоопухолевых свойств синтезирован ряд 2-алкокси-5-бромбензил-бис-(β-клорэтил)аминов. В качестве исходных продуктов использованы 2-алкокси-5-бромбензилхлориды, которые действием диэтаноламина переведены в соответствующие бис-(β-оксиэтил)аминопроизводные. Последние вводились в реакцию с хлористым тионилом.

Биологическое испытание этих соединений показало, что они обладают некоторой противоопухолевой активностью, меньшей по сравнению с известными в литературе бис(-β-хлорэтил)аминами близкой структуры.

Ранее были синтезированы бис-(β -хлорэтил)амины, содержащие алкоксильные (I) и карбалкоксильные (II) радикалы в различных положениях бензильной группы [1].

Биологические испытания этих соединений показали, что некоторые из них проявляют выраженную противоопухолевую активность [2].

В настоящей работе описывается синтез бензил-бис-(β-хлорэтил)аминов, содержащих бром и алкоксильные радикалы (III) и некоторые данные, полученные при изучении токсичности и противоопухолевой

 $R=CH_3$, C_2H_5 , C_3H_7 , изо- C_3H_7 , C_4H_9 , изо- C_4H_5

активности этих соединений.

Синтез проведен по следующей схеме:

Хлорметилирование пара-алкоксибромбензолов проводилось по разработанному ранее методу [3] — действием хлористого водорода и параформальдегида в среде хлороформа в присутствии безводного хлористого цинка. 2-Алкокси-5-бромбензил-бис- (β -оксиэтил) амины синтезированы взаимодействием соответствующих хлорметилпроизводных с двумя эквивалентами диэтаноламина в среде абсолютного диоксана. Выходы составляли $55-70^{\circ}/_{\circ}$. Они представляют собой светложелтые кристаллы, перегоняющиеся в вакууме без разложения, плохо растворимые в воде и хорошо—в обычных органических растворителях.

Синтез 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминов проводился действием избытка хлористого тионила на соответствующие бис-(β-оксиэтил)аминопроизводные в среде бензола.

Мы не пытались получить их в виде оснований, так как они при перегонке, в основном осмоляются. Хлоргидраты, получающиеся в результате реакции, очищались разложением карбонатом натрия и дальнейшим осаждением эфирным раствором хлористого водорода.

Токсичность препаратов изучалась в опытах на белых беспородных мышах при однократном и многократном внутрибрюшинном введении.

Для каждого препарата определялись абсолютно смертельная (DI₁₀₀) и максимально переносимая (МПД) дозы. По формуле, предложенной Першиным [4], вычисляли среднюю смертельную дозу (ССД), а по методу Чернова [5] — индекс кумуляции токсического действия (J ктд) препаратов).

Изучение противоопухолевой активности проводилось в терапевтических опытах на крысах и мышах с перевивными опухолями (саркома 45, M-1,180 и асцитная опухоль Эрлиха).

Через 5—6 дней после перевивки опухоли животные взвешивались, разбивались на подопытную и контрольную группы. Препараты вводились животным в изотоническом растворе хлористого натрия внутрибрюшинно, 1 раз в день, в течение 8—12 дней. Мыши получали всего 6 инъекций, крысы — 8. На 14—17 день после перевивки опухоли животные забивались и определялись вес тела и вес опухоли. В случае асцитной опухоли Эрлиха лечение начиналось через 24 часа после перевивки, а после прекращения терапии животных оставляли на выживаемость. Учитывали среднюю продолжительность жизни в обеих группах. О влиянии препарата на рост опухоли судили по проценту торможения: оценку общего действия на организм производили по изменению веса леченных животных по сравнению с контрольными [6]. Полученные цифровые данные подвергали математической обработке. Вычисляли вероятную ошибку средней величины и критерий достоверности (а)—разницы средних величин контрольной и опытной групп.

Все указанные препараты в токсических дозах действовали совершенно аналогичным образом. С первого дня введения препаратов наблюдалось ухудщение аппетита, общее угнетение, поносы. Животные в основном погибали в первые 3, и лишь в отдельных случаях, через 6—9 суток, в состоянии тонико-клонических судорог.

При вскрытии погибших мышей отмечалось выраженное истощение, уменьшение размеров селезенки, вилочковой железы и малокровие внутренних органов. Токсичность изученных соединений значительно варьирует. Так, при однократном внутрибрюшинном введении МПД соединения № 1 для мышей равна 55 мг/кг, а для соединения № 6 — 175 мг/кг. Отмечается некоторая зависимость токсичности испытанных соединений от величины алкоксильного радикала. Из таблицы 3, нетрудно заметить, что с удлинением углеродной цепи токсичность препаратов в основном падает. Все изученные препараты обладают значительным кумулятивным свойством. Максимально переносимая доза при однократном введении (МПД₁) почти во всех случаях в два и более раза превышает разовую максимально переносимую дозу при шестикратном введении (МПД₆). Куммулятивные свойства препаратов также находятся в зависимости от их химической структуры. С увеличением цепи алкоксильного радикала куммулятивные свойства, в отличие от токсичности, в большинстве случаев усиливаются (см. табл. 3).

Терапевтические опыты показали, что все соединения обладают некоторой противоопухолевой активностью. При введении препаратов в максимально переносимых дозах крысам с саркомой 45 или M-1 наблюдается торможение роста опухолей от 30 до 60%. Саркома 180 мышей на лечение этими препаратами не реагировала. Что касается асцитной опухоли Эрлиха, то она оказалась весьма чувствительной к препаратам 2 и 4. Эти соединения в два и более раза продлили жизнь подопытных мышей по сравнению с контрольными. Остальные препараты на этот штами опухоли действовали очень слабо или вовсе не действовали.

По сравнению с известными противоопухолевыми препаратами подобной структуры изученные соединения менее активны и не представляют особого практического интереса.

Экспериментальная часть

2-Алкокси-5-бромбензилхлориды получены хлорметилированием 4-алкоксибромбензолов в среде хлороформа, действием хлористого водорода и параформальдегида в присутствии безводного хлористого цинка [3].

2-Алкокси-5-бромбензил-бис-(β-оксиэтил)амины. Смесь 0,05 моля 2-алкокси-5-бромбензилхлорида, 0,1 моля диэтаноламина и 50 мл диоксана нагревают на водяной бане в течение 10—12 часов. Затем в вакууме водоструйного насоса отгоняют диоксан, к содержимому колбы приливают 25 мл воды, насыщают поташом, приливают 5—10 мл 50% - ного раствора едкого натра и экстрагируют эфиром. Эфирный экстракт высушивают над прокаленным сернокислым натрием, отгоняют растворитель и остаток перегоняют в вакууме. После небольшой промежуточной фракции перегоняются соответствующие 2-алкокси-5-бромбензил-бис(β-оксиэтил)амины, которые при стоянии кристаллизуются (таблица 1).

		0/0			Анализ в %							
					С		Н		N		Br	
R	Молекулярная формула	Выход в	Т. кип. в °С/мм	Т. пл. в° С	найдено	вычис-	найдено	вычис-	найдено	вычис-	найдено	вычис-
CH ₃	C ₁₂ H ₁₈ BrNO ₃	65,5	206-208/1	75—77	47,23	47,38	6,02	5,96	4,84	4,60	26,41	26,27
C ₂ H ₆	C ₁₃ H ₂₀ BrNO ₃	68,2	198—200,0,5	63—65	48,77	49,06	6,40	6,33	4,79	4,40	25,16	25,11
C ₃ H ₇	C ₁₄ H ₂₂ BrNO ₃	74,7	209—211/1	54-56	50,16	50,60	7,00	6,67	4,41	4,21	24,06	24,05
изо∙С _а Н _т	C ₁₄ H ₂₂ BrNO ₃	60,0	208—209/1	5961	50,86	50,60	6,90	6,67	4,01	4,21	24,00	24,05
C ₄ H _e	C ₁₅ H ₂₄ BrNO ₃	64,3	214—216/1	57—59	51,62	52,03	7,01	6,95	4,86	4,04	23,33	23,07
изо-С _• Н•	C ₁₅ H ₂₄ BrNO ₃	53,4	215—217/1	60—61	52,33	52,03	7,01	6,95	4,54	4,04	22,77	23,07

Таблица 2

HHÄ			0/0		Анализ в 0/0							
HE.		.,					H		N		CI-	
соедине	R	Молекулярная формула	Д В	Т. пл. в °C	йдено	ن	ено	-5	ено	ن	ено	ٺِ
コスス			Выход		найд	вычис лено	найдено	вычис- лено	найдено	яычис лено	найдено	вычис лено
_	1											<u> </u>
1	CH ₃	C ₁₂ H ₁₇ BrCl ₃ NO	98,1	96—98	38,32	38,16	4,28	4,53	3,95	3,71	9,56	9,40
2	C ₂ H ₅	C ₁₃ H ₁₉ BrCl ₃ NO	98,4	91—92	39,84	39,87	4,99	4,89	3,90	3,57	9,33	9,05
3	C ₃ H ₇	C ₁₄ H ₃₁ BrCl ₃ NO	96,5	136—1 3 7	41,70	41,45	5,50	5,22	3,20	3,45	8,54	8,74
4	изо-С ₃ Н ₇	C ₁₄ H ₂₁ BrCl ₃ NO	98,5	161—162	41,67	41,45	5,57	5, 2 2	3,71	3,45	8,34	8,74
5	C ₄ H ₈	C ₁₅ H ₂₃ BrCl ₂ NO	96,0	100-102	42,64	42,93	5,31	5,52	3,56	3,33	8,09	8,44
6	изо-С4Н,	C15H23BrCl3NO	97,2	129—131	43,31	42,93	5,43	5,52	3,64	3,33	8,84	8,44
		- 3 6		-								

Таблица 3 Сводные данные о токсичности и противоопухолевой активности изученных 2-алкокси-5-бромбензил-бис(β-хлорэтил)аминов

Токсичность для мышей						Противоопухолевая активность						
-ИТ	BBe-	DI ₁₀₀ CCA MПД M2/K2					крі	ысы	мнши			
леле соеди- нений	число в дений		Jeta	доза жг/кг	сар- ко ма 4 5	сарко- ма М-1	сар- кома 180	асцит Эрлиха				
1	1 6	140 30	83 25	55 20	35	10	+	±	0	0		
2	1 6	125 30	106 20	75 10	130	12	++	+	0 .	++++		
3	1 6	200 60	160 45	120 30	60	15	++	+	0	+		
4	1 6	150 40	120 30	100 20	80	15	±	+	0	++++		
5	1 6	250 60	200 40	125 30	64	10	+	+	0	0		
6	1 6	300 75	244 60	175 40	6 8	12	+	. +	0	+		

Условные обозначения: $D1_{100}$ — абсолютно смертельная доза; CCД — средняя смертельная доза; $M\PiД$ — максимально переносимая доза; $J_{KTД}$ — индекс куммуляции токсического действия; O — отсутствие торможения роста опухоли; \pm — торможение роста опухоли до $30^{9}/_{0}$; + — то же на $30-59^{9}/_{0}$; ++ — то же на $60-79^{9}/_{0}$; +++ — то же на $80-95^{9}/_{0}$; ++++ — более чем на $95^{9}/_{0}$.

Хлоргидраты 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминов. К раствору 0,05 моля 2-алкокси-5-бромбензил-бис-(β-оксиэтил)амина в 50 мл абсолютного бензола при перемешивании и охлаждении льдом приливают 0,15 моля хлористого тионила. Реакционную смесь нагревают на водяной бане в течение 10—12 часов. Затем отгоняют бензол и приливают 50 мл абсолютного эфира. Полученный осадок отсасывают и тщательно промывают абсолютным эфиром. С целью дальнейшего очищения продукта его растворяют в 25—30 мл воды, приливают 50 мл эфира, насыщают поташом (охлаждение), приливают 0,5—1 мл 50% - ного раствора едкого натра, отделяют эфирный слой, а водный экстрагируют эфиром. Соединенные экстракты высушивают над безводным сульфатом натрия, фильтруют и к фильтрату добавляют эфирный раствор хлористого водорода. Полученные кристаллы отсасывают и промывают абсолютным эфиром (таблица 2).

Институт тонкой органической химии АН АрмССР

Поступило 10 IX 1966

2_ԱԼԿՕՔՍԻ_5_ԲՐՈՄԲԵՆԶԻԼ_ԲԻՍ_(β_ՔԼՈՐԷԹԻԼ)_ԱՄԻՆՆԵՐԻ ՍԻՆԹԵԶ ԵՎ ՆՐԱՆՑ ՀԱԿԱՈՒՌՈՒՑՔԱՅԻՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՀԵՏԱԶՈՏՈՒՄ

2. U. ZUPNBUR, P. S. QUPPPRURBUR, U. U. UUPPUBUR L Z. U. USBOURBUR

Ամփոփում

Ստացված են մի չարք 2-ալկօքսի-5-բրոմբենզիլ-բիս-β-քլորէթիլամիններ՝ հակաուռուցքալին հատկություններն ուսումնասիրելու նպատակով։ Սինթներ իրականացված է տեքստում բերված սխեմալի համաձայն։ Ելանյութ 2-ալկօքսի-5-բրոմբենզիլքլորիդներն ստացել ենք պարաֆորմալդեհիդի և քլորջրածնի ազդմամբ 4-ալկօքսիբրոմբենզոլների քլորմեթիլման միջոցով։ Վերջիններիս և դիէթանոլամինի փոխազդմամբ ստացել ենք 2-ալկօքսի-5-բրոմբենզիլ-բիս-(β-օքսիէթիլ)ամիններ, իսկ սրանք, իրենց հերթին, թիոնիլի քլորիդի ազդմամբ փոխարկված են համապատասխան բիս-(β-ջլորէթիլ)ամինների,

Հակաուռուց քալին հատկություններն ուսումնասիրված են պատվաստ֊ ված ուռուց քներ ունեցող առնետների և մկների վրա (սարկոմա 45, M-1, 180 և Էրլիխի ասցիտալին ուռուց քը)։

δուլց է տրված, որ այդ միացություններն ունեն որոշակի հակաուռուցջային ակտիվություն, սակայն ավելի թույլ արտահայտված, քան գրակա֊ նության մեջ հայտնի նման կառուցվածք ունեցող այլ բիս-(β-քլորէթիլ)ամինները։

ЛИТЕРАТУРА

- 1. А. А. Ароян, С. А. Саркисян, Р. Ш. Аршакян, Изв. АН АрмССР, ХН, 16, 491 (1963); А. А. Ароян, С. А. Саркисян, Н. Х. Хачатрян, там же, 18, 389 (1965).
- 2. С. А. Папоян, И. Г. Дамирчогаян, О. В. Бабасян, Вопросы рентгенологин и онкологин, сборник, Ереван, 1966, стр. 9.
- 3. А. А. Ароян, Арм. хим. ж., 19, 226 (1966).
- 4. Г. Н. Першин, Фармакология и токсикология, 13, 53 (1950).
- В. А. Чернов, Цитостатистические вещества в химиотерапни злокачественных новообразований, "Медицина", Москва, 1964.
- В. А. Чернов, Методы экспериментальной химиотерапии, Медгиз, Москва, 1959, стр. 294.