XX, № 10. 1967

УДК 542.952.4+547.322+547.333

химия винилацетилена

LXXX. АЦЕТИЛЕН-АЛЛЕН-КУМУЛЕНОВАЯ ПЕРЕГРУППИРОВКА ПРИ ЗАМЕЩЕНИИ АМИНАМИ ХЛОРА В ДИАЛКИЛИЗОПРОПЕНИЛЭТИНИЛХЛОРИДАХ

С. А. ВАРТАНЯН, М. Р. БАРХУДАРЯН и Ш. О. БАДАНЯН

Замещение хлора аминами в диалкилизопропенилэтинилхлоридах (VII) приводит к образованию кумуленовых аминов (IV), которые в условиях эксперимента гидратируются в соответствующие аминокетоны (IX).

Как было показано ранее [1] при замещении хлора аминами в винилацетиленовых хлоридах (I) реакция протекает через ацетиленаллен-кумуленовую перегуппировку, с образованием винилацетиленовых (II), алленовых (III) и кумуленовых (IV) аминов, причем установлено, что с увеличением радикалов полученные кумуленовые амины в условиях реакции изомеризуются в соответствующие амины (V) [2].

В настоящей работе приводятся результаты, полученные при изучении реакции замещения хлора в диалкилизопропенилэтинилхлоридах (VII). Синтез последних осуществлен из изопропенилэтинилкарбинолов (VI).

Оказалось, что в отличие от своих аналогов—диалкилвинилэтинилхлорметанов (I), диалкилизопропенилэтинилхлорметаны (VII) при комнатной температуре не вступают в реакцию с аминами. Для осуществления этой реакции необходимо длительное нагревание смеси хлоридов с аминами на кипящей водяной бане. Нам не удалось выделить образующиеся кумуленовые амины (VIII), так как последние в условиях опыта гидратируются с образованием ненасыщенных β-аминокетонов (IX).

Аминокетоны (IX) были получены также встречным синтезом. Известным способом [3] синтезированы дивинилкетоны (X) и присоединением вторичных аминов к последним, получены β-аминокетоны (IX).

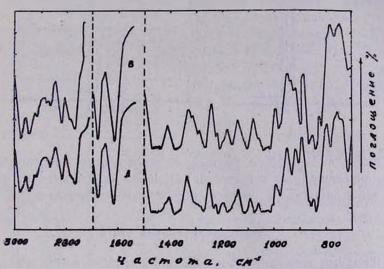
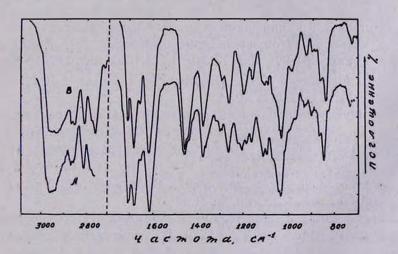
$$VI \longrightarrow \begin{array}{c} R' \\ R'' \end{array} \searrow C = CH - C - C = CH_2 \\ X \quad O \quad CH_3 \\ \downarrow HN \swarrow \\ \\ R'' \searrow C = O + CH_3COCHCH_2N(R)_2 \qquad IX \\ \downarrow (XI) \qquad CH_3 \qquad X \quad I$$

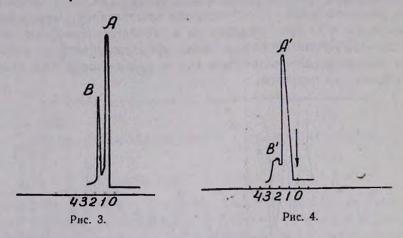
Установлено, что при проведении реакции на кипящей водяной бане образовавшиеся β-аминокетоны (IX) целиком расщепляются на кетон (XI) и метил-β-диалкиламинокетоны (XII). По всей вероятности то же имеет место и в случае взаимодействия амина с хлоридами (VII), хотя в этом случае нам не удалось идентифицировать аминокетоны (XII), чем и объясняется снижение выходов аминокетонов (IX).

Аминокетоны (IX), полученные обоими методами, оказались идентичными. Однако, температуры плавления их пикратов (IX, $R=R'=R''=CH_3$) не совпадают. Изучение ИК спектров показало, что аминокетоны (IX, $R=R'=R''=CH_3$; рис. 1 A, B), независимо от способов их получения* характеризуются частотой карбонильной группы при 1690 cm^{-1} , и сопряженной двойной связи при 1610 cm^{-1} , а в случае аминокетона (IX, $R=R'=CH_3$, $R''=C_4H_9$; рис. 2A, B) карбонильной группы при 1690, 1710 cm^{-1} и сопряженной двойной связи при 1620 cm^{-1} . Для полной идентификации этих аминокетонов мы воспользовались методом газо-жидкостной хроматографии. Кривые, полученные с помощью газо-жидкостной хроматографии, показали их полную идентичность (рис. 3 и 4). Пики A, A^1 относятся к дивинил-

^{*} Спектры А относятся к аминокетонам (IX), полученным из хлоридов (VII), а В — из дивинилкетонов (X).

кетонам (X, $R = R' = R'' = CH_3$; $R = R' = CH_3$, $R'' = C_4H_9$); а В и B^1 к аминокетонам (IX, $R = R' = R'' = CH_3$; $R = R' = CH_3$; $R'' = C_4H_9$). Появление дивинилкетонов (X) объясняется отщеплением аминогруппы от аминокетонов (IX) при введении их в хроматографическую колонку при $120-130^3$. Была проведена также хроматографическая идентификация указанных дивинилкетонов (X) и аминокетонов (IX), выделенных обратно из пикратов.


Рис. 1.

Pac. 2.

При окислении аминокетона (IX, $R=R'=R''=CH_3$), полученного взаимодействием диметилизопропенилэтинилхлорметана с диметиламином выделили ацетон.

Однако пока нам не понятна причина несовпадения температур плавления пикратов.

Хроматографическое разделение проводилось на приборе с пламенно-ионизационным детектором [4]. Колонка 200×0.4 см с $4^{0}/_{0}$ -ным полиэтиленгликолем на рисорбе, обработанном $1^{0}/_{0}$ -ным КОН.

Экспериментальная часть

Исходные винилацетиленовые хлориды получены известным способом [5]. Константы полученных соединений приведены в таблице 1.

Метилбутилизопропенилэтинилкарбинол. Известным способом [6] из 65 г метилбутилкетона и 89 г изопропенилацетилена в присутствии 120 г порошкообразного едкого кали получено 94 г (87,1%) метилбутилизопропенилэтинилкарбинола (VI, $R'=CH_3$, $R''==C_4H_9$), т. кип. 98—99° при 13 мм; n_D^{20} 1,4740; d_4^{20} 0,8701; MRD найдено 53,61, вычислено 52,05. Найдено %: С 79,14; Н 10,71. $C_{11}H_{18}O$. Вычислено %: С 79,52; Н 10,84.

Этилбутилизопропенилэтинилкарбинол. Аналогично вышеописанному из 134,8 г этилбутилкетона и 100 г изопропенилацетилена получено 138 г (86,8%) этилбутилвинилэтинилкарбинола (VI, $R'=-C_2H_5$, $R''=-C_4H_9$), т. кип. 1060% при 11 мм: n_D^{20} 1,4740; d_4^{20} 0,8665; MRD найдено 58,38, вычислено 56,67. Найдено 0%: С 79,91: Н 11,34; $C_{12}H_{20}O$. Вычислено 0%: С 80,00; Н 11,11.

Взаимодействие диметиламина с диметилизопропенилэтинилхлорметаном. Смесь 28,5 г (0,2 моля) диметилизопропенилэтинилхлорметана, 22,5 г (0,5 моля) диметиламина и 3,6 г (0,2 моля) воды нагревалась на кипящей водяной бане в течение 20 часов. После удаления избытка диметиламина реакционная смесь подкислена соляной кислотой, экстрагирована эфиром, высушена сульфатом магния и после удаления эфира, остаток перегнан в вакууме; полу-

		Исходны	е вещества	0,′0					W	RD	Апализ на СІ в	a CI B %
Ř,	R."	карбинол в г	хлористый водород в 2	в дохыв	Т. кип. в °С/жи	Молекулярная формула	п _D	d ₄	онэдйвн	лено венис-	онэдйвн	пено вгимс-
H,	CH3	74,4	35,0	63,0	47—48/10	C ₈ H ₁₁ Cl	1,4780	0,9158	1	1	1	1
CH3	C,H,	75,0	28,0	68,2	56-58/10	C ₉ H ₁₃ Cl	1,4770	0,9097	48,61	46,16	23,94	24,23
H ₃	C4H,	30,0	5,3	63,1	85-86/10	C11H11CI	1,4782	0,9017	57,94	55,40	18,73	19,07
Hs	C,H,	50,0	10,0	68,1	92/10	C ₁₂ H ₁₉ Cl	1,4850	0,9005	63,17	10'09	17,13	17.88

чено обратно 4,1 г исходного диметилизопропенилэтинилхлорметана. Водный раствор органических оснейтрализован поташом, нований экстрагирован эфиром, эфирный экстракт высушен сульфатом магния. После удаления эфира остаток разогнан в вакууме: получено 8 г (27,6°/₀) 1-диметиламино-2,5-диметил-4-гексен-3-она (IX, R=R'=R''==CH₃), т. кип. 93° при 10 мм: п²⁰ 1.4630; d²⁰ 0.8875; MRD найдено 52,4, вычислено 51,86. Найдено ⁰/о: N 8,27. С₁₀Н₁₉ON. Вычислено ⁰/₀: N 8,29.

Пикрат плавится при 120° (из спирта) и дает депрессию с пикриновой кислотой.

Взаимодействие диметиламина с метилэтилизопропенилэтинилхлорметаном. Аналогично вышеописанному из 31,2 г (0,2 мометилэтилизопропенилэтинилхлорметана и 22,5 г (0,5 моля) диметиламина в присутствии 3,6 г (0,2 моля) воды получено 7,8 г (24,5°/₀) 1-диметиламино-2,5-диметил-4-гептен-3-она (IX, R=R'=CH, $R''=C_0H_5$), т. кип. 82—85° при 5 мм: n_D²⁰ 1,4669; d₄²⁰ 0,8764. MR_D найдено 57,93, вычислено 56,14. Найдено %: N 7,83. С₁₁H₂₁ON. Вычислено ⁰/₂: N 7,65.

Из нейтральных продуктов получено обратно 4,5 г метилэтил- изопропенилэтинилхлорметана.

Взаимодействие диметиламина с метилбутилизопропенилэтинилхлорметаном. Из 18,5 г (0,1 моля) метилбутилизопропенилэтинилхлорметана и 11,3 г (0,25 моля) диметиламина в присутствии 1,8 г (0,1 моля) воды аналогичным образом получено 6,5 г (34,8°/ $_{\rm 0}$) 1-диметиламино-2,5-диметил-4-нонен-3-она (IX, R=R'=CH $_{\rm 3}$, R"=C $_{\rm 4}$ H $_{\rm 0}$), т. кип. 118—120° при 10 мм; п $_{\rm D}^{\rm 20}$ 1,4665; d $_{\rm 4}^{\rm 20}$ 0,8643; MR найдено 67,67, вычислено 65,72. Найдено °/ $_{\rm 0}$: N 7,02, C $_{\rm 13}$ H $_{\rm 15}$ ON. Вычислено °/ $_{\rm 0}$: N 6,63. Т. пл. пикрата 112—113° (из спирта).

Из нейтральных продуктов получено обратно 5,4 г метилбутил-

изопропенилэтинилхлорметана.

Взаимодействие диметиламина с этилбутилизопропенилэтинилхлорметаном. Аналогичным образом из 9,9 г (0,05 моля) этилбутилизопропенилэтинилхлорметана и 5,7 г (0,125 моля) диметиламина в присутствии 0,9 г (0,05 моля) воды выделено 4,5 г ($45^0/_0$) 1-диметиламино-2-метил-5-этил-4-нонен-3-она (IX, $R=CH_3$, $R'=C_2H_5$, $R''=C_4H_9$), т. кип. 144° при 10 мм; n_D^{20} 1,4660; d_A^{20} 0,8631; MRD найдено 71,78, вычислено 70,34. Найдено n_0^{20} N 6,34. n_0^{20} N 6,22.

Изомеризация метилбутилизопропенилэтинилкарбинола. В трехгорлую колбу с обратным холодильником и механической мешалкой помещено 20 г метилбутилизопропенилэтинилкарбинола (VI, $R'=CH_a$, $R''=C_4H_a$), 2 г сернокислой ртути, 0,5 г серной кислоты, 5 мл воды и 60 мл метанола. Смесь нагревалась при $50-60^\circ$ в течение 6 часов. Затем основная часть метанола отогнана в небольшом вакууме при температуре бани 50° . Реакционная смесь экстрагирована эфиром, эфирный экстракт промыт раствором соды, водой, высушен сульфатом магния и после удаления эфира, остаток перегнан в вакууме. Получено 13 г $(65^0/_0)$ 2,5-диметил-1,4-нонадиен-3-она (X, $R'=CH_3$, $R''=C_4H_0$), т. кип. $74-75^\circ$ при 10 мм; n_D^{20} 1,4690; d_1^{20} 0,8670; MRD найдено 53,31; вычислено 52,07, Найдено $0/_0$: С 78,95, Н 10,90; $C_{21}H_{18}O$. Вычислено $0/_0$: С 79,51; Н 10,84.

Изомеризация этилбутилизопропенилэтинилкарбинола. Аналогично вышеописанному из 20 г этилбутилизопропенилэтинилкарбинола (VI, $R'=C_2H_5$, $R''=C_4H_9$) в присутствии 2 г сернокислой ртути, 0,5 г серной кислоты, 5 мл воды и 60 мл метанола выделено 15 г 75%) 2-метил-5-этил-1,4-нонадиен-3-она (X, $R'=C_2H_5$, $R''=C_4H_9$), т. кип. 105—106° при 11 мм; n_D^{20} 1,4690; d_4^{20} 0,8654; MRD найдено 57,92, вычислено 56,69. Найдено %: С 79,65; Н 10,95. $C_{12}H_{20}$ О. Вычислено %: С 80,00; Н 11,11.

Взаимодействие диметиламина с 2,5-диметил-2,5-гексадиен-4-оном. а) Смесь 5 г 2,5-диметил-2,5-гексадиен-3-она (X, R'=R"==CH₃) и 25 мл 25%,0-ного водного диметиламина нагревалась в закрытой ампуле на водяной бане при 95° в течение 6 часов. Затем реакционная смесь (после удаления избытка диметиламина) подкислена соляной кислотой, экстрагирована эфиром, высушена сульфатом магния и после удаления эфира в остатке ничего не обнаружено. Водный слой органических оснований высален поташом, экстрагиро-

$$R'' C = CH - CO - CH - CH_2N(R)_3$$

$$CH_3$$

7	R'	R"	Исходные вещества		%					MR _D		Анализ на N, в ⁰ / ₀		T. na.
R			кетон в 2	амин водный р-р в <i>мл</i>	Выход в	Т. кнп. в °С/ <i>мм</i>	Молекулярная формула	n _D ²⁰	d ₄ ²⁰	пайдено	вычис-	найдено	вычис-	инкрата в °С
СН	CH ₃	СН3	5	25°/ ₀ 25 мл	47,0	8487/7	C ₁₀ H ₁₀ ON	1,4618	_	_	_	8,27	8,29	104
СНа	C ₂ H ₅	CH3	5	25º/ ₀ 25 мл	46,7	78— 80/5	C ₁₁ H ₂₁ ON	1,4610	_	_	_	7,89	7,65	79-80*
C ₃ H ₅	СНз	СН	5	50°/ ₀ 16 MA	49,1	88—89/5	C12H23ON	1,4640	0,8750	62,12	61,10	7,05	6,76	-
C ₂ H ₆	C ₂ H ₅	сн,	5	50°/0 16 MA	52,1	94—95/4	C13H25ON	1,4610	0,8689	66,10	65,72	6.67	6,63	-
СН,	C ₄ H,	CH ₃	3	25°/ ₀ 30 мл	31,5	120—122/12	C13H25ON	1,4640	_	_	_	6,51	6,63	_
CH ₃	C₄H,	C ₂ H ₅	5	25°/ ₀ 50 жл	41,6	128—130/11	C ₁₄ H ₃₁ ON	1,4605	_	_	_	7,89	6,22	_
C ₂ H _B	C ₄ H ₉	CH ₃	3	40°/ ₀ 20 мл	34,8	134—135/10	C ₁₅ H ₂₉ ON	1,4630	0,8599	72,05	70,34	6,30	6,22	
C ₂ H ₃	C ₄ H ₉	C ₂ H ₅	5	40°/ ₀ 25 MA	45,7	134 135/6,5	C ₁₆ H ₃₁ UN	1,4612	0,8584	80,90	79,57	5,40	5,53	_

[•] Пикраты следующих соединений не выделяются.

ван эфиром и высущен сульфатом магния. После удаления эфира остаток разогнан в вакууме: получено 2,7 г (67,0%) 1-диметиламино-2-метилбутан-3-она (XII), т: кип. $58-60^{\circ}$ при 14 мм; n_D^{20} 1,4270. Найдено n_D^{20} N 10,85. n_D^{20} С. N 10,85. С. Н. ON. Вычислено n_D^{20} N 11,20; т. пл. пикрата

122 [8].

б) Смесь 5 г 2,5-диметил-2,5-гексадиен-3-она (X, $R'=R''=CH_3$) и 25 мл 25%-ного водного диметиламина нагревалась в закрытой ампуле в течение 1,5 часов при 50°. После аналогичной обработки выделено 3,2 г (47,0%) 1-диметиламино-2,5-диметил-4-гексен-3-она (IX, $R=R'=R''=CH_3$). т. кип. 84—87° при 7 мм; n_D^{20} 1,4618; d_D^{20} 0,8875. Найдено %: N 8,27. $C_{10}H_{19}ON$. Вычислено %: N 8,29. Пикрат плавится при 104° (из спирта).

Остальные аминокетоны получены аналогичным образом, кон-

станты их приведены в таблице 2.

Окисление 1-диметиломино-2,5-диметил-4-гексен-3-она. 8 г аминокетона (IX, R=R'=R"-CH₂) смешано с 50 мл воды и при перемешивании и охлаждении ледяной водой в течение 1,5 часов к ней прибавлено 15 г мелкорастертого перманганата калия. Реакционная смесь оставлена на ночь. На следующий день она перемешивалась 3 часа при комнатной температуре. Перекись марганца была отфильтрована, трехкратно промыта горячей водой (по 20 мл) и после многократной перегонки из головки было выделено 1,5 г динитрофенилгидразона ацетона. Т. пл. 125—126°; не дает депрессии с известным образцом.

Институт органической химни АН АрмССР

Поступило 12 X 1966

ՎԻՆԻԼԱՑԵՏԻԼԵՆԻ ՔԻՄԻԱ

LXXX. ԱՑԵՏԻԼԵՆ–ԱԼԼԵՆ–ԿՈՒՄՈՒԼԵՆՏԱՑԻՆ ՎԵՐԱԽՄԲԱՎՈՐՈՒՄ՝ ԴԻԱԼԿԻԼԻՋՈՊՐՈՊԵՆԻԼՔԻՆԻԼՔԼՈՐԻԴՆԵՐՈՒՄ ՔԼՈՐԸ ԱՄԻՆՆԵՐՈՎ ՏԵՂԱԿԱԼԵԼԻՍ

Ս. Հ. ՎԱՐԴԱՆՑԱՆ, Մ. Ռ. ԲԱՐԽՈՒԴԱՐՑԱՆ և Շ. Օ. ԲԱԴԱՆՑԱՆ

Ամփոփում

Մեր լաբորատորիալի աշխատակիցները առաջներում ցույց էին տվել, որ դիալկիլվինիլացետիլենալին քլորիդներում քլորը ամինով տեղակալելիս տեղի է ունենում ացետիլեն-ալլեն-կումուլենալին վերախմբավորում, ացեաիլենալին, ալլենալին և կումուլենալին ամինների գոլացումով։

րիլացետիլենալին ջլորիդների, (۱), դիալկիլիզոպրոպենիլային ջլորիդներում (VII) ուսումնասիրմանը դիալկիլիզոպրոպենիլացետիլենային ջլորիդներում (VII) Ներկա՝ հազորդումը նվիրված է, որ ի տարբերություն դիալկիլվի-