ДЦЗЧЦЧЦЪ ЕГГРЦЧЦЪ ЦГГЦЧРГ АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XIX, № 5, 1966

УДК 547.311+546 47+546.48+666.112.2

Влияние окислов кадмия и цинка на электропроводность. расплавленных натрий-силикатных стекол

К. А. Костанян и Э. М. Аветисян

Исследовано влияние окислов кадмия и цинка на электропроводность натрийсиликатных стекол в интервале температур 1000—1400°С. Показано, что зависимость влектропроводности от температуры носит экспоненциальный характер. Влияние жеокислов кадмия и цинка на электропроводность исследованных стекол (CdO — 0—15 вес. ⁰/₀, ZnO — 0—19 вес. ⁰/₀) небольшое, что дает возможность определить электропроводность, исходя из содержания натрия в стекле.

Среди двухвалентных элементов цинк и кадмий занимают особое место ввиду наличия во внешней электронной оболочке их атомов 18 электронов. Это обстоятельство существенным образом проявляется на ряде свойств стекол, содержащих цинк и кадмий, и даже в некоторых стеклах катиону Zn^{++} приписывается стеклообразующая роль из-за его сравнительно небольшого ионного радиуса и высокой степени ковалентности его связи с кислородом [1].

Влияние двухвалентных катионов на проводимость стекол в твердом состоянии изучено некоторыми исследователями [2]. В последние годы исследованиями Мазурина было показано, что имеется определенная связь между ионным радиусом двухвалентного катиона и его влиянием на проводимость стекол, а именно, с повышением радиуса двухвалентного катиона влияние его на проводимость увеличивается [3].

Исследование электропроводности расплавленных стекол показывает, что в. обычных натрий-кальций-магний-алюмосиликатных стеклах изменение содержания окислов кальция, магния и, даже алюминия, не приводит к существенным изменениям электропроводности этих стекол, и практически электропроводность таких стеколможно определить содержанием в них окиси натрия [4].

В настоящей работе приводятся результаты исследований электропроводности расплавленных натрий-кадмий-силикатных и натрий-цинк-силикатных стекол. Стекла варились из кварцевого песка и химически чистых карбонатов в пламенной печи, в кварцевых тиглях емкостью от 1 до 3 литров. Методика измерения удельной электропроводности приведена в работе [4]. В таблицах 1 и 2 приведены составы сваренных стекол в весовых процентах. Для сравнения данных удельной электропроводности исследованных стекол с другими составами необходимо, по-видимому, исходить из объемных концентраций катионов в расплавленном стекле или хотя бы из молекулярных процентов. Поэтому, при оценке влияния натрия на проводимость стекол мы исходили из концентрации ионов натрия в г-ион Na+/литр.

Таблица 3

Таблица 1 Составы кадмиевых стекол

Таблица 2 Составы цинковых стекол

№№ стекол	Составы в вес.						
	Na ₂ O	CdO	SIO ₂				
К-1	30.0	15,0	55,0				
К-2	25,0	15,0	60,0				
К-3	20,0	15,0	65,0				
K-5	30,0	7,5	62,5				
K-6	25,0	7,5	67,5				
K-7	20,0	7,0	72,5				
K-10	17,0	15.0	68,0				
K-11	17,0	7,5	75,5				

Ne.Ne	Окислы в вес. °/ ₀ °/ ₀						
стекол	Na ₂ O	ZnO	SiO,				
Zn-1a	29,5	19,0	51,5				
Zn-4a	29,5	13,0	57,5				
Zn-7a	29,5	8,0	62,5				
Zn-1	24,5	19,0	56,5				
Zn-4	24,5	13,0	62,5				
Zn-7	24,5	6,5	69,0				
Zn-2	19,5	19,0	61,5				
Zn-5	19,5	13,0	67,5				
Zn-8	19,5	7.0	73,5				
Zn-12	17,0	10,0	73,0				
Zn-13	17,0	5,0	78,0				

Значения удельных сопротивлений калмиевых стекол

Темп.			С	т е	к л	a	1 may 160	
°C	K-1	К-2	К-3	К-5	К-6	К-7	K-10	K-11
1000	1,5	1,9	3,6	1,7	2,6	4,3	6.6	8,05
1050	1,4	1,7	3,0	1,6	2,3	3,8	5.4	6,55
1100	1.2	1,5	2,7	1,5	2,0	3,4	4,6	5,45
1150	1,1	1,4	2,4	1,3	1,9	3,0	3,95	4,65
1200	1,0	1,2	2,2	1,2	1,7	2,6	3,50	4,1
1250	0,9	1,0	2,0	1,1	1,5	2,5	3,1	3,65
1300	0,8	0,9	1,9	0,9	1,3	2,3	2,8	3,25
1350	1			_	_	-	_	_

Анализы стекол показали хорошее совпадение составов с расчетными. В таблицах 3 и 4 приведены удельное сопротивление — температура; значения удельных сопротивлений стекол взяты из графика, построенного по экспериментальным данным. На рисунках 1 и 2 приведены изотермы удельных сопротивлений исследованных стекол. Как видно из этих рисунков, введение окислов кадмия и цинка в состав натрий-силикатного стекла оказывает незначительное влияние на сопротивление стекла. Более заметное влияние наблюдается при сравнительно низких содержаниях окиси натрия (Na₂O — 170/₀), где введение этих окислов приводит к снижению проводимости в случае кадмиевых стекол, а в случае цинковых стекол окись цинка сначала несколько увеличивает сопротивление стекла, а затем приводит к небольшому снижению.

Значения удельных сопротивлений цинковых стекол

THE REAL PROPERTY.	-447	-	-5-11	С	T	е	K .	1 a	51 2		
Темпер. °С	la	4a	7a	1	4	7	2	5	8	12	13
1000	2,1	1,8	1,7	2,8	2,7	2,9	4,4	4,3	4,5	7,8	9,7
1050	1,8	1,6	1,6	2,2	2,4	2,6	3,7	3,7	3,8	6,4	7,80
1100	1,6	1,4	1.5	2,0	2,1	2,3	3,1	3,2	3,6	5,4	6,45
1150	1,3	1,2	1,3	1,7	1,8	1,9	2,7	2,9	3,1	4,75	5,40
1200	1,0	1,0	1,1	1,4	1,5	1,7	2,4	2,6	2,9	4,20	4,70
1250	_	0,8	1,0	1,3	_	1,3	2,2	A	2,6	3,7	4,15
1300	_	_	-	-	-	-	-	_	2,2	3,3	3,75
1350		1	-	_	-	-	_	_	-	3,1	3,45
1400	-		-	-	-	_	_	-	-3	2,95	3,2
20 50											

Температурная зависимость электропроводности исследованных стекол показывает удовлетворительное подчинение уравнениям:

$$\lg x = A - \frac{B}{T},\tag{1}$$

$$\lg x = a + bT + cT^2. \tag{2}$$

Эти уравнения обычно применяются для выражения зависимости электропроводности расплавленных стекол разного состава от температуры [5, 6].

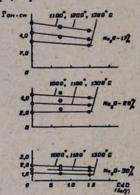


Рис. 1. Изотермы удельных сопротивлений для кадмиевых стекол.

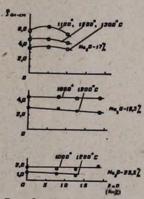


Рис. 2. Изотермы удельных сопротивлений для цинковых стекол.

Для расплавленных стекол уравнение (2) в литературе обычноприводится как лучшее для выражения зависимости удельной электропроводности от температуры [6]. Однако, для небольшого интервала температур от 1000 до 1450°С оба уравнения показывают почти одинаковое совпадение расчетных данных с экспериментальными. Формула (2) выведена теоретически, без анализа экспериментальных

данных, а физический смысл постоянных в и с остается невыясненным [6, 7]. В этом отношении формула (I) более предпочтительна, так как развиваемые в настоящее время многие теории электропроводности стекол дают определенное физическое истолкование постоянным А и В в этом уравнении [8, 9]. Имеющийся экспериментальный материал дает возможность говорить об уменьшении постоянной В в уравнении (I) с увеличением содержания щелочи в стекле. Однако, наличия четкой связи между составом стекла и значением постоянной А не обнаруживается. Так например, в двухкомпонентных натрий-силикатных стеклах не обнаруживается никакой связи между значением постоянной А и содержанием окиси натрия. В литий-боратных стеклах А увеличивается с увеличением содержания окиси лития, а в калий-боратных и натрий-боратных стеклах остается почти постоянной. При этом для натрий-силикатных стекол значение А колеблется от 0,80 до 1,30, а для щелочно-боратных стекол А имеет несколько повышенное значение — 2,0-2,8. В таблицах 5 и 6 приведены значения постоянных А и В в уравнении (1) для исследованных стекол. Эти данные показывают, что зависимость постоянных А и В от состава для исследованных стекол носит сложный характер и нетпростой закономерности*.

	Tab.	лица э
Значения постоянных	AH	В
уравнения (1) для кадмие	вых	стекол

Таблица б Значения постоянных А и В уравнения (1) для цинковых стекол

равнения (1	внения (1) для кадмиевых стекол уравнения (1) для цинковых ст						
Стекла	A	В	Стекла	A	В		
K-1	1,22	1795	Zn-1a	1,43	2250		
К-2	1,21	1880	Zn-4a	1,30	1975		
К-3	1,052	2104	Zn-7a	1,22	1878		
K-5	1,08	1677	Zn-1	1,27	2150		
K-7	0,94	2030	Zn-4	1,057	1900		
K-10	1,00	2270	Zn-7	1,22	2140		
K-11	0,85	2162	Zn-2	1,10	2178		
			Zn-5	1,22	2390		
			Zn-8	0,78	1855		
			Zn-12	0,88	2215		
			Zn-13	0,80	2172		
				- 4			

Однако, причиной такого незакономерного изменения значений A: не может быть малая точность при определении A и B вследствие невысокой точности измерений удельной электропроводности расплавленных стекол в сравнительно коротком интервале температур.

^{*} При пользовании значениями А и В, приведенными в таблицах 5 и 6, следует учесть, что для стекол, сравнительно бедных щелочами (стекла К-10, К-11, Zn-12 и Zn-13), нижней температурной границей приложимости формулы (1) является температура 1100°С.

По-видимому, это можно объяснить сложностью зависимости постоян ных от энергетических величин, характеризующих процесс активаци

при движении электропроводящего иона.

С помощью формулы, выведенной Бокрисом, Китченером, Игна товичем и Томлинсоном на базе теории переходного состояния [9 было показано, что повышенные значения А для щелочноборатны стекол обусловлены положительным значением энтропии активаци электропроводности, в то время как энтропия активации для силикат ных расплавов отрицательна [8]. Это уравнение имеет следующий виденерование имеет следующих виденерование имеет виденерование имеет следующих виденерование имеет виденерование виденерование

$$\Lambda = 3,62 \times 10^{19} zd^{9} \exp\left(\frac{\Delta S^{+}}{R}\right) \cdot \exp\left(-\frac{\Delta H^{+}}{RT}\right), \tag{3}$$

Таблица

где Λ — эквивалентная электропропроводность, z — валентность элек тропроводящего иона, d — половина ширины потенциального барьера ΔZ — свободная энергия активации, рассчитывается по известому урав нению $\Delta Z^+ = \Delta H^+ - T \Delta S^-$. В таблице 7 приведены значения некото

					7		170		аолица
гСтекла	Уд. элек- тропровод- пость ом—1.см—1	Уд. вес г/см³	Концентр. понов Na ⁺ С×100 г-пон Na/см³	Эквивалент. электропр. ол	P ₃	и ф кдж/моль	л <i>Н</i> кдж/моль	1.Z ХДЖ/МОЛЬ	лу. Дж'моль °C
. Кадмиевые стекла (1300°C)									
.K-1	1,25	2,51	2,46	50,8	2,83	68,7	34,35	67,4	-21,01
K-2	1,11	2,46	1,967	56,5	2,92	72,1	36,05	66,0	-19,70
К-3	0,526	2,48	1,60	32,9	2,85	80,7	40,35	73,2	-20,88
1K-5	1,11	2,30	2,225	49,85	2,63	64,1	32,05	71,0	-24,75
K-6	0,77	2,32	1,87	41,15	2,90	78,6	39,30	70,2	-19,66
K-7	0,435	2,34	1,51	28,8	2,73	77,9	38,95	74,0	-22,30
:K-10	0,357	2,35	1,288	27,7	2,89	86,8	43,40	75,0	-20,40
⊮-11	0,308	2,28	1,25	24,65	2,75	89,8	41,40	77,0	-22,63
			Цинко І	вые стеі	кла (120 I	l 10°С)			
Zn-1a	1.0	2,47	2,35	42.55	3,06	86,90	43,10	65,40	-15,13
Zn-4a	1,0	2,42	2,30	43,50	2,94	75,60	37,75	65,10	-18,50
Zn-7a	0,91	2,30	2,19	41,55	2,88	70,19	35,70	65,60	-20,30
Zn-1	0,715	2,50	1,975	36,25	2,98	82,40	41,20	64,40	-17,77
Zn-4	0,667	2,43	1,920	34,50	2,78	72,70	36,80	67,90	-21,40
Zn-7	0,588	2,34	1,85	31,80	2,95	82,00	41,00	69,00	-19,04
Zn-2	0,416	2,51	1,58	26,30	2,90	83,4	41,70	71,40	-20,10
Zn-5	0,385	2,42	1,52	25,30	3,04	91,60	45,70	71,80	-17,65
Zn-8	0,345	2,31	1,452	23.75	2,62	71,00	36,00	72,60	-25,30
Zn-12	0,238	2,40	1,315	18,10	2,76	84,90	42,59	76,80	-22,70
Zn-13	0,213	2,27	1,244	17,14	2,71	83,20	41,65	71,00	-20,00
		- 1	1000			1,500		1734	

рых величин из вышеприведенных уравнений для кадмиевых и цинковых стекол. Данные по плотности при температурах 1200 и 1300° взяты ориентировочно, так как измерения плотности этих стекол в расплавленном состоянии с помощью подвешивания платинового шарика не дали хорошо воспроизводимых результатов. Из приведенных данных видно, что во всех случаях ΔS имеет отрицательное значение, что характерно для силикатных расплавов, а ΔZ колеблется в пределах 64000-77000 дж/моль. Наблюдается некоторое повышение ΔZ с понижением концентрации натрия в стекле. Кроме того, в таблице 7 приведены значения P_{α} — фактора подвижности и

энергетическая величина $\Psi_{\Phi}=$ = 2 ΔH (по Мюллеру, [10]). Как и в случае других силикатных стекол, для расплавленного состояния P, имеет небольшую величину, колеблющуюся от 2,6 до 3,0, что является следствием отрицательного значения энтропий.

Для оценки влияния окислов кадмия и цинка на электропроводность на рисунке 3 приведена изотерма удельного сопротивления

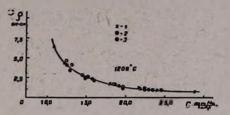


Рис. 3. Зависимость удельного сопротивления от концентрации иона натрия в натрий-силикатных—1, цинковых—2 и кадмиевых—3 стеклах.

этих стекол в зависимости от концентрации иона натрия. На рисунке 3 приведены также данные для натрий-силикатного стекла. Как видно из этого рисунка, все данные составляют одну общую кривую, показывающую, что рассматриваемые двухвалентные окислы оказывают

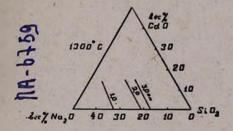


Рис. 4. Изотермы составов равных сопротивлений для кадмиевых стекол в исследованной части системы.

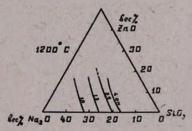


Рис. 5. Изотермы составов равных сопротивлений для цинковых стекол в исследованной части системы.

незначительное влияние на проводимость. Сказанное особенно хорошо оправдывается при больших концентрациях натрия. В случае же сравнительно небольших концентраций натрия разброс экспериментальных точек превышает ошибку опыта (не считая ошибок, вносимых определением плотности).

На рисунках 4 и 5 приведены изотермы составов равных сопротивлений для исследованной части системы Na₂O—CdO—SiO₂ и

 $Na_{2}O-ZnO-SiO_{2}$. Как видно из рисунков, эти изотермы идут почти параллельно стороне $RO-SiO_{2}$, т. е. определяются содержанием окиси натрия.

Ереванский научно-исследовательский институт химии Министерства химической промышленности СССР

Поступило 25 11 1965

ԿԱԴՄԻՈՒՄԻ ԵՎ ՑԻՆԿԻ ՕՔՍԻԴՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՀԱԼԱԾ ՆԱՏՐԻՈՒՄ-ՍԻԼԻԿԱՏԱՅԻՆ ԱՊԱԿԻՆԵՐԻ ԷԼԵԿՏՐԱՀԱՂՈՐԴԱԿԱՆՈՒԹՅԱՆ ՎՐԱ

Կ. Ա. Կոսոանյան և Է. Մ. Ավերիսյան

Udhnhnid

Հոդվածում բերված են 8 նատրիում-կադմիում-սիլիկատային և 11 նատրրիում-ցինկ-սիլիկատային ապակիների էլեկտրահաղորդականության ուսումնասիրության արդյունջները 1000—1400 ինտերվալում։ Ապակիների բաղադրությունները բերված են 1 և 2, իսկ էջսպերիմենտալ տվյալները՝ 3 և 4 աղլուսակներում։ Ցույց է տրված, որ ստացված տվյալները բավարարում են (1) և (2) հավասարումներին։ Ստացված տվյալների անալիզն, ըստ Բոկրիսի, Կիտչեների, Իգնատովիչի և Թոմլինսոնի (3) բանաձևի, ցույց է տալիս (7 և 8 աղլուսակներ), որ ակտիվացման էնտրոպիայի փոփոխությունը՝ ΔS , ինչպես մլուս սիլիկատային ապակիների դեպջում, բացասական է, իսկ ակտիվացման ազատ էներգիան՝ ΔZ -ը տատանվում է 15—18 կկալ մոլ-ի սահմաններում։

Հետազոտված ապակիների տեսակարար դիմադրությունների իզոթերմերը (նկ. 1 և 2) ընթանում են արսցիսների առանցքին զուգահեռ, ալսինքն, ապակու էլեկտրահաղորդականությունը որոշվում է նրանում եղած նատրիումի օքսիդի պարունակությամբ։ Ավելի ճիշտ է արտահալտել ապակու էլեկտրահաղորդականության կախումը նրանում եղած նատրիումի իոնի կոնցենտրացիալով, որի ժամանակ, ինչպես երևում է 3 նկարից, երկարժեք իոնի ներարահաղորդականության վրա։

ЛИТЕРАТУРА

1. A. Stunworth, J. Soc. Glass. Tech., 32, 146, 154 (1948).

G. Gehlhof, M. Thomas, Z. tech. Phys., 6, 544 (1925); M. Fulda, Sprechsaal, 62, 769, 789, 810, 831, 853 (1928).

3. О. В. Мазурин, Электрические свойства стекла. Труды ЛТИ им. Ленсовета, вып. 62, Ленинград, 1962.

4. К. А. Костанян, О. К. Геокчян, Стекло и керамика, 1964, № 4, стр. 5; К. А. Костанян, О. К. Геокчян, К. С. Саакян, Изв. АН АрыССР, ХН, 17, 357 (1964)...

- 5. К. С. Евстропьев, Сб. Физико-химические свойства тройной системы. АН СССР. Москва—Ленинград. 1949. 83.
- 6. D. A. Stuart, O. L. Anderson, J. Amer. Ceram. Soc., 36, 27 (1953).
- 7. F. B. Hodgdon, D. A. Stuart, J. Appl. Phys., 21, 1160 (1950).
- 8. К. А. Костанян, Изв. АН АрмССР, ХН, 16, 3 (1963).
- 9. J. O. M. Bockris, J. A. Kitchener, S. Ignatowicz, J. M. Tomilinson, Trans. Faraday Soc., 48, 75 (1952).
- 10. Р. Л. Мюллер, Сб. Стеклообразное состояние. Труды III Всесоюзного совещания по стеклообразному состоянию. АН СССР, Москва—Ленинград. 1960, 245.