XIX, № 11, 1966

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542.952.4+547.333

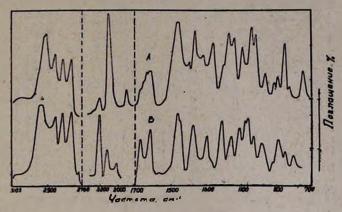
Химия винилацетилена

LXXV. Адетилен-аллен-кумуленовая перегруппировка при замещении хлора аминами в винилацетиленовых хлоридах

С. А. Вартанян, Ш. О. Баданян и А. В. Мушегян

Реакция замещения хлора аминами в диэтилвинилэтинилхлорметане и метилбутилвинилэтинилхлорметане протекает через ацетилен-аллен-кумуленовую перегруппировку, с образованием кумуленовых и винилацетиленовых аминов. Изучены некоторые превращения, в частности гидратация и гидрирование полученных кумуленовых и винилацетиленовых аминов.

Ранее нами было установлено, что при замещении хлора аминами в диалкилвинилэтинилхлорметане реакция протекает через ацетиленаллен-кумуленовую перегруппировку и наряду с винилацетиленовыми аминами получаются также алленовые и кумуленовые амины]1].


Оказалось, что взаимодействие диметил- и диэтиламинов с метилбутилвинилэтинилхлорметаном (I, $R=CH_3$, $R_1=C_4H_9$) а также с диэтилвинилэтинилхлорметаном (I, $R=R_1=C_2H_5$) протекает аналогично вышеописанному — через перегруппировку, и вместо ожидаемых винилацетиленовых и алленовых аминов получаются кумуленовые (II) и винилацетиленовые (III) амины:

$$\begin{array}{c}
R \\
R_1
\end{array}
C = C = C = CHCH_2N \\
R_3$$

$$\begin{array}{c}
R \\
R_3
\end{array}$$

Образование винилацетиленовых аминов (III), по-видимому, протекает изомеризацией кумуленовых аминов (II) в условиях реакции. Структура полученных соединений (II и III) доказана спектральным анализом и химическим путем. В ИК-спектрах аминов IIa, II6, IIв (рис. 1A, 2A, 3A) характерное поглощение, относящееся к валентным

колебаниям кумуленовой двойной связи, лежит в области $2046 \ cm^{-1}$ и $2052\ cm^{-1}$. Наряду с этим обнаружена и частота $1030 \ cm^{-1}$ и слабые взаимно перекрывающие полосы в области $1610-1670 \ cm^{-1}$, которые также характерны для кумуленовых соединений. Слабые поглощения в области $2200 \ cm^{-1}$, $1952 \ cm^{-1}$ и $1610 \ cm^{-1}$ (последнее характерно как для ацетилена, так и для сопряженного винила) свидетельствуют о частичной загрязненности кумулена винилацетиленом и алленом.

Puc. 1.

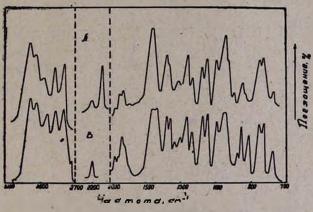


Рис. 2.

Как видно из обоих рисунков [1А, 2А], колебательные деформационные и скелетные частоты в основном сходны между собой (исключение составляет только изменение интенсивности в области деформационных колебаний СН₂). Частичное смещение (5—10 см⁻¹) остальных частот можно объяснить существованием цис-транс-изомеров, проявляемых в спектре (рис. 2А). В спектрах соединений IIIа, III6 и IIIв (рис. 1В, 2В и 3В) найдены характерные частоты сопряженной двойной связи с ацетиленом, которые соответственно лежат в области 1620—1625 см⁻¹ и 2200 см⁻¹. Частоты, характерные для незамещенной винильной группы, нами не обнаружены.

При гидратации аминов (II6 и III6) в водно-спиртовом или водном растворе в присутствии сернокислой ртути и серной кислоты получается один и тот же аминокетон (IV). Аналогично протекает гидратация и амина (IIIa).

II6, III6, IIIB
$$\longrightarrow$$
 $\underset{R_1}{\overset{R}{\longrightarrow}}$ C-CHCOCH₂CH₂N(CH₃)₂.



Рис. 3.

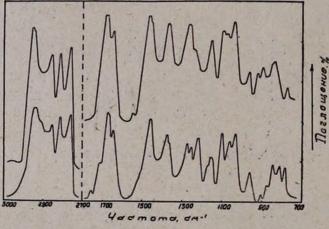


Рис. 4.

В спектрах аминов IV (рис. 4A, B) найдены интенсивные полосы $1644\ cm^{-1}$ и $1676\ cm^{-1}$, первая из которых относится к двойной связи, а вторая — к карбонильной группе. Понижение частот от нормальных значений винильной и карбонильной групп состарляет около $30\ u\ 50\ cm^{-1}$, которое явно свидетельствует о взаимной сопряженности обеих групп.

Гидрирование амина (IIб) в спиртсвом растворе в присутствии никеля Ренея под давлением водорода 15 атм. и амина (IIIб) в при-

сутствии платинового катализатора привело к образованию 1-диметиламино-5-метилнонана (V).

Приведенные выше данные полностью подтверждают приписываемое аминам строение (II и III).

Экспериментальная часть

Исходные метилбутилвинилэтинил- и диэтилвинилэтинилкарбинолы синтезированы по ранее разработанной в нашей лаборатории методике [2]. Константы диэтилвинилэтинилкарбинола совпадали с литературными данным [3]. Бутилвинилэтинилкарбинол получен с $87^{\circ}/_{\circ}$ -ным выходом; т. кип. $75-78^{\circ}$ при 4 мм; $n_{\rm D}^{20}$ 1,4740; $d_{\rm C}^{20}$ 0,8821; М $R_{\rm D}$ найдено 48,42, вычислено 47,54. Найдено $0/_{\circ}$: С 78,74; Н 10,80. $C_{10}H_{16}O$. Вычислено $0/_{\circ}$: С 78,95; Н 10,52.

Метилбутилвинилэтинилхлорметан. Из 76 г метилбутилвинилэтинилкарбинола известным способом [4] получено 68 г (выход 85%) метилбутилвинилхлорметана (I, $R=CH_3$, $R_1=C_4H_9$); т. кип. 76° при 10 мм; n_D^{20} 1,4820; d_4^{20} 0,9367. М R_D найдено 51,87, вычислено 51,14; Найдено $\frac{9}{0}$: CI 20,77. $C_{10}H_{15}CI$. Вычислено $\frac{9}{0}$: CI 20,82.

1-Диметиламино-5-этил-4-гептен-2-ин. Смесь 15,6 г (0,1 моля) диятилвинилэтинилхлорметана [4], 22,5 г (0,5 моля) диметиламина и 1 мл воды оставлена в течение семи дней. Затем избыток диметиламина удален в слабом вакууме, остаток подкислен соляной кислотой до кислой реакции, экстрагирован эфиром. Эфирный экстракт высушен сульфатом магния, после отгонки эфира в остатке ничего не обнаружено. Водный раствор солей органических оснований нейтрализован поташем, экстрагирован эфиром, высушен сульфатом магния и после отгонки эфира разогнан в вакууме. Выделено 12 г .1-диметиламино-5-этил-2-гептен-3-ина (IIIa); т. кип. 72° при 5 мм; про 1,4792; стать образования и 1,4792; мольфатом образования образовани

Все остальные опыты проведены аналогичным образом.

1-Диметиламино-5-этилгептатриен-2,3,4. Из 15,6 г (0,1 моля) диэтилвинилэтинилхлорметана, 9 г (0,2 моля) диметиламина и 1 мл воды выделено 6,9 г 1-диметиламино-5-этил-2-гептен-3-ина с т. кип. 71—72° при 5 мм; $n_{\rm L}^{20}$ 1,4800 и 4 г 1-диметиламино-5-этилгептатриена-2,3,4 (IIa), т. кип. 86° при 2 мм; $n_{\rm L}^{20}$ 1,4914, $d_{\rm L}^{20}$ 0,8431; MR вайдено 56,71, вычислено 55,53. Найдено 0 /₀: N 7,95. $C_{\rm 11}H_{\rm 18}N$. Вычислено 0 /₀: N 8,48.

1-Диметиламино-5-метил-4-нонен-2-ин. Из 17 г (0,1 моля) метилбутилвинилэтинилхлорметана и 18 г (0,4 моля) диметиламина в присутствии 1 мл воды получено 15 г 1-диметиламино-5-метил-4-нонен-2-ина (IIIб), т. кип. $80-82^{\circ}$ при 3 мм; n_D^{20} 1,4804; d_4^{20} 0,8534; М R_D найдено 59,64, вычислено 59,08. Найдено 0 /₀: N 7,34. $C_{12}H_{21}N$. Вычислено 0 /₀: N 7,82.

1-Диметиламино-5-метилнонантриен-2,3,4. Из 34 г (0,2 моля) метилбутилвинилэтинилхлорметана и 18 г (0,4 моля) диметиламина в присутствии 2 мл воды выделено 7 г 1-диметиламино-5-метил-4-нонен-2-ина, т. кип. 80—82° при 3 мм; n_D^{20} 1,4800 и 11 г 1-диметиламино-5-метилнонатриена-2,3,4 (II6), т. кип. 92—93° при 4 мм, n_D^{20} 1,4980; d_D^{20} 0,8426; MRD найдено 62,27, вычислено 60,15. Найдено 0/0: N 7,56.

 $C_{13}H_{21}N$. Вычислено $^{0}/_{0}$: N 7,82. 1 –Диэтиламино-5-метил-4-нонен-2-ин. Из. 17 г (0,1 моля) метилбутилвинилэтинилхлорметана, 22 г (0,3 моля) диэтиламина в присутствии 1 мл воды выделено 6 г 5-метил-1,5-нонадиен-3-ина, т. кип. 64° при 11 мм; n_{20}^{20} 1,4968; d_{20}^{20} 0,8222; MR_{D} найдено 44.66, вычислено 45,38, Найдено $^{0}/_{0}$: С 89,05, Н 10,39. $C_{10}H_{14}$. Вычислено $^{0}/_{0}$: С 89,55, Н 10,44. Выделено также 4,5 г 1-диэтиламино-5-метил-4-нонен-2-ина (IIIв), т. кип. 100—101° при 6 мм; n_{20}^{20} 1,4772; d_{20}^{20} 0,8803; MR_{D} найдено 6 6,46, вычислено 68,32. Найдено $^{0}/_{0}$: N 6,55. $C_{14}H_{25}N$. Вычислено $^{0}/_{0}$: N 6,83.

1-Диэтиламино-5-этил-4-гептен-2-ин. Из 15,6 г (0,1 моля) диэтилвинилэтинилхлорметана и 22 г (0,3 моля) диэтиламина в присутствии 2 мл воды выделено: 4 г 5-метил-1,5-гептадиен-3-ина, т. кип. 64° при 11 мм; n_D^{20} 1,4998 [3] и 2,9 г 1-диэтиламино-5-этил-4-гептен-2-ина (IIIг), т. кип. 99—100° при 6 мм; n_D^{20} 1,4790; d_A^{20} 0,8794; MR_D найдено 62,23, вычислено 63,70. Найдено 0/0: N 7,21. $C_{13}H_{23}$ N. Вычис-

лено ⁰/₀: N 7,33.

1-Диэтиламино-5-метилнонатриен-2,3,4. Из 17,5 г (0,1 моля) метилбутилвинилэтинилхлорметана и 14,6 г (0,2 моля) диэтиламина в присутствии 1 мл воды выделено 4 г 1-диэтиламино-5-метил-4-нонен-2-ина (IIIв), т. кип. 100° при 6 мм; n_D^{20} 1,4791 и 3 г 1-диэтиламино-5-метилнонатриена-2,3,4 (IIв), т. кип. 110° при 5 мм; n_D^{20} 1,4989; d_D^{20} 0,8634; М R_D найдено 70,39, вычислено 69,38. Найдено O_0^{20} : N 6,27. $C_{14}H_{25}N$. Вычислено O_0^{20} : N 6,83.

Гидратация 1-диметиламино-5-этил-4-гептен-2-ина. Смесь 3 г 1-диметиламино-5-этил-4-гептен-2-ина, 45 мл $10^{\circ}/_{0}$ -ной серной кислоты и 1 г сернокислой ртути нагревалась при 60° в течение 4 часов. После обработки выделено 2 г 1-диметиламино-5-этил-4-гептен-3-она (IV6), т. кип. 87—90° при 5 мм; $n_{\rm D}^{20}$ 1,4700; $d_{\rm C}^{20}$ 0,9084; М $R_{\rm D}$ найдено 56,16, вычислено 56,48. Найдено $o_{\rm D}^{\circ}$: N 7,67. $C_{\rm D}$ H $_{\rm D}$ ON. Вычислено $o_{\rm D}^{\circ}$: N 7,64.

Гидратация 1-даметиламино-5-метил-4-нонен-2-ина. Аналогично, из 4 г 1-диметиламино-5-метил-4-нонен-2-ина в 50 мл $10^{0}/_{0}$ -ной серной кислоты в присутствии 1 г сернокислой ртути выделено 3 г 1-диметиламино-5-метил-4-нонен-3-она (IVa), т. кип. $107-108^{\circ}$ при 6,5 мм; n_{D}^{20} 1,4720; d_{D}^{20} 0,9097; MR_D найдено 60,63, вычислено 59,08, Найдено $0/_{0}$: N 6,98. $C_{19}H_{20}$ ON. Вычислено $0/_{0}$: N 7,10.

Гидратация 1-диметиламино-5-метилнонатриена-2,3,4. Из 4 г 1-диметиламино-5-метилнонатриена-2,3,4 в 50 мл $10^{0}/_{0}$ -ной серной кислоты в присутствии 1 г сернокислой ртути получено 2 г 1-диметиламино-5-метил-4-нонен-3-сна (IVa), т. кип. 108° при 6 мм; пр 1,4694; 0,9065. Найдено $0/_{0}$: N 7,41. $C_{19}H_{23}$ ON. Вычислено $0/_{0}$: N 7,10.

Гидрирование 1-диметиламино-5-метилнонатриена-2,3,4. 6 г 1-диметиламино-5-метилнонатриена-2,3,4 гидрировалось в 10 мл спирта в присутствии никеля Ренея под давлением 15 атм. Получено 4,2 г 1-диметиламино-5-метилнонана (V), т. кип. 71° при 4 мм; n_D^∞ 1,4395; d_D^∞ 0,7936; MRD найдено 61,38; вычислено 61,55. Найдено 0/6: N 7,44. C_{12} H_{27} ON. Вычислено 0/6: N 7,56.

Гидрирование 1-диметиламино-5-метил-4-нона-3-ина. З г 1-диметиламино-5-метил-4-нона-3-ина гидрировалось в 10 мл спирта в присутствии платинового катализатора по Адамсу. Получено 1,5 г 1-диметиламино-5-метилнонана (V), т. кип. 78° при 6 мм; n_D^{20} 1,4398; d_1^{20} 0,7930. Найдено 0/0: N 7,31. $C_{12}H_{27}$ N. Вычислено 0/0: N 7,56.

.Институт органической химии АН АрмССР

Поступило 18 VI 1965

ՎԻՆԻԼԱՑԵՏԻԼԵՆԻ ՔԻՄԻԱՆ

LXXV. Ացետիլեն-ալլեն-կումուլենային վերախմբավորում՝ վինիլացեաիլենային թլորիդներում թլորը ամիններով տեղակալելիա

5. Հ. Վարդանյան, Շ. Հ. Բադանյան և Ա. Վ. Մուօևդյան

Udhnyhnid

արըների օգնությամբ, նույնպես և նրանց մի շարջ փոխարկումներով։

առաջանում են կումուլենային (II) և վինիլացետիլենային (III) ամիններ։

առաջանում են կումուլենային (II) և վինիլացետիլենային (III) ամիններ։

Ստացված միացության դեակցիան ևս ընթանում է վերախմբավորմամբ.

առաջանում են կումուլենային (II) և վինիլացետիլենային (III) ամիններ։

Ստացված միացություններ կառուցված չն ապացուցված է ինչպես սպեկ-

ЛИТЕРАТУРА

- С. А. Вартанян, Ш. О. Баданян, А. В. Мушегян, Изв. АН АрмССР, ХН, 16, 54 (1963); 17, 505 (1964).
- 2. С. А. Вартанян, Г. А. Чухаджян, В. Н. Жамагорцян, Изв. АН АрмССР, ХН, 12 107 (1959); С. А. Вартанян, В. Н. Жамагорцян, Ш. О. Баданян, Изв. АН АрмССР, ХН, 15, 449 (1962).
- 3. И. Н. Назаров, Т. Д. Нагибина, И. И. Зарецкая, Изв. АН СССР, ОХН, 1940, 447
- 4. И. Н. Назаров, Л. И. Янбиков, Изв. АН ССС, ОХН, 1942, 66.