24344446 ООН ЭТОПТЕТИТЕТ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Քիմիական գիտություններ

XVIII, № 3, 1965

Химические науки

УДК 542.955+547.317.4+547.431.4

С. А. Вартанян и Ф. В. Дангян

Химия винилацетилена

LVIII. Присоединение 2-хлорэфиров к аллилвинилацетилену и винилпренилацетилену и некоторые превращения полученных хлоридов

Присоединение α -хлорэфиров к олефинам и диолефинам явилось предметом многих исследований [1]. Показано, что к винилацетиленам α -хлорэфиры присоединяются по винилэтинильному радикалу в положении 1,4 [2], а к дивинилацетиленовым системам в положении 1,2 по замещенной винильной группе [3].

Представляло интерес изучить порядок и направленность присоединения α-хлорэфиров к винилаллилацетиленам. Оказалось, что алкилхлорметиловые эфиры в присутствии хлористого цинка в растворе сухого эфира присоединяются к винилаллилацетилену в положении 1,4 по винилэтинильному радикалу с образованием 1-хлор-4-алкоксиметилгептатриена-2,3,6 (I):

$$CH_2 = CHCH_2C = CCH = CH_2 + CICH_2OR \rightarrow CH_2 = CHCH_2C (CH_2OR) = C = CHCH_2CI$$

Однако, в описанных условиях это присоединение протекает исключительно по замещенной двойной связи винилпренилацетилена. При этом кроме основного продукта реакции: 2-хлор-2-метил-3-алкоксиметил-7-октен-5-ина (II) — в незначительном количестве образуется также известный хлорид (III), по-видимому, присоединением образовавшегося в условиях реакции хлористого водорода к винилпренилацетилену:

$$(CH_3)_2CCICH(CH_2OR)CH_2C \equiv CCH = CH_2 \longleftarrow (CH_3)_2C = CHCH_2C \equiv CCH = CH_2 \longrightarrow (CH_3)_2CCICH_2CH_2C \equiv CCH = CH_2$$

$$III$$

ИК-спектры свидетельствуют в пользу указанного строения хлоридов (I, II). В хлориде (I) обнаружены частоты (1952, 1643 и $3075~cm^{-1}$), свидетельствующие о наличии алленовой группировки и незамещенной винильной группы. В хлориде (II) обнаружены частоты поглощения незамещенной винильной группы, сопряженной с тройной связью (2216, 1610, 3072 и 1649 cm^{-1}).

При нагревании хлорида (I) с метиловыми и этиловыми спиртами в присутствии порошкообразного сухого едкого кали образуются соответствующие эфиры (IV). 1-Хлор-4-этоксиметилгептатриен-2,3,6 вступает в реакцию с ацетатом натрия в растворе уксусной кислоты и дает 1-ацетокси-4-этоксиметилгептатриен-2,3,6 (V). При действии аминов на хлорид (I) получаются ожидаемые амины (VI): Известия XVIII. 3—3

$$R'OCH_{2}CH = C = C(CH_{2}OC_{2}H_{5})CH_{2}CH = CH_{2} \xrightarrow{R'OH} 1 \xrightarrow{HNR_{2}} R_{2}NCH_{2}CH = C$$

$$1V \qquad \qquad CH_{3}COON_{2} \qquad VI$$

$$CH_{3}COOCH_{2}CH = C = C(CH_{2}OC_{2}H_{5})CH_{2}CH = CH_{2}$$

При попытке провести реакцию замещения хлора в хлориде (II) вместо ожидаемых продуктов всегда получается диенин (VII):

II + CH₂COONa
$$\frac{\text{CH}_2\text{COOH}}{\text{CH}_2}$$
 (CH₂)₂C = C(CH₂OR)CH₂C = CCH = CH₂
VII

Экспериментальная часть

Исходные углеводороды, константы которых совпали с литературными данными [4], получены известным способом.

Получение хлоридов. К смеси 100 мл сухого эфира, 0,2 моля соответствующего хлорметилового эфира и 1 г свежеплавленного порошкообразного хлористого цинка при комнатной температуре и перемешивании в течение 20 минут по каплям прибавлено 0,2 моля соответствующего углеводорода. После перемешивания в течение 6 часов реакционная масса оставлена на ночь. На следующий день перемешивание продолжалось еще 6 часов. Продукт реакции промыт водой, экстрагирован эфиром, высушен хлористым кальцием и после удаления эфира остаток перегнан в вакууме.

Надо отметить, что при присоединения хлорэфиров к винилпренилацетилену наряду с основным продуктом получается в незначительном количестве также хлорид (III); т. кип. $69^\circ/2$ мм; n_D^∞ 1,4830, что совпадает с литературными данными [5].

Константы полученных хлоридов приведены в таблице.

1-Метокси-4-этоксиметилгептатриен-2,3,6. Смесь 6 г хлорида (I, $R=C_2H_5$) и 4 г едкого кали в 50 мл метилового спирта нагревалась в течение 8 часов при кипении смеси (63°). После отгонки основной части метанола смесь экстрагирована эфиром, высушена сульфатом магния. Эфир отогнан и остаток перегнан в вакууме. Получено 3,6 г (58,5%) эфира, т. кип. 82°/10 мм; n_D^{20} 1,4915; d_D^{20} 0.9319. М R_D найдено 56,58; вычислено 54,88. Найдено %: С 72,37; Н 9,96. $C_{11}H_{16}O_2$. Вычислено %: С 72,52; Н 9,88.

1-Этокси-4-этоксиметилгептатриен-2,3,6 (IV, $R'=C_2H_5$). Из 5 г хлорида, 40 мл этилового спирта в присутствии 3 г едкого кали вышеописанным способом получено 3,2 г (60,9%) эфира, т. кип. 85—86°/9 мл; n_D^{20} 1,4996; d_D^{20} 0,9181. MRD найдено 62,72; вычислено 59,50. Найдено %: С 73,84; Н 9,94. $C_{12}H_{20}O_2$. Вычислено %: С 73,47: Н 10,21.

Таблица

 $CICH_2CH - C = C(CH_2OR)CH_3CH = CH_3$ $(CH_3)_2CCICH(CH_2OR)CH_3C = CCH = CH_3$

	1	-				11	:MR _D		Cl B %	
2 2	R	Buxoz R	Т. кип. в °С/ <i>мм</i>	.Молекуляр- ные формулы	n _D ²⁰	d ₄ ²⁰	пычис-	пайдено	BINTHC-	пайдено
J	CH ₃	37,4	80—81/9	C,H,3CIO	1,4962	1,007	48,87	50,05	20,57	20,23 20,37
I	C _s H _s	36,5	97—98/10	C ₁₀ H ₁₅ ClO	1,4900	0,9961	53,48	54.14	19,03	19, 0 0 18, 6 6
1	C ₄ H,	32,8	98/2	C ₁₂ H ₁₉ ClO	1,4840	0,9672	62,72	63,45	16,55	17,07 16, 54
- 11	CH ₃	54,8	86/2	C,,H,,C10	1,4832	0,9747	57,08	58,78	17,71	17,83 17,69
11	C ₂ H ₅	53,8	9394/2	C ₁₂ H ₁₉ ClO	1,4800	0,9690	61,66	62,91	16,55	16,60 16,38
11	C ₄ H ₉	63,2	108/1	C14H23CIO	1,4770	0,9469	70,89	72,38	14,64	14,47

1-Ацетокси-4-этоксиметилгептатриен-2,3,6 (V). Из 5,5 г хлорида (I), 5 г ацетата натрия и 40 мл уксусной кислоты обычным способом (30 часов при 96—98°) получено 4,7 г (75,9%) ацетата (V), т. кип. 85—86°/1 мм; $\rm n_D^{20}$ 1,4732; $\rm d_1^{20}$ 0,9811. MRD найдено 60,06; вычислено 59,51. Найдено %: С 68,33; Н 8,40. $\rm C_{12}H_{18}O_3$. Вычислено %: С 68,57; Н 8,57.

I-Диметиламино-4-этоксиметилгептатриен-2,3,6 (VI, $R=C_2H_5$, $R''=CH_3$). Через смесь 4 г хлорида (I, $R=C_2H_5$) и 40 мл сухого эфира пропущен газообразный диметиламин (привес 2,5 г). Смесь в закрытом сосуде оставлена на 4 дня. Избыток амина удален в вакууме, раствор подкислен соляной кислотой до кислой реакции, нейтральные продукты экстрагированы эфиром. Органические основания высалены поташом, экстрагированы эфиром, высушены сульфатом магния и после удаления эфира остаток перегнан в вакууме. Получено 2 г $(47,9^{\circ}/_{\circ})$ амина (VI), т. кип. $95-96^{\circ}/1$ мм; n_D^{20} 1,4740; d_D^{20} 0,9417. MRD найдено d_D^{20} вычислено d_D^{20} Вычислено d_D^{20} Вычислено d_D^{20} Найдено d_D^{20} N 7,18. d_D^{20} Вычислено d_D^{20} N 7,18.

I-Диэтиламино-4-этоксиметилгептатриен-2,3,6 (VI, R= R"= C_2H_5). Из 16 г хлорида (I, R= C_2H_5) и 2,5 г диэтиламина вышеописанным способом получено 10,5 г (54,7%) амина (VI, R= C_2H_5 , R"= C_2H_5), т. кип. 120% мм; n_D^{20} 1,4766; d_D^{20} 0,9710. MRD найдено 72,26; вычислено 71,03. Найдено d_D^{20} : N 6,38. d_D^{20} С,14 d_D^{20} Вычислено %0: N 6,28.

I-Диметиламино-4-бутоксиметилгептатриен-2,3,6 (VI, R = C_4H_6 , R"= CH_1). Из 4 г хлорида (I, R= C_4H_6) и 2 г диметилямина

получено 2,5 г (60%) амина (VI, R=C₄H₉, R"=CH₃), т. кип. 101% мм: n_D^{10} 1,4695; d_A^{20} 0,8570. MR_D найдено 72,54; вычислено 71,03. Найдено %: N 6,21. $C_{14}H_{23}NO$. Вычислено %: N 6,28.

I-Фениламино-4-этоксиметилгептатриен-2,3,6 (V/, R = C₈H₅). Из 6 г анилина и 5 г хлорида (I, R = C₂H₅) получено 4 г (65,1%) амина (VI), т. кип. 145—146% / 1 мм; п $_{\rm D}^{20}$ 1,5500; с $_{\rm C}^{20}$ 0,9917. МRD найдено 78,02; вычислено 76,33. Найдено %: N 6,03. С $_{\rm 18}$ H $_{\rm 21}$ NO. Вычислено %: N 5,75.

Взаимодействие ацетата натрия с 2-метил-2-хлор-3-меток-симетил-7-октен-5-ином. Из 7 г хлорида (II, $R=CH_3$), 6 г ацетата натрия и 50 мл уксусной кислоты известным способом (25 часов, 95—100°) получено 4 г (70°/0) 2-метил-3-метоксиметил-2,7-октадиен-5-ина (VII), т. кип. 65°/2 мм; Π_D^{20} 1,4780; d_4^{20} 0,8760. М R_D найдено 53,01; вычислено 51,70. Найдено °/0: С 80,00; Н 9,59. $C_{11}H_{10}O_2$. Вычислено °/0: С 80,48; Н 9,14.

При попытке получения эфиров и аминов реакция протекает аналогичным образом, продуктом реакции всегда является диенин (VII).

Выводы

Хлорметиловые эфиры присоединяются к аллилвинилацетилену в положении 1,4 по винилэтинильному радикалу, а в случае винилпренилацетилена в положении 1,2 по замещенной винильной группе-Взаимодействием хлоридов (I) со спиртами, аминами и ацетатом натрия получены простые и сложные эфиры и третичные амины соответственно.

При попытке заместить хлор в хлориде (II) другими заместителями происходит отщепление хлористого водорода с образованием диенина (VII).

Институт органической химин АН АриССР

Поступило 18 VI 1964

Ս. Հ. Վարգանյան և Ֆ. Վ. Դանդյան

ՎԻՆԻ**ԼԱՑԵՏԻ**ԼԵՆԻ ՔԻՄԻԱՆ

LVIII. 2-Քլաբերարների միացումը ալիլվինիլացետիլենին և վինիլպրենիլացետիլենին և ստացված բլորիդների մի քանի փոխարկումները

Udhnynid

Աշխատանքի նպատակն էր պարզևլ վինիլալլիլացևտիլենին և վինիլպրենիլացետիլենին գ-քլորեքերների միացման կարգը։ Պարզված է, որ չոր եներում ցինկի քլորիդի ներկալունլամբ գ-քլորեներները վինիլալլիլացետիլենին միանում են 1,4-դիրջում, առաջացնելով 1-քլոր-4-ալկօքսիմենքիլնեպտատրինն-2,3,6 (l), իսկ վինիլպրենիլացետիլենին միանում են տեղակալված վինիլ իսմբի 1,2-դիր,քում, առաջացնելով 2-քլոր-2-մեթիլ-3-ալկօքսիմեթիլ-?սկտեն-5-ին (ll)։

իսկ ամինների հետ առաջացնում է համապատասխան ալլենալին ամիններ (VI)։

հրա ամինների հետ առաջացնում է համապատասխան ալլենալին աժիններ (VI)։

հրա այների հետ կալումի ներկալու արացեր ացետանի և է թերակահոլի լուծուլթում կծու կալիումի ներկալությամբ ստաջացնելիս առաջանում են համածուլթում կծու կալիումի ներկալությամբ ստաջացնելիս առաջանում են համածուլթում կծու կալիումի ներկալությամբ անանակում և է թերալկոհոլի լուծուլթում կծու կալիումի ներկալությամբ անանահատանի հետ տալին է ացետատ (V),

իսկ ամինների հետ առաջացնում է համապատասիան ալլենալին ամիններ (VI)։

Ցուկց է արված նաև, որ (II) քլորիդը տեղակալման չի ենթարկվում, փորձի պալմաններում նրանից պոկվում է քլորաջրածին, առաջացնելով համապատասիան դիենին (VII)։

ЛИТЕРАТУРА

- 1. F. Straus, W. Till, Lieb. Ann. 525, 151 (1936); W. Mameoos, WOX 27, 1499 (1957).
- 2. H. B. Dykstra, J. Am. Chem. Soc. 58, 1747 (1936); С. А. Вартанян, А. О. Тосунян, Изв. АН АрмССР, XH 15, 337 (1962).
- 3. С. А. Вартанян, Л. Г. Месропян, А. О. Тосунян. Изв. АН АрмССР, ХН 18, 137 (1963).
- 4. А. А. Петров, Ю. И. Порфирьева, К. С. Мингалева, Н. И. Светлова, ЖОХ 31, 3525 (1961).
- 5. А. А. Петров, Ю. И. Порфирьева, ЖОХ 33. 419 (1963).