УДК 542.955 + 547.31 + 547.722.4

Присоединение «, 3-дихлортетрагидрофурана к изобутилену, хлоропрену, винилацетилену и винилизопропенилацетилену

α-Хлор- и α,β-дихлоралкилэфиры в присутствии кислых катализаторов в растворе сухого эфира присоединяются к олефинам [1], диолефинам [1, 2], винилацетиленовым [3] и дивинилацетиленовым [4] системам. Нами впервые установлено, что в присутствии хлористого цинка в растворе сухого эфира α,β-дихлортетрагидрофуран аналогично α-хлорэфирам вступает в реакцию с изобутиленом, хлоропреном, винилацетиленом (МВА) и винилизопропенилацетиленом (ВИА) с образованием соответствующих хлоридов по схеме:

$$CI - CH_{2}CCI = CHCH_{2}CI - CI - CH_{2}COOH + CICH_{2}COOH$$

$$CH_{3} = CCICH = CH_{3}$$

$$CH_{3} = CCICH = CH_{3}$$

$$CI - CH_{2}CCI(CH_{3})_{2} + CH_{3} = CCICH = CH_{2}$$

$$CI - CH_{2}CCI(CH_{3})C = CCH = CH_{2}$$

$$III$$

$$CI - CH = C = CHCH_{3}CI - CH = CCICH = CH_{2}$$

$$IV - CI - CH = CCICH = CH_{3}$$

Хлорид (V), по-видимому, может образоваться или изомеризацией хлорида (IV), или же присоединением α,β -дихлортетрагидрофурана к винилацетилену в положении 3,4. Указанное в схеме строение полученных хлоридов (II—V) принято на основании ИК-спектров и по аналогии с литературными данными [1—4].

Кроме того, окислением α -(1,3-дихлор-2-бутенил)- β -хлортетрагидрофурана (II) получены хлоруксусная и β -хлортетрагидрофурилуксусная кислоты. Выходы и константы полученных соединений (I—V) приведены в таблице.

Таблица

Вещества	Выход в %/0	Т. кип. в °С/ <i>мм</i>	Молекуляр- ная формула	π ²⁰	d ₄ ²⁰	MR _D		Cl B º/o	
						найдено	вычис-	пайдено	вычис-
1	67,6	93 95/1	C ₈ H ₁₄ OCl ₂	1,4803	1,2819	47,67	48,32	36,20	36,04
II	84,7	111-113/1	C.H.OCI,	1,5140	1,3121	52,64	52,72	46,50	46,40
III	35,4	100-103/1	C,,H,,OCI,	1,5055	1,2121	57,17	59,70	29,93	30,47
IV	79,0	75— 77/1	C ₈ H ₁₀ OCl ₈	1,5150	1,2508	46,44	47,39	36,78	36,78
V	21,0	63- 65/1	C ₈ H ₁₀ OCl ₂	1,4990	1,2101	46,81	47,39	37,10	36,78

Институт органической химии АН АрмССР

Поступило 13 1 1965

С. А. Вартанян, А. О. Тосунян, Л. Г. Месропян, Р. А. Куроян

ЛИТЕРАТУРА

- 1. F. Straus, W. Thiel, Lieb. Ann. 525, 151 (1936).
- 2. А. Н. Пудовик, Б. А. Арбузов, Изв. АН СССР 4, 427 (1946); С. А. Вартанян, А. О. Тосунян, Изв. АН АрмССР, ХН 10, 105 (1957).
- 3. H. B. Dykstra, J. Am. Chem. Soc. 58, 1747 (1936); C. A. Вартанян, A. O. Тосунян, Изв. АН АрмССР, XН 15, 337 (1962); C. A. Вартанян, A. O. Тосунян, C. A. Мелконян, там же 17, 184 (1964).
- 4. С. А. Вартанян, В. Н. Жамагорцян, А. О. Тосунян, Изв. АН АрмССР, ХН 14, 139 (1961); С. А. Вартанян, Л. Г. Месропян, А. О. Тосунян, там же 16, 137 (1963).