Քիմիական գիտություններ

XVIII, Nº 1, 1965

Химические науки

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

Р. С. Едоян, М. Г. Манвелян и Г. Г. Бабаян

Физико-химические исследования систем, содержащих Na₃AlF₆, K₃AlF₆ и Li₃AlF₆

І. Диаграмма плавкости системы Na₃AlF₆-K₃AlF₆

Исследование систем, содержащих Na₃AlF₆, K₃AlF₆ и Li₃AlF₆, связано с изысканием более легкоплавкого и обладающего высокими физико-химическими показателями электролита для криолито-глиноземной ванны.

Получению и свойствам натриевого криолита посвящено много работ [1]. калиевый же криолит изучен мало [2]. В литературе имеются противоречивые данные по диаграмме плавкости системы Na₃AIF₆—K₃AlF₆. Так, по данным Беляева и Сгуденцова [3], диаграмма плавкости этой системы представляет непрерывный ряд твердых растворов с минимумом при 935°С (50 мол.⁹/₀ K₃AIF₆). Данными же Нарай-Сабо и Сигмонда [4] показано наличие соединений 5K₃AIF₆·2Na₃AIF₆, 2K₃AIF₆·Na₃AIF₆, 5K₃AIF₆·3Na₃AIF₆, K₃AIF₆·Na₃AIF₆, 3K₃AIF₆·5Na₃AIF₆ и K₃AIF₆·2Na₃AIF₆, причем при охлаждении до ком натной температуры эти соединения (кроме 2K₃AIF₆·Na₃AIF₆) распадаются.

Литературные данные показывают, что в настоящее время отсутствует ясное представление о диаграмме плавкости вышеуказанной системы, точное значение которой необходимо при построении диаграммы плавкости системы Na₃AlF₆—K₂AlF₆—Li₃AlF₆.

Экспериментальная часть

Для построения диаграммы плавкости системы Na₃AlF₆ – K₃AlF₆ в платиновом тигле растворением эквимолекулярных количеств AlF₃ в расплавах фтористого натрия и калия при темперагурах 1000—1050° были синтезированы натриевый и калиевый криолиты. После их изготовления в достаточных количествах отбиралась средняя проба для анализа. Результаты приведены в таблице 1.

Таблица 1

Эл	ементы	Расчетный состав в вес. °/。	Содержание в вес. %	Элементы	Расчетный состав в вес. %	Содержание в вес. %
and a	Na	32,85	31.20	K	45,3	44.6
	Al	12,85	13.80	Al	10,5	11,3
	F	54,30	.54,11	F	44,2	43,4

Днаграмма плавчости системы Na, AIF, -- K, AIF,

Как видно из данных, полученные продукты по составу приближаются к расчетным значениям. Диаграмма плавкости системы Na₃AlF₆—K₃AlF₆ строилась на основании температурных эффектов, отвечающих превращениям, происходящим при охлаждении расплавов.

Термограммы получались на саморегистрирующем пирометре Курнакова. Запись велась при помощи платино-платинородиевой термопары; в качестве эталона использовалась прокаленная окись алюминия. Следует указать на сильную агрессивность исследуемых продуктов, в связи с чем синтез и запись термограмм осуществлялись в платиновой посуде. Термопара предварительно калибровалась по температурам плавления следующих соединений: Sn. CdCl. KCl. NaF, K₂SO₄. В связи с возможностью нарушения состава расплава после кристаллизации часть образцов подвергалась химическому анализу. Для построения диаграммы плавкости системы Na₂AIF₆-K₃AIF₆ было произведено детальное исследование 41 образца (табл. 2), содержащего от 100% Na,AIF, до 100% K,AIF, в интервале 2-3%. В некоторых случаях запись повторялась несколько раз для подтверждения наличия сингулярных точек. По полученным термограммам были рассчитаны температуры превращений, на основании которых была построена диаграмма плавкости системы Na,AIF₈-K,AIF₈, содержащая семь полей кристаллизации образующихся и исходных соединений.

До 15,5 мол. $%_0$ калиевого криолита (рис. 1) имеется поле кристаллизации Na₃AlF₆. ограниченное линией моновариантного равновесия, огвечающей появлению первых кристаллов натриевого криолита; при этом происходит понижение температуры плавления от 1000 до 830°. Эвтектическая точка E_1 отвечает совместной кристаллизации Na₃AlF₆ и 2Na₃AlF₆·K₃AlF₆. Повышение концентрации K₃AlF₆ приводит к образованию новой фазы состава 2Na₃AlF₆·K₃AlF₆, а поле кристаллизации этого соединения простирается до 36,0 мол. $%_0$ K₃AlF₆ и ограничено линией моновариантного равновесия E_1AE_8 , отвечающей выделению

Р. С. Едоян, М. Г. Манвелян, Г. Г. Бабаян

Весовые отно-		Молярные Эффекти		Весовые отно-		Молярные		Эффекты			
шения	в %/0	отношен	ня в ⁰/₀	σψΨ	SKID	шения	B ⁰ / ₀	отношения в %.		1000	
Na,AIF,	K,AIF,	Na ₃ AIF ₆	K,AIF.	в°С	B °C	Na,AIF.	K,AIF	Na,AIF.	K,AIF	в°С	t ₂ в °С
100 97 95 93 90 87 85 83 80 77 75 73 70 67 65 63 60 57 55 53	0 3 5 7 10 13 15 17 20 23 25 27 30 33 35 37 40 43 45 47	100 97.67 96.00 94.25 92.8 89,22 87.45 85.68 83.20 80.44 78.62 74.72 74.72 74.12 71.36 69.53 67.66 64.83 61.96 59.65 58.08	0 2,33 4 5,75 8,2 10,78 12,55 14,32 16,80 19,56 21,38 25,28 25,28 25,28 25,28 25,28 25,28 30,47 32,34 35,17 38,04 40,35	860 883 777 874 860 834 836 836 836 856 836 841 841 841 841 841 841 841 841 841 841	1001 1000 987 2 975 971 962 949 954 950 944 950 950 950 950 950 950 940	47 45 43 40 37 35 33 30 27 25 23 20 17 15 13 10 7 5 3 0	53 55 57 60 63 65 67 70 73 75 77 80 83 85 87 90 93 95 97 100	50,21 50,14 50,10 44,70 41,91 39,82 37,70 34,54 31,20 29,14 26,74 23,45 20,09 17,81 15,51 11,84 8,45 6,07 3,64 0	49,79 49,80 49,90 55,30 58,09 60,12 62,30 65,46 68,≥0 70,96 73,265 76,55 70,91 82,19 82,49 88,16 93,93 96,36 93,93 96,36	840 820 810 841 841 822 793 762 773 770 770 770 770 770 7759 764 770 856 ———————————————————————————————————	946 942 940 948 952 942 941 947 947 947 947 947 952 952 952 952 965 975 980 980 980
50	50	55,10	44,90	852	943						

Данные плавкости системы Na, AIF.--К, AIF.

кристаллов 2Na₃AlF₆·K₃AlF₆. Температура плавления этого соединения 946°. Образование данного соединения выражено на диаграмме плавкости пологим максимумом, указывающим на его несгойкую природу.

В интервале концентраций 36,0-41,5 мол. % К_аАІF_в находится поле кристаллизации второго соединения 5Na, AIF. 3K, AIF. Точка E. соответствует нонвариантному равновесию, оно отвечает совместной кристаллизации 2Na,AIF. К,AIF. и 5Na,AIF. ЗК,AIF. температура плавления эвтектического состава соответствует примерно 842°. Максимум на кривой ликвидуса образуется при содержании K₂AlF₆, равном 37,8 мол. %. Следующее соединение, образующееся в данной системе, Na,AIF. K,AIF. (50 мол. % K,AIF.); температура плавления его 942°. Точка Е, является эвгектической и отвечает совместной кристаллизации 5Na, AIF. 3K, AIF. с K, AIF. Na, AIF. Температура плавления сплава этого состава 840°. Дальнейшее повышение концентрации КаАІF, приводит к образованию еще трех соединений: 3NaaAIF, -5K₃AlF₆, плавящегося конгруентно при 948° (60 мол. % K₃AlF₆), и двух других соединений-Na,AIF. 2K,AIF. (66,6 мол.% К,AIF.) и 2Na,AIF, 5K,AIF, (71,5 мол. % К,AIF), из которых первое плавится инконгруентно, второе имеет открытый максимум на кривой ликвидуса с температурой плавления 946°. Температура превращения первого соединения равна 887°.

Совместная кристаллизация указанных соединений дает эвтектические точки: E_4 —Na₃AlF₆·K₃AlF₆ с 3Na₃AlF₆·5K₃AlF₆; E_5 —3Na₃AlF₆· •5K₃AlF₆ с 2Na₃AlF₆·5K₃AlF₆ и E_6 —2Na₃AlF₆·5K₃AlF₆ с K₃AlF₆ с тем.

Таблица 2

Днаграмма плавкости системы Na, A1F, -- K, A1F,

Характер переходных точек	Твердые фазы	Солержание К ₃ АІГ ₆ в мол. ⁹ / ₉	Т. прев- ращения в °С					
звтектика	Na3AIF.+2Na3AIF.K2AIF.	15,5	832					
дистектика	2Na3AIF.K3AIF	33,5	946					
эвтектика	2Na, AIF. K, AIF. + 5Na, AIF. 3K, AIF.	36,0	840					
дистектика	5N*3AIF.3K3AIF	37,8	950					
эвтектика	5Na,AIF. · 3K,AIF. + Na,AIF. · K,AIF.	41,5	- 840					
листектика	Na3AIFe·K3AIFe	50,0	942					
эвтектика	Na, AIF. K, AIF. + 3Na, AIF. 5K, AIF.	54,2	820					
дистектика	3Na,AIF, 5K,AIF,	60,0	948					
эвтектика	3Na, AIF 5K, AIF + Na, AIF 2K, AIF	65,5	770					
переходная	$2Na_{A}IF_{\bullet}\cdot 5K_{A}IF_{\bullet} \rightarrow Na_{A}IF_{\bullet}\cdot 2K_{A}IF_{\bullet}$	66,7	887					
дистектика	2Na,AIF 5K,AIF	71,5	946					
эвтектика	$2Na_{3}AIF_{6}\cdot 5K_{3}AIF_{6} + K_{3}AIF_{6}$	76,8	772					

Составы нонвариантных точек системы Na₃A1F₆-K₃A1F₆

пературой плавления 820, 770 и 772°. Таким образом. при ознакомлении с диаграммой плавкости системы Na₃AlF₆—K₃AlF₆ видно, что в ней происходит образование шести химических соединений типа двойных солей между натриевым и калиевым криолитами, причем пять из них плавятся конгруентно и один—инконгруентно.

Нами в настоящее время производится исследование изменения фазового состава в твердом состоянии, но из общего вида диаграмм можно предположить, что указанные соединения (за исключением 5K₃AlF₆·2Na₃AlF₆) находятся в основном в сильно диссоциированном состоянии (характерный пологий вид кривой ликвидуса) и при охлаждении до комнатной температуры, возможно, произойдет их разложение, как это указано в [4]. Исходя из полученной диаграммы плавкости, можно сделать тот важный выво́д, что при небольших добавках калиевого криолита (14—15 вес. ⁰/₀) происходит резкое уменьшение температуры плавления смеси с 1000° для Na₃AlF₆ до 832° для смеси.

Выводы

Построена диаграмма плавкости системы Na₃AlF₆—K₃AlF₆. Показано, что эти вещества не образуют непрерывного ряда твердых растворов; в системе происходит образование шести соединений составов: 2Na₃AlF₆·K₃AlF₆; 5Na₃AlF₆·3K₃AlF₆; Na₃AlF₆·K₃AlF₆; 3Na₃AlF₆· ·5K₃AlF₆; Na₃AlF₆·2K₃AlF₆ и 2Na₃AlF₆ 5K₃AlF₆.

При небольших добавках калиевого криолита (14—15 вес. %) происходит резкое уменьшение темперагуры плавления смеси с 1000° для Na₃AlF₈ до 832° для смеси.

Ереванский научно-исследовательский институт химии

Поступило 4 V 1964

13

Таблица З

Ռ. Ս. Եգոյան, Մ. Գ. Մանվելյան և Հ. Գ. Аաբայան

1. Na,AIF,-K,AIF, vhumbuh amidua ghuqpuur

U. J. yn hn i J

ЛИТЕРАТУРА

- П. П. Федотьев, В. П. Ильинский, Изв. СПБ политех. института 18, 147 (1912);
 20, 745 (1913); Н. А. Пушин, А. В. Басков, ЖРХО 45, 82 (1913); Е. П. Дергунов, ДАН СССР 60, 1185 (1948); R. Lozent, A. Jabs, W. Eitel, Z. anorg. alig. Ch. 83, 39, 328 (1913); G. Fuseya, C. Sugihare, N. Nagao, C. Teraoka, J. Electroch. Soc. Japan 18, 65 (1950); N. Phillips, R. Singleton, E. Hollingshead, J. Electroch. Soc. 102, 690 (1955).
- 2. П. П. Федотьев, К. Тимофеев, Металлургия 7, 60 (1933).
- 3. А. И. Беляев, Л. Е. Студенцов, Легкие металлы 3, 15 (1936).
- 4. J. Naray-Szabo, Cl. Sigmond, Mat. termest. ertes. 60; 364 (1941); Neues Jahrb. Mineral., Geol., Palaontol., Ref. 1, 112 (1942).