ДИЗЧИЧИЪ ППЬ ФЪЗПРЕВПРЕВПРЕВ ПРИВО ПРИВО В РОТИВ В В СТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Քիմիական գիտություններ

XVII, № 6, 1964

Химические науки:

КРАТКИЕ СООБЩЕНИЯ

Л. А. Акопян, М. Г. Аветян и С. Г. Мацоян

Синтез глицидиловых эфиров винилэтинилкарбинолов

В последние годы эпоксидные соединения, в частности эпоксидные смолы, нашли широкое применение в производстве лаков, стеклопластиков, стабилизаторов и т. д. [1]. Одним из путей получения эпоксидных полимеров является синтез соединений, содержащих наряду с α-окисным кольцом ненасыщенные группировки, способные к полимеризации. В качестве такого мономера в последнее время используется глицидилметакрилат, радикальная полимеризация и сополимеризация которого с дальнейшим структурированием приводит к получению технически ценных полимерных материалов [2].

В связи с нашими исследованиями циклической полимеризации винилэтинилкарбинолов [3] представлял интерес синтез их глицидиловых эфиров с целью создания новых эпоксидных соединений, способных к полимеризации.

Нами установлено, что при действии эпихлоргидрина на винилэтинилкарбинолы при 20—40° в присутствии порошкообразного едкогокали гладко образуются глицидиловые эфиры этих карбинолов. Таким путем были получены глицидиловые эфиры винилэтинилкарбинола, метил-, пропил-, диметил-, метилэтил-, диэтил-, метилфенилвинилэтинилкарбинолов и 1-винилэтинилциклогексанола. Образование последних протекает, по-видимому, в две стадии: присоединение карбинола к а-окисному кольцу эпихлоргидрина и последующее дегидрохлорирование образующихся при этом промежуточных 2-окси-3-хлорпропиловых эфиров винилэтинилкарбинолов:

$$CH_2 = CHC \equiv CCRR'OH + CH_2 - CHCH_2CI \longrightarrow$$

$$\longrightarrow CH_2 = CHC \equiv CCRR'OCH_2CH(OH)CH_2CI \xrightarrow{KOH}$$

$$\longrightarrow CH_2 = CHC \equiv CCRR'OCH_2CH - CH_2$$

Подтверждением нашего предположения является тот факт, что реакция между винилэтинилкарбинолами и алкилгалоидами (хлористый пропил, бромистый бутил) в принятых нами условиях не приводит к ожидаемым результатам, а именно— к соответствующим простым эфирам карбинолов. Отсутствие в продуктах реакции промежуточных

2-окси-3-хлорпропиловых эфиров объясняется, по-видимому, большей скоростью второй стадии по сравнению с первой.

Винилэтинилкарбинолы получены по прописям Назарова и сотрудников [4]. Опыты проводили в трехгорлой колбе с мешалкой, обратным холодильником и термометром. К 0,11—0,12 моля соответствующего карбинола при энергичном перемешивании и охлаждении (+10°) последовательно добавляли 8 г (0,143 моля) порошкообразного едкого кали и 9,2 г (0,1 моля) эпихлоргидрина. Затем реакционную смесь продолжали перемешивать при 20—40° в течение 5 часов. На следующий день к продукту реакции добавляли 100 мл сухого эфира, фильтрацией отделяли осадок, а фильтрат подвергали фракционной перегонке в вакууме. Физико-химические константы, выходы и анализы полученных глицидиловых эфиров винилэтинилкарбинолов приведены в таблице. Все эфиры—бесцветные жидкости со специфическим

CH₂ = CHC = CCRR'OCH₂CH—CH₂

1	-	1		- 4			MR _D		Анализ		B °/0	
R	R'	Выход в °/о	Т. кип. в <i>С/мм</i>	Молеку- лярная формула	n _D ²⁰	d ₄ ²⁰	найдено	вычислено	найдено	вычис-	найдено	лено
	1							-	1	1		ш
H	Н	50,7	70-71/3	C.H.,O.	1,4866	1,0059	39,48	37,76	69,60	69,54	7,30	7,30
Н	CH,	63,7	67/2	C,H,,O,	1,4782	0,9755	44,18	42,38	70,68	71,03	7,90	7,95
Н	C,H,	48,8	73-74/1,5	C,,H,,O,	1,4755	0,9469	53,64	51,62	73,15	73,30	8,88	8,95
CH,	CH,	62,0	59-60/1,5	C10H14O2	1,4740	0,9600	48,66	47,00	72,26	72,26	8,24	8,49
CH,	C ₂ H ₅	49,9	79—80/3	C11H16O2	1,4750	0,9535	53,22	51,62	72,90	73,30	8,87	8,95
C ₂ H ₅	C ₂ H ₅	33,5	81—82/2	C,2H,8O,	1,4765	0,9468	57,93	56,23	74,28	74,19	9,27	9,34
CH ₃	C ₈ H ₅	45,6	120—121/1.5	C15H16O2	1,5379	1,0427	68,47	66,49	78,84	78,92	7,05	7,06
(C)	H ₂) ₅	33,9	104-105/2	C13H18O2	1,5022	1,0004	60,87	58,65	75,24	75,69	9.04	8,80
	1.0							1		- 1		

запахом; перегоняются в вакууме без разложения. Значения экзальтации их молекулярных рефракций, как и рефракций простых эфиров винилэтинилкарбинолов [5], лежат в пределах 1,6—2,2. Глицидиловые эфиры винилэтинилкарбинолов легко полимеризуются** как самопроизвольно (на воздухе), так и в присутствии радикальных инициаторов с образованием линейных растворимых каучукоподобных или порошкообразных эпоксидных полимеров, способных к дальнейшему поперечному сшиванию (отвердению).

Институт органической химин АН АрмССР

Поступило 2 IV 1964

^{*} В случае первичного и вторичного карбинолов они разбавлялись 20-30 мл сухого эфира.

^{**} Результаты изучения полимеризации будут опубликованы отдельно.

ЛИТЕРАТУРА

- 1. А. М. Пакен. Эпоксидные соединения и эпоксидные смолы. ИЛ, Москва, 1962.
- 2 Нвакура, Куросаки, Накабаяши. Хим. и техн. полимеров 9, 82 (1961); 1, 123 (1964); D. P. Kelty, G. J. Metrose, D. H. Solomon, J. Appl. Polymer. Sci. 6, 1991 (1963); А. А. Берлин, Г. Л. Попова, Т. А. Макарова, Высокомол. соед. 1, 962 (1959); А. А. Берлин, Б. Н. Ласкорин, Н. А. Алексеева, Высокомол. соед. 5, 1213 (1963).
- 3. С. Г. Мацоян, Н. М. Морлян, Изв. АН АрмССР, ХН 18, 347 (1963); 17, 329 (1964); Высокомол. соед. 8, 945 (1964); С. Г. Мацоян, Альб. А. Саакян, Изв. АН АрмССР, ХН 17, 676 (1964).
- 4. *Н. Н. Назаров*, Избранные труды. АН СССР, Москва, 1961, 115.
- 5. *Н. Н. Назаров*, Изв. АН СССР, ОХН 1938, 695.