НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

М. Г. Манвелян, Г. Г. Бабаян и С. А. Газарян

Инфракрасные спектры поглощения гидрометасиликатов натрия

При получении метасиликата натрия из щелочнокремнеземистых растворов в зависимости от условий кристаллизации образуются гидраты [1] Na₂SiO₃·9H₂O, Na₂SiO₃·8H₂O, Na₂SiO₃·6H₂O, Na₂SiO₃·5H₂O. Строение этих гидросиликатов до настоящего времени не выяснено, хотя в достаточной степени изучена структура безводного метасиликата натрия [2]. Для этих гидратов Тило и сотрудники [3] по аналогии с предполагаемой структурой метасиликата кальция Са[H₂SiO₄], полученного при осаждении из растворов хлористого кальция и метасиликата натрия, предложили формулу:

Na₂ HO—Si—OH
$$n$$
H₂O

указав на неполимерную структуру последнего. Бернал [4], проводя рентгенографическое изучение структур гидратированных силикатов, показал наличие в них цепей SiO₄, в частности в риверсайдите (минерал формулы CaO·SiO₂·H₂O, идентичный метасиликату кальция). По его предположению, цепи SiO₄ образуются с помощью водородных связей по схеме:

Исследования Мамедова и Белова [5] не подтвердили возможности образования цепей тетраэдров (H₂SO₄)²⁻. Ими установлено существование сложных анионов в виде бесконечных цепей с одним и более тетраэдрами SiO₄ и полиэдрами катионов в периоде повторяемости, связанных вершинами, ребрами и гранями. Однако авторами не опровергнуто мнение о наличии групп SiOH в некоторых силикатах. Айлером [6] высказано предположение о существовании в кристаллических гидрометасиликатах и силикателях групп SiOH, образующих полимеры. Рыскин, Ставицкая и Торопов [7] подтвердили существование кислых силикатов с анионом (SiO₃OH)³⁻ и показали способность групп SiOH входить в короткие водородные связи. Ими указано, что наличие в спектре силикатов сильных полос поглощения в диапазоне 3000—2000 см⁻¹ является характерным признаком групп SiOH. Было

Частоты (в $c.m^{-1}$) в инфракрасных спектрах безводного и гидратированных метасиликатов натрия

Колебания	Na ₂ SiO ₃	Na ₂ S1O ₃ ·H ₂ O	Na,S1O, ·1,5H,O	Na,SiO, · 3,3H,O	Na ₂ SiO ₂ ·5H ₂ O	Na ₂ S1O ₃ .6H ₂ O	Na ₂ S1O ₂ ·8H ₂ O	Na,SIO, 9H,O
Колебания	720 сильн.	714 средняя	714 средняя	723 сильн.	723 оч. сильн.	763 сильн.	766 сильн.	766 силья.
110111111111111111111111111111111111111			770 слабая	770 слабая	778 сильн. 838 сильн.	100 CHABIL	100 CHABIL	100 CHIBE.
	Nas Trans	770312 - 30	- 1 - 5 8	849 слабая	оро сильи.	852 сильн.	846 сильн.	852 сильи.
Цепи тетра э дров	889 оч. сильн. 976 сильн.	896 оч. сильн. 970 сильн.	896 оч. сильн. 970 сильн.	973 оч. сильн.	976 оч. сильн.	917 сильн.	924 сильи.	924 сильн.
SIO	1048 сильн.	1036 сильн.	1028 сильн.	1076 средняя	070 0 11 011115111	1006 оч. силы.	1003 оч. сильн.	1013 оч. сильн.
	1040 Chaba.	1000 CANSIII	1128 средняя	1132 средняя	1128 средняя		- 19 19 19-	
НОб	18 39 80	Mary Mary	1193 слабая	1193 слабая	1170 сильн.	1170 сильн.	1170 сильн.	1170 сильн.
2v _R		1684 слабая	1564 слабая 1684 слабая	1564 слабая 1684 слабая	1564 слабая	1564 слабая	1564 слабая_	1564 слабая
8H ₂ O		0-20-0	5 100 B	2 945 35	1725 средняя	1669 средняя	1669 средняя	1672 средняя
	2330 слабая	2309 слабая		*	2276 слабая	2258 слабая	2258 слабая	2276 слабая
νОН	State of	3040 оч. силын.	12 1 10		3142 оч. сильн.	3176 оч. сильн.	3160 оч. сильн.	oorg
vH _z O				1	3366 оч. сильн.	3348 оч. сильн. 3470 оч. сильн.	3366 оч. сильн. 3470 оч. сильн.	3357 оч. сильи. 3470 оч. сильи.
	THE REAL PROPERTY.	100	The state of the s		1 100			300000

предположено, что кислые силикаты, склонные к образованию сильных водородных связей, могут играть роль промежуточных продуктов в процессе образования силикатов с цепочечными кремнекислородными радикалами.

С делью изучения природы воды в гидрометасиликатах натрия нами проведено их физико-химическое исследование [8, 9].

Исследование инфракрасных спектров поглощения гидрометасиликатов натрия является продолжением этих работ.

Экспериментальная часть

Исследованы инфракрасные спектры поглощения гидрометасиликатов натрия $Na_2SiO_3 \cdot 9H_2O$; $Na_2SiO_3 \cdot 8H_2O$; $Na_2SiO_3 \cdot 6H_2O$; $Na_2SiO_3 \cdot 5H_2O$ (рис., 8-5), которые сопоставлены со спектрами частично обезвоженных ($Na_2SiO_3 \cdot 3,3H_2O$; $Na_2SiO_3 \cdot 1,5H_2O$; $Na_2SiO_3 \cdot H_2O$) (рис., 4-2) и безводного (рис., 1) метасиликатов. Кристаллогидраты были получены осаждением из щелочнокремнеземистых растворов при 15° C ($Na_2SiO_3 \cdot 9H_2O$ из раствора $232 \ 2/\Lambda \ Na_2O$, $117 \ 2/\Lambda \ SiO_3$; $Na_2SiO_3 \cdot 8H_2O$ из ра-

створа 278 г/л Na₂O, 157 г/л SiO₂: Na,SiO, 6H,O из раствора 364 г/л Na,O, 186 2/1 SIO,; Na,SIO, 5H,O из раствора 395 г/л Na.O, 156 г/л SiO,). Процесс получения Na,SiO, -9Н.О осуществлялся в камере. Частично обезвоженные и безводный метасиликаты готовились сушкой Na.SiO.9H.O при различной температуре в течение двух часов (Na,SiO, 3,3H,O при Na,SiO, ·1,5H2O при 100°; Na,SiO, ·H₂O при 105°; Na₂SiO₂ при 700°). Индивидуальность полученных соединений была подтверждена химическим и термографическим анали зами. Для исследования были приготовлены взвеси указанных метасиликатов в вазелиновом масле. Запись спектра производилась в диапазоне от 5000 (2 µ) до 650 см-1

(15 р), т. е. с использованием призм NaCl и LiF, на спектрометре ИКС—14. При залиси производилась частичная компенсация поглощения вазелинового масла (допускалось значительное колебание степени компенсации, максимальная компенсация была произведена для безводного и "одноводного" метасиликатов в области призмы LiF). Данные записи спектра приведены в таблице и на рисунке. Спектры безводного и пятиводного метасиликатов натрия, полученные нами, хорошо согласуются с литературными данными [2, 10]. Спектры Na₂SiO₂·9H₂O; Na₂SiO₃·8H₂O; Na₂SiO₃·6H₂O сходны. Спектр Na₂SiO₃·5H₂O су-

шественно отличается от спектров других кристаллогидратов; при этом различаются и полосы поглощения, относящиеся к воде. Спектры одноводного и безводного метасиликатов в области колебаний, относящихся к силоксанной цепи, имеют полное сходство. Рассмотрение и сопоставление спектров безводного и гидратированных метасиликатов, а также литературные данные [2, 7, 10-12] дают основание стнести полосы до 1130 см-1 к колебаниям цепи тетраэдров SiO₄. Так, по Лаунеру [12], цепочечные силикаты не имеют интенсивных полос поглощения с длиной волны менее 9 р. Полосы 1170—1190 см-1 показывают наличие ОН-групп (деформационные колебания), входящих даже в состав воды [13]. Однако в данном случае эти полосы не могут относиться к воде, ибо тогда они были бы значительно менее интенсивны, чем полосы деформационных колебаний $1670-1725 \ cm^{-1}$. С другой стороны, значения частот колебаний о ОН в этом участке спектра специфичны для группы SiOH [7]. Одновременно отметим наличие частот колебаний в спектрах силикагеля SiO₃·xH₂O —1190 см-1 [10] (которые отсутствуют у SiO₂ [12]), ксонотлита Ca₂Si₂O₁₂(OH), —1200 см-1 [11], двукальциевого гидросиликата Ca_o[SiO_oOH]OH —1282 см-1 [7]. Логично отнести полосы с частотами 1564 и 1684 см-1 к обертонам вращательных качаний воды (уд). Это следует из характера полос (наличие тонкой структуры) и их местоположения [14].

Спектры девяти-, восьми- и шестиводных метасиликат в натрия имеют идентичные полосы деформационных (1670 см-1) и валентных (3140—3470 см-1) колебаний воды. В Na₂SiO₃·5H₂O полоса деформационных колебаний имеет несколько большее значение—1725 см-1 (по литературным данным [10], она равна 1695 см-1). Хотя полосы деформационных колебаний воды указанных гидратов несколько сдвинуты, что, впрочем, наблюдается и у других кристаллогидратов, например у гипса [10], химическая индивидуальность воды [15] в данном случае не вызывает сомнения, т. е. Na₂SiO₃·9H₂O; Na₂SiO₃·8H₂O; Na₂SiO₃·5H₂O определенно являются кристаллогидратами. Отметим, что низкочастотные (3142—3176 см-1) компоненты полос валентных колебаний ОН-групп в какой-то степени указывают на вероятность наличия водородных связей, а следовательно, и существование SiOH-групп [7] в гидрометасиликатах натрия.

Спектры безводного и гидратированных метасиликатов содержат полосу в диапазоне $2260-2330~cm^{-1}$ (в Na_2SiO_3 безводном она выражена очень слабо); в литературе [10] она приведена для $Na_2SiO_3 \cdot 5H_2O$. Однако неясно, к каким колебаниям она относится (возможно к примесям карбонатов). Спектры 1,5- и 3,3- водных метасиликатов (в области призмы NaCl) показывают, что структура их является переходной между структурами безводного и пятиводного метасиликатов.

Интерес представляет структура "одноводного" метасиликата натрия. В его спектре наблюдается сильная широкая полоса ~3040 см⁻¹ (максимум нельзя установить точно из-за полосы вазелинового масла), существование которой говорит о том, что последняя

имолекула воды (удаляющаяся, кстати, лишь при температуре выше 7.550°) связана сильными (короткими) водородными связями. Но в то же время аналогия спектров безводного и "одноводного" метасиликатов исключает возможность существования группы SiOH в последнем. Так как спектр "полутораводного" метасиликата натрия, содержащий полосу 1193 см-1, отличается от спектров "одноводного" и безводного метасиликатов, то можно предположить; что в процессе обезвоживания при наличии последней молекулы воды происходит окончательное формирование характерной для безводного метасиликата натрия силоксанной цепи с разрывом связи в группах SiOH, но с сохранением сильной водородной связи воды с тетраэдрами SiO4. Такое представление согласуется с данными по изобарическому обезвоживанию девятиводного метасиликата натрия и термографическому исследованию гидрометасиликатов [8, 9]. Так, при обезвоживании наблюдается перелом кривой при содержании в метасиликате одной (последней) молекулы воды, а в термограммах шести- и пятиводных метасиликатов конец последнего эндотермического эффекта также соответствует примерно "одноводному" метасиликату.

Выводы

Исследованы спектры гидрометасиликатов натрия—Na₂SiO₃·9H₂O; Na₂SiO₃·8H₂O; Na₂SiO₃·6H₂O; Na₂SiO₃·5H₂O.

Показано, что:

- 1. Na₂SiO₃·9H₂O; Na₂SiO₃·8H₂O; Na₂SiO₃·6H₂O имеют идентичную структуру, отличную от структуры Na₂SiO₃·5H₃O. Структура этих кристаллогидратов существенно отличается от структуры безводного метасиликата натрия.
- 2. Вода во всех гидрометасиликатах натрия в основном является кристаллизационной, но частично, видимо, входит в состав кремнекис-лородного радикала в виде группы SiOH.
- 3. При обезвоживании Na₂SiO₃·9H₂O "последняя" молекула воды, хотя она имеет характер кристаллизационной, связана с силоксанной цепью сильной водородной связью.

Научно-исследовательский институт химии Государственного комитета цветных и черных металлов при Госплане СССР

Поступило 11 III 1964

Մ. Գ. Մանվելյան, Հ. Գ. Բաբայան և Ս. Ա. Ղազաբյան

ՆԱՏՐԻՈՒՄԻ ՀԻԴՐՈՄԵՔԱՍԻԼԻԿԱՏՆԵՐԻ ԿԼԱՆՄԱՆ ԻՆՖՐԱԿԱՐՄԻՐ ՍՊԵԿՏՐՆԵՐԸ

Udhnhnıd

Ուսում նասիրված են նատրիում ի հիդրոմ եթասիլիկատների՝ Na₂SiO₃-9H₂O; Na₂SiO₃-8H₂O; Na₂SiO₃-6H₂O; Na₂SiO₃-5H₂O; Na₂SiO₃-3,3H₂O; Na₂SiO₃-1,5H₂O; Na₂SiO₃-H₂O կլանման սպեկտրները։

8ուլց է տրված, որ՝

1. Na₃SiO₃·9H₂O; Na₂SiO₃·8H₂O; Na₂SiO₃·6H₂O ունեն իղենտիկ կառուցվածը, որը տարբերվում է Na₂SiO₃·5H₂O-ի ստրուկտուրալից։ Այս թյուրեղահիդրատների ստրուկտուրան էապես տարբերվում է անջուր նատրիումի մեթասիլիկատի ստրուկտուրալից։ Na₂SiO₃·3,3H₂O-ի և Na₂SiO₃·1,5H₂O-ի սպեկտրները ցույց են տալիս 5 ջրով և անջուր մետասիլիկատների ստրուկտուրաների միջև անցումալին վիճակը։

Na₃SlO₃·H₂O-ի սարուկտուրաննանան է անջուր մեկասիլիկատի սարուկ-

ասենակիչու

2. Նատրիումի մենասիլիկատի բոլոր բլուրեղահիդրատների ջուրը հիմ-Նականում բլուրեղալին է և պահպանում է իր քիմիական ինքնուրուլնութլունը, թայց հաճախակի այն մանում է սիլիցիում թթվածնական ռադիկալի կազմի մեջ SIOH խմբի ձևով։

3. Na₂SiO₃·9H₂O-ի ջրազրկման ժամանակ ջրի «վերջին» մոլեկուլը չնալած ունի բլուրեղաջրի ընտւլթ, ալնուամենալնիվ կապված է սիլօքսանալին

շոթայի հետ ուժեղ ջրածնական կապով։

ЛИТЕРАТУРА

- C. Baker, L. Jue, J. Phys. Chem. 42, 165 (1938); J. Spraner, D. Pearce, J. Phys. Chem. 44, 909 (1940); H. Lang, M. Stackelberg, Z. anorg. Chem. 258, 273 (1948).
- 2. А. Н. Лазарев, Т. Ф. Тенишева, Опт. и спектр. 10, 79 (1961).
- 3. Сб. Физическая химия силикатов. ИЛ, Москва, 1956, 5.
- 4. Сб. Физическая химия силикатов. ИЛ, Москва, 1956, 78.
- Х. С. Мамедов, Н. В. Белов, ДАН СССР 107, 463 (1956); 104, 615 (1955); Н. В-Белов, Кристаллохимия силикатов с крупными катионами. АН СССР, Москва, 1961.
- 6. Ральф К. Айлер, Коллондная химия кремнезема и силикатов. Изд. лит. по строит., архитект. и стройматериалам, Москва, 1959, 21, 23.
- 7. Я. И. Рыскин, Г. П. Ставицкая, Н. А. Торопов, ЖНХ 5, 2727 (1960).
- 8. М. Г. Манвелян. Г. Г. Бабаян, А. А. Абрамян, Э. А. Саямян, Материалы Всесоюзного совещания по химии и технологии глинозема. Сиб. отдел. АН СССР. Новосибирск, 1960, 185; М. Г. Манвелян, Г. Г. Бабаян. Р. С. Едоян, С. С. Восканян, Изв. АН АрмССР, ХН 13, 111 (1960); М. Г. Манвелян, Г. Г. Бабаян, Р. С. Едоян, Д. А. Геодакян, Изв. АН АрмССР, ХН 14; 121 (1961).
- 9. Г. Г. Бабаян, А. П. Гюнашян, Изв. АН АрмССР, ХН 18, 327 (1963).
- 10. F. A. Miller, C. H. Wilkins, Analyt. Chem. 24, 1253 (1952).
- 11. И. И. Плюснина, Журнал структурной химии 2, 330 (1961).
- 12. Ph. Launer, Am. Mineralogist 37, 764 (1952).
- 13. Л. М. Роев, А. Н. Теренин, ДАН СССР 124, 373 (1959).
- 14. P. A. Giguere, K. B. Harvey, Canad. J. Chem. 34, 798 (1956).
- 15. J. J. Fox, A. E. Martin, Proc. Roy. Soc. [L], 174, 234 (1940).