20340400 000 ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Philulus ghunipjailibr

XVI, № 5, 1963

Химические науки

В. П. Петросян и А. В. Джанбарянц

Исследование диэлектрических потерь и проницаемости полихлоропрена

Диэлектрическая поляризация хлорсодержащих полимеров изучалась на поливинилхлориде, поливинилиденхлориде, хлорстиролах и других полимерах. Особенностью диэлектрических свойств таких полимеров является отсутствие заметного проявления дипольно-радикальных потерь. Их отсутствие в хлорстиролах [1] объясняется наличием достаточно прочного межмолекулярного взаимодействия. При исследовании диэлектрических потерь в поливинилхлориде [2] на кривых зависимости фактора потерь от частоты были получены два различного рода максимума. Высокотемпературный максимум получен при частоте 10² ги, тогда как низкотемпературный-при частоте 10⁶ ги. Оба максимума смещаются в область низких частот с уменьшением температуры и обусловлены релаксационными процессами с энергиями активаций 15 и 87 ккал/моль. Второй максимум относился к дипольно-эластическим потерям. Для исследования природы процессов этого максимума изучались потери энергии электрического поля на трех образцах поливинилхлорида различного молекулярного веса при 45,5° [3]. Результаты опытов свелись к тому, что оба максимума не обязаны своим появлением релаксации концевых групп.

Подобные опыты с поливинилиденхлоридом не привели к аналогичным результатам [4], т. е. в поливинилиденхлориде отсутствуют дипольно-радикальные потери.

Второй особенностью этих полимеров является уменьшение фактора потерь с уменьшением температуры [2]. Правда, в галоидных хлорстиролах этого явления нет [1], но в поливинилхлориде оно проявляется довольно заметно.

Оба указанных фактора легко можно было бы проверить на примере полихлоропрена:

 $\begin{pmatrix} -CH_{s}-C=CH-CH_{s}-\\ l\\ Cl \end{pmatrix}_{n}$

В работе [5] изучалась полихлоропреновая резина, содержащая 7% МпО и 5% ZnO, на различных стадиях растяжения. Растяжение приводило к кристаллизации, чем вызывалась неоднородность структуры.

Нашей задачей являлось изучение диэлектрических свойств нерастянутого каучука полихлоропрена при различных частотах и в широкой температурной области. Вместе с тем было важно провести опыт так, чтобы в структуре образца особых изменений не возникало.

Технология приготовления образцов

На структурные особенности каучуков существенное влияние оказывает ряд технологических факторов (температура полимеризации, вид и процентное содержание регулятора).

Полимеризация хлоропрена проводилась при повышенной температуре (40°С) с регулятором меркаптан (додецил) 0,70% содержания.

После переосаждения этиловым спиртом и сушки каучука последний растворялся в бензоле. Раствор наливался в сосуд с ртутью и помещался в слабом вакууме.

Полученная пленка имела среднюю толщину 0,7 *мм*. Отсутствие заметного проявления кристаллизации пленки проверялось рентгеноструктурным анализом. После четырехмесячного пребывания образца при обычных условиях в нем никаких следов кристаллов или иных неоднородностей не было обнаружено. После приготовления пленки образец сушился в вакууме в течение недели для полного удаления растворителя.

На пленку приклеивались фольговые электроды вазелиновым маслом. Измерения производились сразу же после приготовления образца.

Методика измерения в и tg о

Для измерения диэлектрической проницаемости (є) и угла диэлектрических потерь (tg δ) были сконструктованы две ячейки. С помощью одной из них проводились измерения при низких температурах (от --65° до комнатной температуры). Из этой ячейки выкачивался воздух, после чего она помещалась в термостат с сухим льдом.

Вторая ячейка была предназначена для измерений при температурах выше комнатной. Измерение с и tg д проводилось в области от —65 до 20°С и от 5.10² до 1,2.10⁷ ги с помощью моста переменного тока и куметра типа "Tesla".

Принципиальная схема моста переменного тока отличается от схемы моста Шеринга тем, чго мост был рассчитан на область звуковых частот, а балансировка его осуществлялась двумя конденсаторами при постоянных значениях сопротивлений схемы.

Экспериментальные результаты и их обсуждение

На рисунках 1 и 2 приводятся частотные зависимости угла диэлектрических потерь и диэлектрической проницаемости полихлоропрена. Как видно из этих рисунков, кривые угла диэлектрических потерь имеют максимумы, смещающиеся в область высоких частот с увеличением температуры.

Диэлектрическая проницаемость с увеличением частоты уменьшается. Подобные же результаты получены для температурной зависимости угла диэлектрических потерь (рис. 3) и диэлектрической проницаемости (рис. 4) исследуемого образца.

Рис. 1. Частотная зависимость tg в полихлоропрена при различных температурах.

Все указанные данные показывают наличие одного релаксационного механизма диэлектрических потерь в изученной области температур и частот. Построенная по полученным графикам зависимость lg f_{max} от 1/T°K приводит к энергии активации 31,5 *ккал/моль*, что-характерно для дипольно-эластических потерь, связанных со смещениями сегментов из одного положения равновесия в другое.

Дипольно-радикальные потери в хлоропрене отсутствуют. Кроме того, из рисунков 1 и 3 видно, что tg в уменьшается с понижением температуры. Эго явление может быть связано либо с выключением части диполей из релаксационного процесса поляризации с охлаждением образца, либо с расширением спектра времен релаксации в связи

Рис. 2. Частотная зависимость с полихлоропрена при различных температурах.

Рис. 3. Температурная зависимость tg в полихлоропрена при различных частотах.

Диэлектрические потери и проницаемость полихлоропрена

с появлением дополнительной неоднородности за счет частичной кристаллизации. Второй фактор исключался тем, что образец охлаждался в течение 10—15 минут до температуры—65°, т. е. ниже температуры стеклования полихлоропрена —45° [6]. Затем образец нагревался со скоростью выпаривания сухого льда из термостатирующего устройства. Прогрев образца от—65° до комнатной длился в течение 10—12 часов.

За такое время заметной кристаллизации в образце не могло возникнуть, если учесть, что скорость кристаллизации полихлоропрена достигает максимальной величины при относительно высокой температуре (—5°), а исследуемый образец в течение четырехмесячного пребывания при комнатной температуре не показал и следов кристаллов на рентгенограммах.

Для проверки этого заключения необходимо рассчитать по теории Фусса и Курквуда [7] параметр « как тангенс угла наклона функции

 $y = \operatorname{arch} \frac{\varepsilon_{m}^{*}\left(2+\frac{1}{\varepsilon_{m}^{'2}}\right)}{\varepsilon''\left(2+\frac{1}{\varepsilon'^{2}}\right)}$ при различных частотах, причем уменьшение

параметра покажет расширение спектра времен релаксации, что в свою очередь доказывает возникновение неоднородности структуры. Как видно из рисунка 5, функция у представляет собой семейство параллельных прямых с одинаковым а. Иначе говоря, уменьшение абсолютной величины tgo не обязано возникновению каких-либо неодпородностей структуры. Таких неоднородно стей с изменением температуры образца просто не возникает.

Тогда остается первое допущение относительно выключения диполей с охлаждением образца. Естественно ожидать, что если оно имеет место, то должно быть изменение эффективного дипольного

момента с температурой. Пользуясь методикой круговых диаграмм Дэвидсона и Коля [8], построены кривые зависимости «" от « полихлоропрена для тех же температур, что указаны на предыдущих рисунках. На рисунке 6 приводятся кривые зависимости «" от « для поли-

Рис. 5. Зависимость функции у от 1g f при различных температурах образца.

клоропрена при различных температурах. Как видно из этого рисунка, область Δε = ε₀ − ε_• расширяется с увеличением температуры. Величина Ав показывает область проявления высокоэластической релаксации. Кривые рисунка 6 показывают, что с понижением температуры ∆е уменьшается. Если бы общее число диполей, участвующих в релаксационной поляризации, сохранялось прежним, то ∆₂ не зависило бы от температуры. По данным рисунка 6 оказалось возможным вычисление эффективного дипольного момента по формуле Харриса-Олдера [9]. Данные для роф, полихлоропрена в зависимости от температуры приводятся на рисунке 7. Эффективный дипольный момент полихлоропрена уменьшается с понижением температуры; экстраполируя прямую до изфф. = 0, можно найти температуру, при которой полностью теряются эластические свойства исследуемого образца каучука. По рисунку 7 такая температура равна-72°. Она лежит ниже температуры стеклования полихлоропрена (-45°), полученной дилатометрическим методом. По-видимому, в области от-45 до-72° еще сохраняется в небольших долях способность сегмента к релаксационной поляризации. Она может проявиться только при частотах электрического поля, близких к нулю.

Рис. 6. Круговые диаграммы зависимости от с' для полихлоропрева при различных температурах.

Рис. 7. Зависимость µэфф. от температуры для полихлоропрена.

Отсутствие дипольно-радикальных потерь и выключения диполей при высокоэластической поляризации полихлоропрена может быть объяснено, как и для случая галоидных стиролов, наличием достаточно прочного межмолекулярного взаимодействия. Освобожде-

ние диполей с увеличением температуры и создание условий релаксации функциональных групп в полихлоропрене совпадают с областью проявления высокоэластической поляризации.

В заключение авторы приносят благодарность И.С. Бошнякову и С.Г. Жамкочян (Ереванский филиал ВНИИСК) за синтез всследованных образцов.

Выводы

1. В полихлоропрене наблюдается только дипольно-эластическая релаксация исследованной области частот и температур ($f = ot 10^3 \text{ до} 1,2 \cdot 10^7$ ги и t°C—от 65 до +20°C).

2. Охлаждение образца полихлоропрена сопровождается выключением части релаксирующих элементов.

Ереванский государственный университет Кафедра строения вещества Поступило 14 VI 1963

4. 9. Abernajas & G. 4. Suspensions

ՊՈԼԻՔԼՈՐՈՊՐԵՆԻ ԴԻԷԼԵԿՏՐԻԿԱԿԱՆ ԿՈՐՈՒՍՏՆԵՐԻ ԵՎ **ԲԱՓԱՆՑԵԼԻՈՒԲՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԲՅՈՒՆԸ**

Ամփոփում

Դիէլեկտրիկ կորուստները պոլիմերներում պայմանավորված են մակրոմոլեկուլների ֆունկցիոնալ խմբերի ռելակսացիոն բևեռացվելիությամբ։ Որոշակի ջերմաստիճանալին տիրուլթի դեպջում ռելակսացիան ուղեկցվում է շղթալի որոշակի անցումով մի հավասարակշռության վիճակից մլուսին։ Այն պալմանավորված է պոլիմերների բարձրաէլաստիկ վիճակով, որի պատճառով առաջացած դիէլեկտրիկական կորուստները կոչվում են դիպոլաէլաստիկ։

Ալս աշխատանքում ցուլց է տրված, որ պոլիքլորոպրենում դիպոլառադիկալալին կորուստներ չեն դիտվում, բացի դրանից, ջերմաստիճանի իջեցումը հանդեցնում է դիպոլների մի մասը։

Ալսպիսով ամորֆ կաուչուկներում ցածը ջերմաստիճաննարի տիրույթում վերանում են նրանց էլաստիկ հատկությունները։

ЛИТЕРАТУРА.

1. K. 3. Pammaxos, WTX 22, 313 (1952).

2. Ishida Yolchi, Kolloid. Z. 168, 23 (1960).

- 3. Ishida Yoichi, Kolloid. Z. 171, 71 (1960).
- 4. Ishida Yoichi, Tamamoto Mitzuyoushi, Takayanaga Motowo, Kolloid. Z. 168, 124 (1960).

5. Г. П. Михайлов, Б. М. Файнштейн, ЖТФ 22, 759 (1952).

- 6. R. M. Kell, Bennet Bailey, P. B. Stickney, J. Appl. Polymer Sci. 2, 8 (1959).
- 7. J. Kurkwood, Fuoss, J. Am. Chem. Soc. 63, 385 (1941); J. Chem. Phys. 9, 329, (1941).
- 8. D. W. Dawldson, R. H. Cole, J. Chem. Phys. 19, 1484 (1951).
- 9. F. E. Harris, B. J. Alder, J. Chem. Phys. 21, 1031 (1953).