2U34U4UV UUN ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯССР

Քիմիական դիտո թյուններ

XVI, № 3, 1963

Химические науки

Д. С. Гайбакян и М. В. Дарбинян

Ионообменное разделение селена и теллура

Сообщение I. Разделение селена и теллура на катионитах и анионитах в среде растворов соляной кислоты

Наряду с другими методами разделения малых количеств селена и теллура в настоящее время с успехом применяется метод ионообмена и ионообменной хроматографии. Хроматографическому разделению селена и теллура в литературе посвящено незначительное число работ.

Сасаки [1] отмечает, что в концентрированной соляной кислоте селен, теллур и полоний поглощаются на анионитах в виде анионных комплексов типа MeCl₅ или MeCl₆; затем 6 н. HCl вымывается селен, 2 н.—теллур и 1 н. раствором хлорной кислоты—полоний.

Землянская и другие [2] отделяли селен от теллура, меди, железа и других элементов на катионите КУ-1 в кислой среде рН=1,4. Все указанные элементы, кроме селена, поглощаются смолой, а селен проходит в фильтрат. В литературе отмечены и другие работы по отделению селена или теллура от других элементов как на анионитах, так и на катионитах [3].

Цель настоящей работы — детальное исследование сорбции селена и теллура на некоторых анионитах и катионитах отечественной марки для разработки методов разделения их и выяснения состояния этих ионов в растворах. Исследовалась сорбция селена и теллура из растворов различной концентрации соляной кислоты и едкого натра катионитами и анионитами.

Экспериментальная часть

В работе использовались катиониты КУ-1, КУ-2 и аниониты АН-1, ЭДЭ-10п и АВ-18. Величина частиц ионитов составляла 0,5—1,0 мм. Катиониты переводились в водородную, а аниониты в гидроксильную форму.

В работе использовался статический метод исследования сорбции. Точную навеску (1 г) воздушно-сухого ионита смачивали дистиллированной водой и встряхивали с определенным объемом (25 мл) исследуемого раствора до наступления равновесия, затем в аликвотной порции раствора определяли количество несорбированного элемента. Селен и теллур определялись колориметрически в присутствии желатины на электрофотоколориметре ФЭК-М после восстановления до элементарного состояния раствором двухлористого олова.

Сорбция селена и теллура на катионитах и анионитах изучалась в пределах кислотности от 0,00001 н. до 12 н. и щелочности от 0,05 н. до 5 н. Результаты опытов представлены в виде зависимости процента сорбции от отрицательного логарифма нормальности соляной кислоты в растворах.

Как видно из рисунка 1, сорбция селена в нейтральной и слабокислой средах низка $(12-15^0)$, что вызывается наличием анионов SeO_3^{2-} . В слабокислой среде сорбция селена также остается низкой.

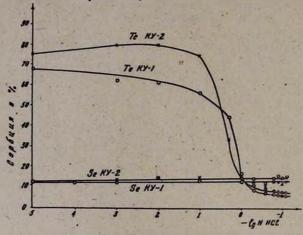


Рис. 1. Сорбция Se и Te на катионитах КУ-1 и КУ-2.

Сорбция теллура несколько отличается: теллур в слабокислой среде в интервале до 0,1 н. НС1 хорошо сорбируется как на КУ-2, так и на КУ-1 в водородных формах. При постепенном увеличении концентрации соляной кислоты сорбция резко падает. Высокая сорбция теллура в слабокислой среде объясняется его амфотерным свойством. По-видимому, теллур по аналогии с молибденом и другими амфотерными элементами в указанной области кислотности имеет положительный заряд, согласно следующему равновесию:

$$TeO_3^- + 2H^+ \rightleftarrows TeO^{2+} + 2OH^-$$
 (1)

В среде кислотности выше 0,1 н. сорбция теллура уменьшается вследствие конкурирующего действия водородных ионов. При дальнейшем увеличении концентрации соляной кислоты сорбция остается низкой. Для более детального изучения сорбция селена и теллура исследовалась на анионитах различной основности: сильноосновном анионите AB-18, среднеосновном ЭДЭ-10п и низкоосновном AH-1 тоже в статических условиях (рис. 2, 3). Рисунки 2 и 3 показывают, что на слабоосновном анионите AH-1 в слабокислой среде селен сорбируется хорошо в виде анионов SeO_3^{2-} . Теллур сорбируется несколько хуже селена, однако до 0,001 н. концентрации все-таки поглощается свыше $40^{\rm o}/_{\rm o}$, согласно следующему равновесию:

$$AH-OH + TeO_3^2 = (AH)_2 TeO_3 + 2OH^-$$
 (2)

Как видно, поглощение TeO_3^{2-} имеет место в кислой среде. Начиная с 0,001 и. концентрации сорбция теллура уменьшается вследствие передвижения равновесия (1) в сторону образования TeO_3^{2+} положительных ионов. В интервале 0,1-2,0 и. соляной кислоты селен

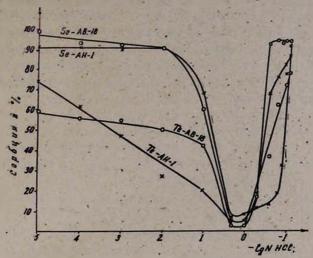


Рис. 2. Сорбция Se и Те на анионитах АВ-18 и АН-1.

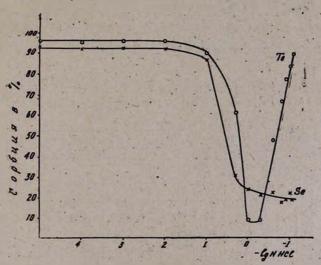


Рис. 3. Сорбция Se и Те на анионите ЭДЭ-10п.

и теллур плохо сорбируются, выше 2 н. концентрации сорбция теллура увеличивается, и высокая сорбция сохраняется до 12 н. НСІ. Это объясняется образованием хлоридных комплексов теллура с отрицательным зарядом. Для образования хлоридных комплексов селена требуется более кислая среда, ≈ 6—8 н. НСІ.

Несколько иная картина на анионите ЭДЭ-10п: до 0,1 н. концентрации кислоты селен и теллур хорошо сорбируются. Низкая сорбция наблюдается в интервале 1—2 н., начиная с 4 н. кислоты сорбция теллура снова повышается, а селен плохо поглощается вплоть до концентрированного раствора соляной кислоты (12 н.). Низкая сорбируемость селена на анионите ЭДЭ-10п в сильнокислой среде отмечена и другим автором [4]. Теллур лучше всего поглощается на анионите ЭДЭ-10п в слабокислой среде и при сравнительно более широком интервале кислотности, чем на анионитах АВ-18 и АН-1. Теллур плохо поглощается на этом же анионите только в интервале 1.0—2,0 н. и хорошо в сильнокислой среде на всех трех анионитах.

Селен во всем интервале кислотности не поглощается на катионите КУ-2, хорошо поглощается на анионитах АН-1, ЭДЭ-10п и АВ-18 в интервале кислотности до 0,1 н. НСІ, плохо сорбируется в интервале 0,5—4,0 н. Улучшается сорбция селена с 6 н. соляной кислоты и выше только на АН-1 и АВ-18.

Отделение теллура от селена можно осуществить в слабокислой среде в интервале 0,00001—0,1 н. НС1 как на катионите КУ-1, так и на КУ-2 (предпочтительнее на КУ-2).

На анионите АН-1 разделение возможно в интервале 3—6 н. НСІ, на анионите АВ-18 при 4 н. НСІ.

При сравнительной характеристике всех трех анионитов оказалось, что в сильнокислой среде лучшее отделение осуществляется на анионите ЭДЭ-10п, затем АН-1 и АВ-18.

Для выяснения полной картины состояния ионов теллура и селена в растворах исследовалась также их сорбция в щелочной среде на указанных ионитах (таблица 1).

Таблица 1 Сорбция селена и теллура на катионите КУ-2 и анионитах АН-1, ЭДЭ-10п и АВ-18 в щелочной среде в статических условиях

K	Сорбция на ионитах в °/ _°									
ВВ	катионит КУ-2				аниониты в растворе NaOH					
ентр ора /л	NaOH		NH₄OH		AH-1.		ЭДЭ-10п		AB-18	
Концентрация раствора в г.экв/л	Se	Те	Se	Те	Se	Те	Se	Te	Se	Те
0,05 0,10 0,50 1,00 2,50 5,00	7,2 5,8 6,0 5,8 6,1 6,0	12,6 11,4 12,4 13,7 10,4 10,6	5,6 6,4 7,2 6,8 6,5 6,2	7,6 7,6 7,8 7,2 6,8 7,2	7,6 6,2 6,2 5,6 5,6 5,4	5,0 5,2 5,0 5,6 5,2 5,0	18,0 14,0 10,8 7,6 - 8,2 7,6	18,0 15,0 10,1 10,2 10,0	70,0 52,0 15,6 14,0 12,0 11,0	67,9 59,4 54,0 50,0 42,0 32,0

Результаты опытов показали, что селен и теллур в виде анионов SeO_3^{2-} и TeO_2^{2-} в щелочной среде в растворах едкого натра и гидроокиси аммония практически не поглощаются на катионите, несмотря на увеличение емкости поглощения последнего в указанной среде. Селен и теллур плохо поглощаются также на слабоосновном анионите AH-1 как в разбавленных, так и в концентрированных растворах едкого натра. На среднеосновном анионите ЭДЭ-10п, особенно в

разбавленных растворах, сорбция несколько лучше, в то время как на сильноосновном анионите AB-18 селен и теллур поглощаются хорошо вследствие хорошей диссоциации ионита в щелочной среде. Однако с увеличением концентрации щелочи сорбция вследствие конкурирующего действия гидроксильных ионов уменьшается.

Для количественного разделения селена и теллура мы пропускали 25 мл разбавленного раствора НС1 (0,00001—0,01 н.), содержащего 1000 мкг селена или теллура, через катионит КУ-2. Смолу промывали 5 мл порциями раствора кислоты той же концентрации и в отдельных фильтратах определяли селен и теллур (табл. 2, 3).

Таблица 2
Сорбция селена и теллура на катионите КУ-2
в водородной форме в динамических условиях (колонка 1,0×20,0 см, скорость протекания раствора 2—4 мл/мин.)

Кислотность	Число	Вымывания в %				
раствора в г·экв/л	фракций по 5 мл	. Şe	Те			
0,005 HC1	1 2 3 4 5 6 7 8	6,24 28,38 24,16 20,54 16,20 4,18 0,30 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0			
всего:	40 мл	100°/ _o	0,0°/.			

Таблица З Зависимость сорбции селена и теллура на анионитах АВ-18, ЭДЭ-10п и АН-1 от концептрации соляной кислоты в динамических условиях

Vanuauras	Сорбция на анионитах в °/о							
Концентра- ция соляной	AB	-18	ЭД	Э-10п	AH-1			
кислоты в г·экв/л	Se	Те	Se	Те	Se	Те		
0,0005 0,005 0,01 0,05 0,10 0,50 1,0	100 98,2 91,4 89,3 33,6 6,1 0,0	100 100 96,6 90,0 44,0 7.3 0.0	100 96,8 96,0 93,0 50,0 8,0 3,0 0,0	100 100 96,4 92,0 60,4 21,2 12,0 2,0	100 96,1 93,4 86,4 31,4 5,8 0,0 0,0	100 91,1 86,2 64,0 48,0 4,4 0,0		

Как видно, теллур полностью поглощается катионитом, а селен количественно проходит в фильтрат.

Согласно данным таблицы 3, в интервале кислотности до 1,5 н. НСІ невозможно разделение селена и теллура на этих анионитах.

Полная сорбция их наблюдается только при 0,0005 н. HCl, а количественное вымывание с анионитов протекает при 1,0-1,5 н. HCl; несколько хуже они вымываются с анионита ЭДЭ-10п.

Таблица 4

Сорбция селена и теллура на анионитах в среде различной концентрации едкой щелочи в динамических условиях

2727	Объем раствора	Сорбция на анионитах в °/о							
Концентра-		Al	I-1	ЭДЭ	-10п	AB-18			
иролен в г. экв/д	ицелочи в мл	Se	Те	Se	Те	Se	Те		
0,05 0,10 0,50 1,0 2,5 5,0	150 150 150 150 125 125	7,1 1,5 0,0 0,0 0,0 0,0	6,8 1,4 0,0 0,0 0,0 0,0	10,0 1,8 0,0 0,0 0,0 0,0	11,6 2,1 0,0 0,0 0,0 0,0	12,2 2,4 0,0 0,0 0,0 0,0	14,6 4,8 0,0 0,0 0,0 0,0		

Из таблицы 4 видно, что для полного вымывания селена и теллура 5-0.5 н. щелочью требуется 125-150 мл этого же раствора. В разбавленных растворах 0.05-0.1 н. селен и теллур трудно вымываются, труднее всего с анионита AH-18. Таким образом, высокая сорбция на анионите AB-18 в щелочной среде в статических условиях не оправдывается в динамических условиях; очевидно, связь между TeO_3^2 или SeO_3^2 , с одной стороны, и анионитом AB-18, с другой, оказалась непрочной.

Таким образом, в щелочной среде селен и теллур проходят в фильтрат как в случае анионитов, так и катионита КУ-2, т. е. концентрированные растворы щелочи должны быть хорошими десорбентами для теллура и селена.

Наилучшие результаты получаются при разделении селена и теллура в сильнокислых растворах НСІ на анионите ЭДЭ-10п, а также на АН-1 в интервале 3—6 н. концентрации кислоты. На катионите КУ-2 количественное разделение осуществляется в слабокислой среде. Таким образом, в этих средах осуществляется разделение смеси чистых растворов селена и теллура. Очевидно, такое разделение можно осуществить также для природных объектов.

На основании всего изложенного изменение состояния иона теллура в зависимости от концентрации водородных и гидроксильных ионов в растворе, по-видимому, можно представить схематически следующим образом.

В щелочной и нейтральной средах теллур находится в виде анионов TeO_3^2 , в слабокислой среде образует ионы теллурила, которые сорбируются на катионите:

$$TeO_3^{2-} + 2H^+ = TeO(OH)_s$$
 (3)

$$TeO(OH)_2 + 2HCI = TeOCl_2 + 2H_2O$$
 (4)

$$TeOCl2 + 2RSO3H = (RSO3)2TeO + 2HCl$$
 (5)

При дальнейшем повышении концентрации соляной кислоты равновесие (5) передвигается в обратную сторону (десорбция ионов TeO²). В сильнокислой среде образуется анионный комплекс теллура:

$$TeOCl_2 + 2HCl \stackrel{\rightharpoonup}{=} TeOCl_4^- + 2H^+$$
 (6)

В литературе имеются данные о существовании хлоридных комплексов $TeCl_5^2$ или $TeCl_5^2$ [1]. Если исходить из этого факта, схема несколько изменяется. С увеличением концентрации водородных ионов ионы TeO_3^2 , по-видимому, постепенно теряют атомы кислорода по схеме:

$$TeO_3^{2-} + 2H^+ \rightleftarrows TeO_2 + H_2O \tag{7}$$

$$TeO_2 + 2H^+ = TeO^{2+} + H_2O$$
 (8)

$$TeO^{2+} + 2H^{+} = Te^{4+} + H_{2}O$$
 (9)

а в сильнокислой среде:

$$Te^{4+} + 6Cl^{-} = TeCl_6^{-2}$$
 (10)

Однако, по нашему мнению, образование кислородных хлоридных комплексов более вероятно, так как имеется относительно большая способность координироваться через атом кислорода (в случае большинства амфотерных элементов: титана, циркония, олова, ванадия, молибдена, урана и других). Сорбция теллура на анионитах выражается следующими реакциями обмена:

$$AH-OH + TeO_3^2 = (AH)_2 TeO_3 + 2OH^-$$
 (11)

Согласно этой реакции, теллур хорошо сорбируется в слабокислой среде. При повышении концентрации кислоты образуется ${\rm TeO}^{2+}$, согласно равновесию (1), и вследствие изменения заряда теллур уже плохо поглощается на анионитах.

В сильнокислой среде сорбция теллура на анионитах снова повышается вследствие образования хлоридных анионных комплексов TeOCl^{2—}, согласно равновесию (6).

Выводы

1. Исследована сорбция селена и теллура на катионитах КУ-2, КУ-1 и анионитах АН-1, ЭДЭ-10п и АВ-18 в широком интервале кислотности и щелочности в статических и динамических условиях.

Показана возможность полного отделения малых количеств (до $1000 \ \text{мкг}$) селена от таких же количеств теллура на катионитах КУ-2 и КУ-1 в интервале pH=2-5. Известия XVI, 3-2

- 2. Установлено, что в растворах с кислотностью 0,0005—1,5 н. HCI невозможно отделение теллура от селена на анионитах АН-1, ЭДЭ-10п и АВ-18. Отделение осуществляется на этих анионитах только в сильнокислой среде: на АН-1 в интервале 3—6 н. HCI, АВ-18—4 н.; лучшим из них является ЭДЭ-10п в интервале 4—12 н. соляной кислоты.
- 3. Предполагается существование TeO^{2+} положительных ионов по аналогии с другими ионами амфотерных элементов и отмечены условия передвижения равновесия:

$$TeO_3^{2-} + 2H^+ \Rightarrow TeO^{2+} + 2OH^-$$
 (1)

чего нельзя сказать для селена. На основе этого дается схема химизма сорбции ${\rm TeO_3^{2-}}$ на катионитах и анионитах.

Ереванский государственный университет Кафедра аналитической химии

Поступило 20 III 1963.

Դ. Ս. Գայբակյան և Մ. Վ. Դաբինյան

ՍԵԼԵՆԻ ԵՎ ՏԵԼՈՒՐԻ ԻՈՆԱՓՈԽԱՆԱԿԱՅԻՆ ԲԱԺԱՆՈՒՄԸ

Հաղորդում I: Սելենի բաժանումը տելուրից կատիոնիաներով և անիոնիաներով աղաթթվային միջավայրում

Udhnhnid

Սելենը տելուրից բաժանելու համար կիրառվում են մի շարք մեթոդներ։ Վերջին ժամանակներս հաջողութվամբ կիրառվում են նաև իռնափոխանավալին քրոմատոգրաֆիալի մեթոդը։ Օրինակ, Սասակին սելենը աելուրից և պոլոնիումից րաժանելու համար օգտվում է խիտ աղաթթվային միջավալրում քլորալին կոմպլեքսներ առաջացնելու նրանց հատկութվունից։ Ձեմ լլանսկալան և ուրիջներ սելենը բաժանել են տելուրից, պղնձից, երկաթից, ցինկից և ուրիջ էլեմենտներից կատիոնիտ КУ-1-ի օգնությամբ թթվալին միջավալրում pH=1,4, բոլոր նշված էլեմենտները կլանվում են կատիոնիտի կողմից, իսկ սելենը անցնում է ֆիլտրատ։

Կան նաև աշխատան քներ, որտեղ բաժանվել են սելենը կամ տելուրը ուրիշ էլեժենտներից։ Սուլն աշխատանքի նպատակն է մանրամասն ուսում-նասիրել սելենի և տելուրի բաժանելիության հնարավորությունը աղաթթվեր 0,0001 ն.—12 ն. և NaOH-ի 0,05 ն.—5 ն., կոնցենտրացիաներում հայրենա-կան մարկալի կատիոնիտներ КУ-2, КУ-1 և անիոնիտներ АН-1, ЭДЭ-10п և AB-18-ի օգնությամը։

Կատարված աշխատան քներից, որոն ք ամփոփված են աղլուսակներում (1, 2, 3, 4) և արտահալտված են կորագծերով (1, 2, 3), հանգել են ք հետև լալ հղրակացությունների.

1. Ուսումնասիրված է սելենի և տելուրի սորբցիան կատիոնիտներ KУ-2 և KУ-1 և անիոնիտներ AH-1, ЭДЭ-10π և AB-18 աղաթթվի ու NaOH-ի կոնցենտրացիաների լալն ինտերվալում ստատիկ և դինամիկ մեթոդներով։

2. Պարդված է TeO3 և SeO3 -ի վիճակը լուծուլթններում, կախված նրանց pH-ից։ Ենթադրվում է (TeO2) տելուրիլ դրականապես լիցքավորված իոնի դոլությունը թույլ թթվային միջավայրում հետևլալ հավասարակշոության դոլության պատճառով

$$TeO_3^{2-} + 2H^+ \rightleftarrows TeO^{2+} + 2OH^-$$
 (1)

քանի որ արևուհն ինարվուղ է իտակարիարի իսակին։

3. Ուժեղ ԹԹվալին միջավալրում տելուրը կլանվում է միալն անիոնիտ։ ների կողմից, քանի որ առաջանում է անիոնալին տիպի քլորալին կոմպլեքս միացություն Հիմնալին միջավալրում տելուրը չի կլանվում կատիոնիտների կողմից, որովհետև գտնվում է TeO3 անիոնալին վիճակում, նուլնը սելենը, իսկ անիոնիտների վրա կլանվում է միալն հիմքի ցածր կոնցենտրացիաներում։ Արջինի իւիտ լուժուլթներում այր էլևմենտների կլանումն աննջան է OH իոնների մրցակցության պատճառով։ Այս բոլորից ելնելով առաջարկվում է տելուրի և սելենի տարրեր միջավալրերում կլանման հավանական քիմիզմը։

4. 8ուլց է տրված սելենի ըաժանման հնարավորությունը տելուրից կատիոնիտների վրա միալն թուլլ թթվալին միջավայրում (pH=2-5). դերա-

դասելի է Ky-2-ps

Ապացուցված է, որ նշված անիոնիանների վրա ԹԹվուԹլան 0,0005—1,5 նինտերվալում բաժանումը հնարավոր չէ. ավելի հարմար է ուժեզ ԹԹվալին միջավալրը, հատկապես անիոնիաներ ЭДЭ-10п-ի (4—12 ն. HCl) կամ AH-1 (3—6 ն. HCl) կիրառման դեպքում։ Պակաս հարմար է AB-18-ի կիրառությունը (4 ն. HCl)։

5. Դինամիկ մեթոդով ապացուցվել է բաժանման քանակական բնուլթը վերը նշված միջավալրերում։ Նուլն պալմաններում հնարավոր է սելենը

հագարրի արևուհին րար երաիաը օեկրիայրևուղ։

ЛИТЕРАТУРА

1 Sasaki, Bull. Chem. Soc. Japan 28, 89 (1955) [PXX 23, 55397 (1955)].

2. А. И. Землянская, И. Е. Быков, Л. С. Горшкова, Труды ин-та металлургин,

Уральский филиал АН СССР 1, 151 (1957) [РЖХ 1, 2171 (1959)].

- 3. О. Самуэльсон, Применение нонного обмена в аналитической химии. ИЛ, Москва, 1955, 163; Yukichi Yoshino, J. Chem. Soc. Japan, Pure. Chem. sect. 71, 577 (1950). [C. A. 16, 6537 (1951)]; G. W. Smith, S. A. Reynolds, Anal. Chim. Acta 12, 151 (1955); E. И. Гуляева, Н. Ф. Ляхович, Хроматография, ее теория и применение. АН СССР, Москва, 1960, 225; Н. В. Стрельникова, В. Н. Павлова, Зав. лаб. 4, 425 (1960).
- 4. В. В. Сочеванов, Н. В. Шмакова, Л. Т. Мартынова, Г. А. Волкова, Зав. лаб. 4,. 422 (1960).