Քիմիական գիտություններ

XVI, № 2, 1963

Химические наукк

С. Г. Мацоян и Альб. А. Саакян

Синтез арилвинилэтинилкарбинолов

Ранее было показано, что при полимеризации винилэтинилкарбинолов происходит циклизация с одновременным участием двух молекул мономера и образованием высокомолекулярных линейно-циклических полимеров [1]. Представлялось интересным изучить, с одной стороны, способность ароматических винилэтинилкарбинолов к
такой циклической полимеризации, с другой—влияние природы и положения заместителей в бензольном кольце на свойства образующихся при этом полимеров.

С этой целью мы осуществили синтез ряда арилзамещенных винилэтинилкарбинолов. В литературе известен первый представитель вторичных арилвинилэтинилкарбинолов—фенилвинилэтинилкарбинол, полученый Залькиндом и Куликовым [2]. Синтез осуществляли по общепринятой методике взаимодействием винилэтинилмагнийбромида с ароматическими альдегидами:

Таким путем были полученые следующие карбинолы: 2-метил-, 3-метил-, 4-метил-, 2,4-диметил-, 2,5-диметил-, 2,4,6-триметил-, 2-хлор-, 4-хлор-, 4-диметиламиновинилэтинилкарбинолы, а также α -нафтилвинилэтинилкарбинол. Физико-химические константы, выходы и данные элементарного анализа приведены в таблице, где для сравнения представлены также свойства фенилвинилэтинилкарбинола. Все полученные арилвинилэтинилкарбинолы представляют собой маслообразные жидкости, перегоняющиеся в вакууме (1-2 мм) без заметного разложения; некоторые из них затвердевают при охлаждении (ниже $+10^\circ$). Наличие винилэтинильной сопряженной системы и ароматического ядра в молекуле карбинолов создает значительную экзальтацию молекулярной рефракции (1,3--2,7).

Синтезированные винилацетиленовые соединения способны полимеризоваться* при нагревании (80—160°) в присутствии или в отсутствии инициатора с образованием линейных растворимых полимеров.

^{*} Результаты исследования полимеризации будут опубликованы отдельно.

Экспериментальная часть

Исходные ароматические альдегиды готовили описанными в лите-

ратуре способами [3,4].

Получение арилвинилэтинилкарбинолов. В раствор реактива Гриньяра, приготовленный из 6 г (0,25 г-ат.) магниевых стружек, 30 г (0,275 моля) бромистого этила и 150 мл абсолютного эфира, пропускали при охлаждении (—15) 25 г винилацетилена. Реакция заканчивалась при кипячении в течение 2 часов. К приготовленному таким образом магнийбромвинилацетилену приливали по каплям при непрерывном перемешивании и охлаждении (—1°) 0,25 моля соответствующего аро-

Ar-CHC=C-CH=CH₂

OII											
	0,0) B	d ²⁰	n ²⁰	MRD			Анализ			
Ar	Выход в	KHI. 1			найдено	лено	Экзальта ция вМр	пайдено		вычислено	
	8	בים			=	5 %	(0 ≥	С	4 H	C	H
C _e H _s *	83,5	112/2	1,0459	1,5721	49,77	48,45	1,32	_	_	_	
2-CH,C ₆ F	60,3	108/1	1,0266	1,5733	55,30	53,07	2,23	83,60	7,30	83,68	7,02
3-CH,C,F	73,8	115/1	1,0273	1,5702	55,01	53,07	1,94	83,54	7,10	83,68	7,02
4-GH,C,H	73,0	114/1	1,0208	1,5663	55,05	53,07	1,98	83,70	7,15	83,68	7,02
2,4-(CH ₃),C	H, 72,0	120/1	1,0162	1,5647	59,64	57,76	1,88	84,19	7.87	83,83	7,57
2,5-(CH ₂) ₂ C	H ₃ 80,0	122/1	1,0169	1,5651	59,60	57,76	1,84	83,79	7,52	83,83	7,57
2,4,6-(CH ₃),C	H ₂ 65,6	150/1	1,0078	1,5668	64,89	62,30	2,59	84,00	8,04	83,96	8,04
2-C,0H	60,0	170/2	1,1352	1,6450	66,50	63,79	2,71	86,31	5,33	86,50	5,69
2-CIC ₆ H ₅	60,0	172/2	1,1735	1,5796	54,59	53.32	1,27	18,21		18,401	
4-CIC ₆ H ₄	70,5	152/1	1,1684	1,5788	54,86	53,32	1,54	18,091		18,401	
4-(CH ₃) ₂ NC	H, 76,5	170/1	1,1051	1,6128	63,37	61,62	1.75	7,352		6,952	
	1 12	70 1	1			1	1 .				

^{*} Литературные данные, т. кип. 119 при 4 мм; п $_{
m D}^{20}$ 1,57467; ${
m d}_4^{20}$ 1,0453 [2].

матического альдегида в 20-50 мл эфира; затем после перемешивания (1—3 часа) при комнатной температуре реакционную смесь оставляли на ночь. Продукт разлагали $7^0/_0$ -ным раствором серной кислоты, экстрагировали эфиром, экстракт промывали раствором соды и высушивали сернокислым магнием. После отгонки эфира остаток перегоняли в вакууме (1—2 мм). В случае диметиламинобензальдегида разложение комплекса производили насыщенным раствором хлористого аммония. Результаты опытов приведены в таблице.

Выводы

В связи с исследованиями по циклической полимеризации винилацетиленовых соединений синтезированы и охарактеризованы фенил-

¹ Содержание хлора.

² Содержание азота.

винилэтинилкарбинол, 2-метилфенилвинилэтинилкарбинол, 3-метилфенилвинилэтинилкарбинол, 4-метилфенилвинилэтинилкарбинол, 2,4-диметилфенилвинилэтинилкарбинол, 2,5-диметилфенилвинилэтинилкарбинол, 2,5-диметилфенилвинилэтинилкарбинол, 2-хлорфенилвинилэтинилкарбинол, 2-хлорфенилвинилэтинилкарбинол, 4-диметиламинофенилвинилэтинилкарбинол, 4-диметиламинофенилвинилэтинилкарбинол, 2-иафтилвинилэтинилкарбинол.

Институт органической химии АН АрмССР

Поступило 8 II 1963

Ս. Գ. Մացոլան և Ալբ. Ա. Սահակյան

ԱՐԻԼՎԻՆԻԼԷՔԻՆԻԼԿԱՐԲԻՆՈԼՆԵՐԻ ՍԻՆՔԵԶԸ

Udhnhnid

Նպատակ ունենալով պարզել արոմատիկ շարքի վինիլէ Թինիլալին միայու թիււնների պոլիմերացման մեխանիզմը և ուսումնասիրել ստացվող պոլիմերների ճատկութիունները՝ կախված արոմատիկ կորիզում տեղակալող խըմրերի ընուլթին և դիրքից, ներկա աշխատանքում ձեռնարկել ենք մի քանի արիլվինիլէ թիկարբինոլների սինթեզ։ Ստացված և բնորոշված են հետևլալ միացութիլունները՝ ֆենիլ-, 2-մեթիլֆենիլ-, 3-մեթիլֆենիլ-, 4-մեթիլֆենիլ-, 2,4-դիմեթիլֆենիլ-, 2,5-դիմեթիլֆենիլ-, 2,4,6-արիմեթիլֆենիլ-, 2-քլորֆենիլ-, 4-քլորֆենիլ-,- 4-դիմեթիլամինոֆենիլ- և 2-նաֆթիլվինիլէ թինիլկարբինոյները։

ЛИТЕРАТУРА

- 1. С. Г. Мацоян, Н. М. Морлян, Альб. А. Саакян, Изв. АН АрмССР, ХН 15, 405 (1962).
- 2. Ю. С. Залькинд, А. И Куликов, ЖОХ 15, 643 (1945).
- 3. Реакции и методы исследования органических соединений 7, 1958, 277.
- 4. Органические реакции. 8, ИЛ, Москва, 1956, 263.