2 Ц З 4 Ц Ч Ц Ч С С Р С Р С С Р С С Р С С Р С С Р С С Р С С Р С С Р С С Р С С Р С С Р С Р С С Р С

Քիմիական գիտություններ

XVI. № 2, 1963

Химические науки

К. А. Костанян и Э. М. Аветисян

Исследование электропроводности стекол системы Na₂O-B₂O₃-SiO₂ в расплавленном состоянии

Стекла системы Na₂O—B₂O₃—SiO₂ представляют большой теоретический и практический интерес. Они явлются основой для многих промышленных боросиликатных стекол, имеющих важное значение в современной технике. Варка боросиликатных стекол в пламенных печах сопряжена с определенными трудностями, связанными с улетом боратов. Как показали работы в нашем институте, осуществление электроварки этих стекол значительно снижает улет боратов [1]. С этой точки зрения исследование электропроводности стекол вышеуказанной системы в расплавленном состоянии является практически важным вопросом. Кроме того, такое исследование дает возможность выявить структурные особенности расплавов этих стекол по сравнению с чисто боратными и чисто силикатными расплавами.

В настоящей работе приводятся данные по исследованию удельной электропроводности расплавленных стекол системы $Na_2O-B_2O_3-SIO_2$ в интервале температур 800-1200°C.

Данные по исследованию расплавленных стекол системы $Na_2O-B_2O_3-SiO_2$ имеются в работе [2], где по значениям удельной электропроводности с помощью соотношения $\times \cdot \eta^n = \text{const}$ определялась вязкость этих стекол в расплавленном состоянии. Исследование двухкомпонентных стекол систем $Na_2O-B_2O_3$ [3] и Na_2O-SiO_2 [4] при высоких температурах показало, что электропроводность их определяется содержанием нона натрия в единице объема стекла. Исследование некоторых промышленных стекол показывает, что, несмотря на значительное различие между составами этих стекол, электропроводность их пропорциональна содержанию щелочных окислов в стекле [5].

Экспериментальная часть

Описание варки стекла и их составы приведены в работе [6]. Некоторые стекла варились повторно в корундовых тиглях в лабораторной силитовой печи, при этом результаты измерений электропроводности стекол различных варок дали удовлетворительное совпадение. Измерения проводились с помощью моста переменного тока Р-38 при частоте тока 500—5000 герц, получаемой от звукового генератора ЗГ-10. В качестве нуль-инструмента служил осциллограф ЭО-4. Электролитические ячейки готовились в виде и-образных кварцевых сосудов с расширяющимися краями, постоянная которых составляла от 30 до 40 см-1.

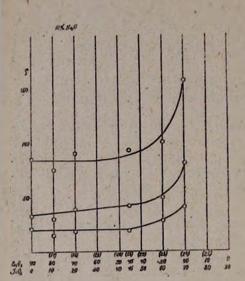


Рис. 1. Изотермы удельных сопротивлений натрий-боросиликатиых стекол при 800, 900 и 1000, при постоянном содержании окиси натрия (10°/•). В скобках указаны номера стекол.

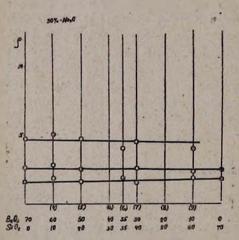


Рис. 3. Изотермы удельных сопротивлений натрий-боросиликатных стекол при 800, 900 и 1000°, при постоянном содержании окиси натрия (30°/_o). В скобках указаны номера стекол.

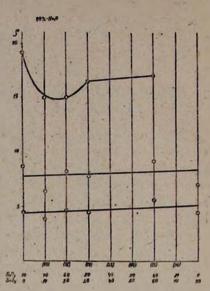


Рис. 2. Изотермы удельных сопротивлений натрий-боросиликатных стекол при 800, 900 и 1000, при постоянном содержании окиси натрия (20°/_e) В скобках указаны померя стекол.

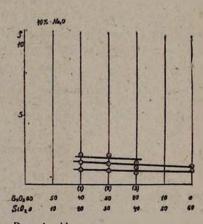


Рис. 4. Изотермы удельных сопротивлений натрий-боросилика тных стекол при 800, 900 и 1000, при постоянном содержании окиси натрия (40°/о). В скобках указаны номера стекол.

Измерения удельного сопротивления стекол проводились при режиме нагревания и охлаждения. Некоторые из измеренных стекол показали расхождения между значениями удельных сопротивлений, полученными при режиме повышения и понижения температуры; данные удельных сопротивлений при охлаждении лежат выше данных, полученных при нагревании. С понижением температуры это расхождение увеличивается, а при более высоких температурах—900° и

выше оно исчезяет. В некоторых случаях это расхождение удалось устранить путем предварительного нагрева стекла выше 1000°.

Ħ

Синтетический состав исследованных стекол системы $Na_1O-B_2O_3-SiO_3$

путем предварительного на-		Be	совые	%	Молярные %		
грева стекла выше 1000°. В таблице 1 приведены	Стекло №	Na,O	B,O,	SiO.	Na,O	B ₂ O ₃	SiO.
синтетические составы сваренных стекол. Контрольные	БС-1	40	40	. 20	41,6	36,8	21,4
	БC-2	40	30	30	41,0	27.2	31,7
анализы показали, что со-	БС-3	40	20	40	40,4	17,8	41,7
держание окиси натрия мо-	БС-4	30	60	10	32,0	56,7	11,0
жет отклоняться от синтети-	BC-5	30	50	20	31,5	46,3	21,7
ческого в пределах $\pm 1,5^{\circ}/_{o}$.	БС-7	30	30	40	30,6	27,1	42,2
Для стекла 24 содержание	БС-9	30	20	60	29,7	8,7	61,5
окиси натрия, по данным ана-	БС-10	20	70	10	21,,6	67,2	11,1
лиза, составляло около $8.0^{\circ}/_{\circ}$.	БС-11	20	60	20	21,2	56,6	22,0
В таблице 2 приведены значе-	БC-12	20	50	30	24,4	51,0	24,0
ния удельных сопротивлений	BC-15	20	20	60	20,8	18,1	61,6
сваренных стекол, а на рисун-	БС-17	10	80	10	10,9	77,7	11,3
кях 1 4 изотермы их удель-	БС-18 -	10	70	20	10,7	66,9	22,2
ных сопротивлений при по-	БС-21	10	45	45	10,3	41,3	48,3
стоянном содержании окиси	БС-23	10	30	60	10,1	27.5	62.9
натрия в стекле (замена В _з О _з	БС-24	10	20	70	9,92	17,6	72,3
на SiO ₃). Заметное повыше-	- 1	10 3	1 7				

ние удельного сопротивления наблюдается для стекла 24 в серии стекол с содержанием окиси натрия $10^{0}/_{o}$, что объясняется пониженным содержанием щелочного окисла вследствие улета бората натрия при варке.

Обсуждение результатов

Электропроводность исследованных стекол находится в удовлетворительном согласии с уравнениями:

$$\lg x = A - \frac{B}{T} \tag{1}$$

$$lgz = a + bT + cT^2$$
 (2)

Значения постоянных A, B, a, b и с приведены в таблице 3. Отклонение экспериментальных данных от расчетных по формулам (1) и (2) составляет в среднем $\pm 4^{9}/_{0}$.

Таблица 2

Значения удельных сопротивлений (ом. см) стекол системы Na₂O-B₂O₃-SiO₂
в зависимости от температуры

2	BC-1	BC-2	BC-3	BC-4	BC-5	BC-7	BC-9	BC-10	BC-11	BC-12	BC-15	BC-17	BC-18	BC-21	.EC:23	BC-24
800	2,1	2,1	1,4	5,0	4,7	4,5	4,0	15,0	15,0	16,5	17,0	78,0	90,0	93,0	100,0	164,0
850	1,9	1,8	1,3	3,5	3,3	3,2	3,0	9,7	11,0	11,0	12,3	47,0	56,0	63,0	68,0	116,0
900	1,6	1,5	1,2	2.8	2,5	2,6	2,3	6,4	8,2	7,8	9,2	30,0	39,0	42,0	50,0	80,0
950	1,3	1,2	1,0	2,2	2,0	2,0	2,0	4,9	6,2	5,9	7,0	21,0	26,0	28,0	37,0	58,0
1000	1,1	1,0	0,9	1,9	1,6	1,5	1,6	3,9	4,7	4,5	5,7	15,0	19,0	19,0	27,0	40,0
1050	0,9			1,4	-		-		3,9	-	4,8	12,0	-	15,0	20,0	32,0
1100		-	-	-	-	124	-	-		-	-	lumin.	·	-	16,0	24,0
1150	_	1	1	-	1000	200	-	-		-	2	-	-	-	12,0	18,0
1200	-		4	A MILES	-	-	-	-	-	in	-	-	-	-		16,0

Как показал Мюллер [7], постоянные А и В уравнения (1) связаны с концентрацией щелочного иона [М] и энергетической величиной следующими соотношениями:

$$P_{9} = A - \lg |M| \tag{3}$$

$$\Psi_{\phi} = 4.6 \, \text{BR} \tag{4}$$

Величины Р, и Ψ_{Φ} для расплавленных натрий-силикатных и натрий-боратных стекол сильно отличаются. Если для первых характерны набольшие значения Р, и Ψ_{Φ} , то для вторых значения Р, составляют 4,0—4,5, а величина Ψ_{Φ} —от 29,0 до 41,0.

Такое отличие величин P_s и Ψ_{ϕ} , как было показано [8], обусловливается значением энтропийного члена. В уравнении эквивалентной электропроводности, полученном по теории переходного состояния:

$$\lambda = 3,62 \cdot 10^{19} \text{zd}^2 \exp\left(-\Delta H^*/RT\right) \exp\left(\Delta S^*/R\right) \tag{5}$$

для борных стекол ΔS^* имеет положительное значение, а для силикатных—отрицательное, в результате этого свободная энергия активации электропроводности ΔZ^* , рассчитанная по формуле:

$$\Delta Z^* = \Delta H^* - T \Delta S^*. \tag{6}$$

для натрий-борных стекол при одинаковом объемном содержании иона патрия оказывается меньше, чем для натрий-силикатных стекол. Этим и объясняется сравнительно высокое значение удельной электропроводности натрий-борных стекол по сравнению с натрий-силикатными (см. рис. 5) стеклами при одинаковой объемной концентрации щелочного иона.

Как видно из рисунка 5, значения удельных сопротивлений стекол исследованной системы лежат между данными натрий-силикатных

и натрий-борных стекол, за исключением удельного сопротивлення стекла 15.

В тяблице 4 приведены значения P_{\bullet} п Ψ_{Φ} для натрий-боросиликатных стекол. Из таблицы видно, что значения P_{\bullet} для исследованных стекол изменяются в широких пределах от 2,82 до 4,77.

Данные таблицы показывают также, что существует зависимость между концентрацией щелочного иона и величиной Ψ_{Φ} . Как правило, со снижением концентрации щелочного иона Ψ_{Φ} увеличивается.

В таблице 4 приведены тякже значения ΔS* и ΔZ* для исследованных боросиликатных стекол при 1000°. Из данных этой таблицы

				1 115 4	Таблица 3		
№ ст.	A	В	а	b	c		
БС-1	1,64	2000	5,60933	0:,0075386	-2486.10 ⁻⁹		
BC-2	1,82	2200	2,52354	-0,0061592	3281.10 ⁻⁹		
BC-3	1,045	1291	0,54908	0,00205	13.10-7		
БС-4	2.29	3239	-6,02091	0,007615	-24439.10^{-10}		
БС-5	2,22	3094	-7,66727	0,010132	-3354.10^{-9}		
BC-7	2,35	3241	-3,117787	0,003207	2385.10-10		
БС-9	1,78	2544	-2,05625	0,00104	3253:10 ⁻¹⁰		
БС-10	2,49	3908	-16,27551	0,023298	—8623.10 ⁻⁹		
BC-11	2,00	3417	-6,74461	0,007387	-2056.10^{-9}		
БС-12	2,31	3771	-7,66766	0,0088226	-2602.10 ⁻⁹		
БС-15	1,73	3176	-3,8803	0,002761	-272.10^{-9}		
BC-17	2,46	4655	-7,83511	0,00741	-1713.10 ⁻⁹		
БC-18	2,39	4664	-3,99193	0,0009988	8897.10-10		
БС-21	2,42	4738	-4,43786	0,0013434	8888.10 ⁻¹⁰		
BC-23	1,72	4005	-5,116052	0,003085	-169.10^{-9}		
БС-24	1,61	4111	-5,67753	0,003336	-1057.10^{-19}		
3	1	150			Part I		

видно, что ΔS^* имеет разные значения, при этом, как правило, для стекол с большим содержанием Na_2O значения ΔS^* отрицательны и, наоборот, для стекол, богатых B_2O_3 , со сравнительно меньшим содержанием Na_2O и SiO_2 , характерны положительные значения ΔS^* . При сравнении полученных данных ΔS^* с таковыми для натрий-силикатных стекол, для которых ΔS^* отрицателен, и натрий-борных стекол, для которых ΔS^* положителен, становится ясным, что различные значения ΔS^* боросиликатных стекол обусловлены наличием двух структурных группировок в этих стеклах. Примечательным является то обстоятельство, что положительные значения ΔS^* , характерные для натрий-боратной структуры, обнаруживаются для тех составов, которые лежат в области расслоения боросиликатных стекол [9].

Таблица 4 Вначения некоторых энергетических величин для Na₂O—B₂O₃—SiO₄ стекол при 1000

רסווע	Callin Hei	to the pass						-		-
Nº Nº CTEKID	NazO Bec. "/"	Удельный вес г/см³	Удельн. электро- проводность ом-1. с.м-1	[M]×100 MO.7d./dr.0M	P9	Чф ккал/моль	∆Н* кал/моль	A o.w 1 c.w -2	∆ S* кал/моль	д 24 кал/моль
1	40,0	2,106	0,909	2,717	3,28	19,4	9700	33,4	-3,33	13950
2	40,0	2,129	1,00	2,750	3,75	25,5	12750	36,4	-0,779	13750
3	40,0	2,199	1,11	2,835	2,82	14,5	7160	39,2	-5.00	13500
4	30,0	2,044	0,526	1,978	3,804	27,4	13750	26,6	0,62	14550
5	30,0	2,131	0,625	2,062	3,946	28,7	14400	30,3	.0,14	14200
7	30,0	2,309	0,666	2,234	4,021	29,5	14800	29,8	0,43	14250
9	30,0	2,315	0,625	2,240	3,74	26,3	13150	27,9	-0,99	14500
10	20,0	2,290	0,256	1,478	4,44	37.0	18550	17,3	2,28	15650
11	20,0	2,140	0,212	1,380	3,93	32,0	16100	15,4	0,12	15950
12	20,0	2,165	0,222	1,396	4, 6	36,5	18300	15,9	1,93	15850
15	20,0	2,300	0,175	1,483	4.21	35,2	17650	11,8	0,87	16550
17	10,0	1,944	0,0666		4,73	43,2	21600	10.6	3,73	16850
18	10,0	2,240	0,526	0,722	4,47	41,7	20900	7,3	2,42	17800
.24	10,0	2,340	0,025	0,754	3,81	38,4	19200	3,3	-0,46	19800
	1		- 1			U				

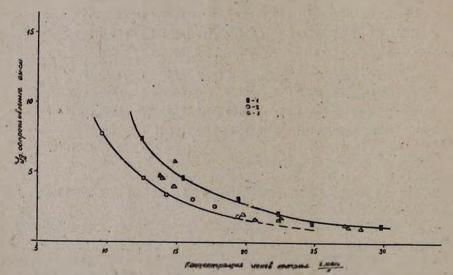


Рис. 5. Зависимость удельного сопротивления стекол от концентрации ионов натрия: 1—патрий-силикатные стекла, 2—натрий-боратные стекла, 3—натрий-боросиликатные стекла.

Величина ΔZ^* , как видно из таблицы 4. имеет значение от 13500 до 19800 кал/моль и увеличивается со снижением концентрации щелочного иона. Исследование электропроводности бинарных щелочных силикатных систем показывает, что ΔZ^* не зависит от радиуса ще-

лочного катиона и при заданном составе расплава (например, $R_*O: SIO_2 = 1:2$) остается почти постоянным [10, 11]. Для величины ΔZ^* большое значение имеет число разрывов связей SI-O-SI и B-O-B. С уменьшением концентрации щелочного иона число разрывов этих связей уменьшается, чем и объясняется увеличение ΔZ^* .

Таким образом, анализ полученных результатов указывает на микронеоднородное строение боросиликатных расплавов, которое наиболее четко проявляется для составов, содержащих 10—20% Na₂O.

Однако при высоких содержаннях окиси натрия (40%) вряд ли следует полагать наличие общего боросиликатного каркаса. По-видимому, при этом вследствие увеличения числа разрывов ковалентных связей SI—O—SI и B—O—B имеет место образование смеси борных и силикатных комплексных анионов.

Таким образом, значение ΔS^* может служить своеобразным индикатором, которой указывает, какой из механизмов передвижения щелочного иона превалирует в данном расплавлениом стекле — боратный или силикатный.

Институт химин Совнархоза АрмССР

Поступило 3 XII 1962

Կ. Ա. Կոսջանյան և Է. Մ՝ Ավե**ջ**իսյան

$Na_2O-B_2O_3-SiO_2$ ሀኑሀ<mark>ያ</mark>ቴሆኑ <mark>ሀጣሀ</mark>կትՆቴՐԻ **ԷԼԵԿՏՐԱ**ℤԱՂՈՐԳԱԿԱՆՈՒՔՑԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ՀԱԼԱԾ ՎԻՃԱԿՈՒՄ

Ufhnhnif

Նաարիուժ-րորասիլիկատալին ապակինիրը մեծ հետաքրքութելուն են ներկալացնում ինչպես գործնական, ալնպես էլ տեսական տեսակետից։ Ներկա աշխատանքում հնտաղոտված է ալդ ապակիների էլեկտրահաղորդականութլունը 800—1000°C ջերմաստիճանալին ինտերվալում։ Այդ հետացոտու**խլունները ցույց են տալիս, որ հայված վիճակում նատրիում-բորասիլիկա**ուսին ապակիների էլեկորահաղորդականությունը դերացանցապես կախված է ապակիում հղած ճատրիումի քանակից (տես նկ. 1–4)։ Այս ապակիների Էլևկտրահաղորդականության ջևրմասախճանային կախումը կարհլի է արտահայտել (1) և (2) հավասարումների միջոցով, որոնց ճշտությունը տվյալ ապակիների համար գրենն նուլնն է՝ 4-5% Ուսումնասիրվող ապակիների տեսակարար էլեկարական գիմադրութելան և նատրիումի կոնցևնարացիալի ւքիջև հղած կախումն արտահալտվում է մի ընդհանուր կորով, որն ընկած է նաարիում-սիյիկատալին ապակիների և նաարիում-բորատալին ապակիների համապատասխան կորհրի միջև։ Կիրառելով Բոկրիսի և նրա աշխատակիցների բանաձևը, որը արտածվել է անցման վիճակի տեսության հիման վրա, ցուլց է արված, որ ուսումնասիրվող ապակիների էլեկտրահաղորդականության էնարոպիան ∆S*, կարող է ընդունել ինչպես գրական, ալնպես էլ բացասական արժեջներ։ Մեր նախորդ աշխատանքում ցույց է տրված, որ էնտրակայի տրժեջներ, իսկ բադրական արժեջները թնարոշ են նատրիում-րորատային ապակիների, իսկ բադրական արժեջները նատրիում-սիլիկատային ապակիների համար։ Հետաորոնք ընկած են Na₂O—B₂O₃—SiO₂ սիստեմի միկրոանհամասես ապակիների որրուլթում։ Արպիսով սուլն աշխատանքում ստացված տրդյունջները հողմնակիորեն ցույց են տալիս, որ նատրիում-րորասելիկատային ապակիների հատրիում ես դոլությեն ունի միկրոանհամասեռություն, որի դեպրում, նատրիում-րորատալին մասով։

ЛИТЕРАТУРА

- 1. А. А. Зализняк. Стекло и керамика 1958, 1; М. Г. Манвелян, А. Ф. Мелик-Ахназаров, К. А. Костанян, С. О. Налчаджян, Е. А. Ерзинкян, К. М. Татевосян, Стекло и керамика 2, 5 (1960).
- J. Iamomoto, Journ. Soc. Glass Techn. 38, 141 A (1954); Journ. Ceram. Ass. Japan 80, 675 (1952).
- 3. К. А. Костанян, Изв. АН АрмССР, ХН 11, 65 (1958).
- 4. К. А. Костанян, К. С. Саакян, Изв. АН АрмССР, XH 14, 409 (1961).
- 5. К. А. Костанян, К. С. Саакян, Стекло и керамика 8, 7 (1960).
- 6. К. А. Костанян, С. А. Камалян, С. А. Бежсанян, Изв. АН АрмССР, XH 14, 3 (1961).
- 7. Р. Л. Мюллер, ФТТ 2, 1333 (1960).
- 8. К. А. Костанян, Изв. АН АрмССР, ХН 18, 3 (1963).
- 9. Г. А. Коликов, Строение стекла. АН СССР, Москва, 1955, 234.
- J. O'M. Bockris, J. A. Kitchener, S. Ignatowicz, J. W. Tomlinson, Trans. Farad. Soc. 48, 349, 75 (1952).
- 11. О. А. Есин, Усп. химин 28, 12, 1374 (1957).