Քիմիական գիտո թյուններ

XVI, № 1, 1963

Химические наука

Э. Г. Месропян, М. Т. Дангян и Э. Г. Калтахчян

Окисление алкоксиметил-β-хлораллилуксусных кислот перекисью водорода в среде уксусной кислоты

В предыдущих сообщениях нами описан метод синтеза α-алкил--γ-хлор-о-окси-γ-валеролактонов окислением замещенных β-хлораллилуксусных кислот перекисью водорода в среде уксусной кислоты и уксусного ангидрида [1, 2].

Для изучения влияния алкоксиметильных групп на реакцию окисления замещенных β-хлораллилуксусных кислот нами синтезированы и охарактеризованы некоторые α-алкоксиметил -β-хлораллилуксусные кислоты гидролизом и декарбоксилированием диэтиловых эфиров α-алкоксиметил-β-хлораллилмалоновых кислот; при этом установлено, что декарбоксилирование следует проводить под уменьшенным давлением, так как при атмосферном давлении выход побочного продукта—метилен-β-хлораллилуксусной кислоты увеличивается отщеплением соответствующего спирта [3]:

β-Хлораллильный остаток следует вводить в первой стадии алкилирования, так как обратный порядок алкилирования приводит к образованию побочных продуктов. Выходы продуктов реакции составляют 40—45% от теории. Полученные α-алкоксиметил-β-хлораллилуксусные кислоты подвергаются окислению перекисью водорода в среде уксусной кислоты; окисление протекает по схеме, описанной ранее [1]. При этом установлено, что находящиеся в α-положении алкоксиметильные радикалы уменьшают выход образующихся лактонов.

Экспериментальная часть

В трехгорлую круглодонную колбу помещались 21,6 г (0,54 моля) едкого натра в 40 мл воды и 0,18 моля диэтилового эфира алкоксиметил-β-хлораллилмалоновой кислоты. Смесь при перемешивании нагревалась на кипящей водяной бане в течение 4—5 часов. После окончания реакции добавлялась вода в количестве, достаточном для растворения образовавшейся соли. Реакционная смесь экстрагировалась эфиром для удаления неомыленного продукта; после этого водный слой подкислялся 25% -ной соляной кислотой до кислой реакции на конго. Выделившимся маслянистый слой отделялся от водного, водный слой трижды экстрагировался эфиром, эфирные вытяжки присоеди—

нялись к основному слою и высушивались над обезвоженным сернокислым магнием. После отгонки эфира остаток декарбоксилировался в колбе Клайзена под уменьшенным давлением и перегонялся в вакууме. Константы полученных соединений приведены в таблице 1.

Таблица 1

R | | CH₂=CCICH₂CHCOOH

		A COLUMN	1000	MRD		Анализ С1 в °/о	
Выход	Т. кип. в °С/ <i>мм</i>	n ²⁰	d ₄ ²⁰	найдено	вычис-	найдено	вычис-
43,4	126—130/3	1,4647	1,4669	46,29	46,69	18,58	18,46
45,2	136—138/3	1,4610	1,1074	51.18	51,28	17,51	17,23
39,9	140—141/5	1,4640	1,1127	51,22	51,28	17,13	17,23
40,5	143—146/3	1,4662	1,0930	55,52	55,92	15,90	16,10
	43,4 45,2 39,9	43,4 126—130/3 45,2 136—138/3 39,9 140—141/5	B °C/MM	43,4 126—130/3 1,4647 1,4669 45,2 136—138/3 1,4610 1,1074 39,9 140—141/5 1,4640 1,1127	T. KHII. B °C/MM	Т. кип. в °С/мм пр d40 де	Т. кип. в °С/мм пр d40

а-Алкоксиметил-γ-хлор-δ-окси-γ-валеролактоны. В трехгорлую 250 мл колбу с механической мешалкой, обратным воздушным холодильником и термометром, доходящим до дна колбы, помещались α-алкоксиметил-β-хлораллилуксусная кислота, 28%,-ная перекись водорода и уксусная кислота. Реакционная смесь нагревалась 20 часов при 50—55°. Затем под уменьшенным давлением отгонялись уксусная кислота и вода, после чего в вакууме отделялось полученное вещество. α-Алкоксиметил-γ-хлор-δ-окси-γ-валеролактоны хорошо растворимы в органических растворителях, не растворимы в воде. Условия опытов и физико-химические константы полученных соединений приведены в таблице 2.

Выводы

- 1. Гидролизом и декарбоксилированием алкоксиметил- β -хлораллилмалоновых кислот получены α -алкоксиметил- β -хлораллилуксусные кислоты.
- 2. Выходы замещенных хлораллилуксусных кислот зависят от порядка введения заместителей. При этом доказано, что 2-хлораллильный остаток нужно вводить при алкилировании в первой стадии.
- 3. Окислением α -алкоксиметил- β -хлораллилуксусных кислот перекисью водорода в среде уксусной кислоты получены новые α -алкоксиметил- γ -хлор- δ -окси- γ -валеролактоны с выходами 35—46% от теории

Ереванский государственный университет Кафедра органической химии

Поступило 30 VIII 1962

C,H,OCH, C,H,OCH, nso-C,H,OCH, C,H,OCH,	R		
10,0 8,46 10,0	кислота исход Ко		
8888	уксусная кислота вещество 28°/о-перекись		
7 5 5	28°/ _о -пе-		
55 – 60 50 – 55 50 – 55 55 – 60	Т. реакции в °C		
8888	Продолжитель- ность реакции в часах		
44,3 44,0 45	Выход в °/о		
150—155/4 155—160/3 150—155/35 162—163/7	Т. кнп. в °С/ <i>мм</i>		
1,4640 1,4630 1,4600 1,4680	n 20		
1,2144 1,1788 1,4778 1,1637	d.20		
47, 34 51, 80 51, 57 56, 46	найдено Ж		
46,64 51,28 51,28 55,90	вычислено		
46,65 48,80 48,41	найдено		
46,04 48,52 48,52	вычис-		
6, 12 6, 30 6, 41	найдено =		
6 74	вычис-		
17,25 15,73 15,81 15,00	найдено		
17 20 15 95 15 95 15 06	лено		

է. Գ. Մեսոոպյան. Մ. 8. Դանդյան և է. Գ. Ղալթախչյան

Цифпфпій

ծանախաթայի թիքը։ ջրատրանաց ի-ճւսեանիք անարարել ընսւարի զրարարել ու ուսությատիերը արկանարել անարարել ու ուսությատրերը ուսությատրերը ու ուսությատրերը ուսության ուսությատրերը ուսության ուսությատրերը ուսության ուսության ուսությատրերը ուսության ուս

Մտացված գ-ալկօքսիմեթիլ-β-քլորալլիլքացախաթթուները քացախա-Եթվի միջավալրում ենթարկելով օքսիդացման ջրածնի դևրօքսիդով ստացվել են մի քանի α-ալկօքսիմեթիլ-Դ-քլոր-ծ-օքսի-Դ-վալերոլակտոններ 35— 46% ելջով։

ЛИТЕРАТУРА

- 1. М. Т. Дангян, Э. Г. Месропян, Изв. АН АрмССР, ХН 14, 147 (1961).
- 2. М. Т. Дангян, Э. Г. Месропян, Изв. АН АрмССР, ХН 15, 147 (1962).
- 3. М. Т. Дангян, Г. М. Шахназарян, Г. М. Маркарян, Изв. АН АрмССР, ХН 14. 491 (1961).