2 U 3 U U U U U P P S П Р В П Р В С Т И Я А К А Д Е М И И Н А У К А Р М Я Н С К О Я С С Р

Քիմիական գիտություններ

XV, № 5, 1962

Химические науки

С. А. Вартанян, В. Н. Жамагорцян и Ш. О. Баданян

Химия винилацетилена

Сообщение XXXVI. Конденсация винилацетилена и изопропенилацетилена с альдегидами и кетонами в присутствии порошкообразного едкого кали без растворителя

Винилацетиленовые спирты стали хорошими исходными веществами для органического синтеза: на их основе синтезирован ряд ценных продуктов и полупродуктов, нашедших практическое применение [1].

Из всех известных методов синтеза винилацетиленовых спиртов наиболее простым является метод Назарова [2], который однако обладает некоторыми существенными недостатками: он неприменим в синтезе вторичных винилацетиленовых спиртов. Поэтому синтез последних осуществляют или по методу Иоцича [3], или с применением щелочных металлов в жидком аммиаке. Неудобство этих методов заключается в исключительной чувствительности альдегидов к влаге, в присутствии которой резко снижается выход ожидаемых спиртов [4], а также в применении при этих методах больших количеств эфира, аммиака и т. д.

Исследования нашей лаборатории в области превращений винилацетиленовых спиртов вызвали необходимость разработки более простого метода синтеза этих соединений. Недавно в одном из сообщений нашей лаборатории был описан новый метод синтеза винилацетиленовых спиртов путем конденсации винилацетиленовых углеводородов с альдегидами и кетонами под влиянием порошкообразного едкого кали без растворителя [5]. Преимущество этого метода заключается в том, что в отсутствие растворителя сильно повышается скорость реакции, в результате чего становится возможным проведение реакции даже с кетонами, очень чувствительными к щелочам (тетрагидропиран-4-оны и др.). Кроме того, этот метод дает возможность синтезировать недоступные ранее вторичные винилацетиленовые спирты путем конденсации альдегидов с винилацетиленовыми углеводородами.

Нам казалось интересным изучить возможность конденсации винилацетилена и изопропенилацетилена с кетонами ароматического, алициклического и гетероциклического рядов, а также с кетонами, содержащими разные функциональные группы (окси-, алкокси-, ацетокси- и т. д.). Оказалось, что по этому методу винилацетилен конденсируется с а-кетолами с образованием ожидаемых гликолей винилацетиленового ряда (I—IV).

При конденсации ацетата α-кетола (фенилметилацетилкарбинола) с винилацетиленом в условиях реакции происходит гидролиз ацетатной группы, и в результате получается соответствующий гликоль (V):

$$R'$$
 C—(OH)COCH₃+HC = C—CH=CH₂ $\rightarrow R'$ C(OH)C(CH₃)(OH)C = C—CH=CH₂ I—V

 $R = R' = CH_3$; II R=CH₃; $R' = C_2H_5$; III R и R'=понтаметилен

IV R=CH₃, R'=
$$C_{9}H_{5}$$
 V R=C₆H₃, R'=CH₃

Метил-β-алкоксиэтилкетоны оказались совершенно не способными вступать в конденсацию с винилацетиленом в присутствии порошкообразного едкого кали без растворителя; по-видимому, под влиянием щелочи они уплотняются [6].

Интересно отметить, что, в противоположность β-алкоксикетонам, α- и γ-алкоксикетоны конденсируются с винилацетиленом в вышеописанных условиях и образуют алкоксивинилацетиленовые спирты (VI, VII). Показано также, что и изопропенилацетилен способен конденсироваться с альдегидами и кетонами вышеописанным методом с образованием ожидаемых винилацетиленовых спиртов (VIII—XI). Алициклические и гетероциклические кетоны конденсируются с изопропенилацетиленом аналогично, и образуются соответствующие карбинолы (XIII—XX):

$$R'COR+HC \equiv C-C(R'')=CH_s \rightarrow RR'C(OH)C \equiv C-C(R'')=CH_s$$
 $VI-XV$
 CH_s

VI R=CH₃OCH₂—, R'=C₃H₇, R"=H; VII R=C₂H₅OCH₂CH₂CH—
R'=C₃H₇, R"=H; VIII R=H, R'=R"=CH₃; IX R=H, R'=C₃H₇, R"=CH₃
X R=R'=R"=CH₃; XI R=R"=CH₃, R'=C₂H₅; XIII R и R'=тетраметилен; R"=CH₃
XIV R и R'=пентаметилен, R"=CH₃; XV R и R'=3-метилпентаметилен; R"=CH₃

R-
$$R'+CH \equiv C-C(CH_3)=CH_2$$
 $R''+CH \equiv C-C(CH_3)=CH_2$
 R''
 R''
 R''
 R''
 R''
 R''
 R''
 R''

XVI X=O, R=H, R'=R"=CH₃; XVII X=O, R=H, R'=CH₃, R"=C₂H₅; XVIII X=O, R=R'=H, R"=C₃H₇; XIX X=NH; R=R'=CH₃, R"=H; XX X=CH₃-N<, $R=R'=CH_3$, $R=R'=CH_3$, R=R'=C

Ацетофенон и бензофенон в вышеописанных условиях способны конденсироваться с винилацетиленом и изопропенилацетиленом, и при этом получаются ожидаемые карбинолы (XXII—XXV):

 $RCOC_{e}H_{5}+HC\equiv C-C(R')-CH_{2}$ $R(C_{e}H_{5})(OH)C\equiv C-C(R')=CH_{2}$ XXII-XXV $XXII R=CH_{3}$, R'=H; $XXIII R=C_{e}H_{5}$, R'=H; $XXIV R=CH_{3}$, $R'=CH_{3}$; $XXV R=C_{e}H_{5}$, $R'=CH_{3}$

Таблица 1

PP'C(OH)C=	C_C	DEL-CH
$RR'C(OH)C \equiv$	C-C	$K = U \Pi_2$

-	-70-	- 2 3	кол. н	сх. вец	цеств в г		0/0		-	- A B
R	R′ -	R"	кон	углево-	альдерид или кетои	Время н	Выход в	Т. кип. в °С/мм	п <mark>2</mark> 0	Литератур- пая ссылка
CH,	Н	сн,	12	6	10	24	42	68/12	1,4748	[8]
CH,	CH,	CH,	50	33	40	24	82	60/10		[2]
CH,	C ₂ H ₅	CH,	50	33	40	24	90	60-61/6	1,4742	[2]
100	ОН		7 4				4 .			
CH,	CH,	Н	8	20	4-9	4	59	78—79/2	1,4932	[9]
сн,осн,	C ₃ H ₇	Н	6	20	6	4	73	88-89/3	1,4750	[10]
_		CH ₃	40	25	34	4	70			.[2]
		сн,	40	22	38	24	79	**		[2]
	CH,	10th at			- 1		13			
CH,	C ₆ H ₅	Н	- 50	50	35	24.	62	120/5	1,5570	[11]
C ₄ H ₅	C ₆ H ₅	Н	40	40	35	24	64	168/3	-	[12]

^{*} Т. пл. 58°.

Экспериментальная часть

Исходные оксикетоны синтезированы известным способом [7]. Все опыты проводились в трехгорлой колбе, снабженной механической мешалкой, капельной воронкой и термометром. В колбу загружалось необходимое количество порошкообразного едкого кали, и при охлаждении смесью соли и льда вносился углеводород (надо отметить, что увеличение количества углеводорода увеличивает выход карбинола). Затем при энергичном перемешивании в колбу вносился соответствующий альдегид или кетон с такой скоростью, чтобы температура реакционной смеси не поднималась выше—5°. Перемешивание продолжалось от 2 до 5 часов. При охлаждении добавлялся эфир, и реакционная смесь обрабатывалась водой в двойном по весу количестве от взятой щелочи, и потом эфирный экстракт нейтрализовался разбавленной соляной кислотой. После высушивания эфирного экстракта и отгонки эфира остаток перегонялся в вакуумме. Все синтезы осуществлены по методу, описанному нами ранее [5]. Условия реакции и константы полученных винилацетиленовых спиртов, известных в литературе, приведены в таблице 1, а неизвестных спиртов-в таблице 2.

^{**} Т. пл. 50-51".

-1	1	1	CH,		C,H,	СН	H	1	R
(₀)-с,н,	С, н,	CH,	Or	<u>e</u> D	с,н,осн,сн,сн	CH, CH,	C,H,	2	R
CH,	СН	CH.	I	СН	I	Ξ	СН	ဒ	R
20	\$	45	CT CT	30	င္မ	7	. 28	4	кол. и
=	23	22	15	22	00	20	11	Cn	углево-
28	40	40	Cr	30	-	Сл	13	6	углево- дород альдегид или кетон
24	24	24	4	24	4	44,	24	7	Время в часах
67	71	65	87.8	80	38.5	69	4	œ	Выход в º/ ₀
118/2	131—132/4	122/5	**************************************	105/4	115/4	90 91 /4	98/12	9	Т. кип. в "С/м.и
1,4922	1,4972	1,4952	1	1,5114	1,4750	1	1,4780	10	n 20
0,9914	0,9907	0,9952	1	0,9866	0,9224	1.	0,8910	11	d.20
60,87	61,44	56,85	1 -	1	68, 35	I	43,86	12	найдено
60,73	.60,73	56,11	. 1	i	67,55		40, 81	13	лено
76, 10	76,33	74 12	74,35	79,86	74,84	71,80	72,04	14	найлено
9.89	10,0	9,40	9,15	9,92	10,84	9 28	10,21	15	Анална непо Н
75,96	75,96	74,22	74,22	80,00	75,00	71,42	71,42	16	в %
9,61	9 61	9,26	9,27	9,33	10,71	9,52	9,52	17	H lo

RR'C(OH)—C=C—C(R")=CH,

1	2	3	4	5	6	7	8
1	CH,-(N)-CH,	сн,	20	11	21	24	68
	CH,-(N)-CH,	CH,	20	11	23	24	65
1	сн,— (_S)— сн,	СН,	20	7	15	24	60
CH,	OH CH ₃ C ₂ H ₅	н	3	15	2.7	4	43,5
сн,	OH OH	Н	5	20	4,8	4	60
CH, C ₆ H ₅	C _e H ₅ C _e H ₅	CH,	15 15	5 5	12 12	24 24	57 55

* Т. пл. 25—26°.

* Т. пл. 94—95°.

-			7.		LIFE	5760 E	19-32	17-1
9	10	11	12	13	14	15	16	17
135/6	1,5105	-		3+1	74,52	9,93	74,61	9,84
			1					
129/5	1,5020	_		-	75,46	10,16	75,36	10,14
140—111/3	1,5238	-	-	1	68,57	81,9	69,22	8,57
12.4.			113				17.79	
130			-	-	70,53	9,25	70,59	9,24
140/3	-	_	-	10-	77,61	7,51	77,77	7,40
108—9/3 162/1	1,5520 1,5920		_	-	83,84 86,45	7,41 6,78	83,87 86,85	7,50 6,22
			-	100		-		1

Выводы

Проведено дальнейшее изучение нового метода синтеза винилацетиленовых спиртов конденсацией альдегидов и алифатических, алициклических, ароматических и гетероциклических кетонов с винилацетиленом и изопропенилацетиленом в присутствии порошкообразного едкого кали без растворителя.

Институт органической химии АН АрмССР

Поступило 10 VIII 1962

Ս. Հ. Վարգանյան, Վ. Ն. Ժամագործյան և Շ. Հ. Բադանյան

ՎԻՆԻԼԱՑԵՏԻԼԵՆԻ ՔԻՄԻԱՆ

Հաղորդում XXXVI Վինիլացնտիլենի և իզոպրոպենիլացնտիլենի կոնդենսացումը կետոնների ու ալդենիդների ճետ առանց լուծիչի փոշիացրած կալիումի ճիդրօքսիդի ներկայությամբ

Ибфифисб

Շարումակված է մեր մշակված մեխոդի ուսումնասիրությունը։ Փոշխացրած կալիումի հիդրօքսիդի ներկալությամբ առանց լուծիչի վինիլացետիլենը կոնդենսվում է մի շարք ալդեհիդների ու կետոնների հետ, որոնք պարունակում են օքսի-և ացետօքսի խմբեր։ Նույն պալմաններում վինիլացետելենը և իզոպրոպենիլացետիլենը կոնդենսվել են ալիֆատիկ, ալիցիկլիկ, արոմատիկ և հետերոցիկլիկ կետոնների ու ալդեհիդների հետ։ Ուսումնասիրության արդլունքները բերված են 1-ին և 2-րդ աղլուսակներում։

ЛИТЕРАТУРА

1. А. Н. Несменнов, Вестник АН СССР 22, 3, 8 (1952); И. Н. Назаров, Труды Всесоюзной инструментальной конференции 3, 22—27, III, 1943.

2. И. Н. Назаров, Изв. АН СССР, ОХН 3, 683 (1938).

3. Ж. И. Иоцич, ЖРФХО 34, 239 (1902); Bull. Soc. Chim. France [3] 30, 208 (1913).

4. C. Hurd, W. McPhee, J. Am. Chem. Soc. 89, 239 (1947).

- 5. С. А. Вартанян, Г. А. Чухаджян, В. Н. Жамагорцян, Изв. АН АрмССР, ХН 12, 108 (1959); С. А. Вартанян, Ш. Л. Шагбатян, Изв. АН АрмССР, ХН 14, 577 (1961).
- 6. И. Н. Назаров, С. А. Вартанян, ЖОХ 20, 1582, 1829 (1950); И. Н. Назаров. С. А. Вартанян, В. Н. Жамагорцян, ЖОХ 24, 1953 (1954); 25, 109 (1955).
- 7. С. Г. Мацоян, Г. А. Чухаджян, С. А. Вартанян, ЖОХ 30, 1202 (1960).
- 8. И. Н. Назаров, А. Н. Елизарова, Изв. АН СССР, ОХН 1940, 189. 9. И. Н. Назаров, И. В. Торгов, Изв. АН СССР, ОХН 1943, 129.
- 10. С. А. Вартанян, В. Н. Жамагорцян, Изв. АН АрмССР, ХН 12, 45 (1959).
- 11. H. Carothers, A. Jacobson, J. Am. Chem. Soc. 55, 1097 (1933).
- 12. С. А. Вартанян, Ш. О. Баданян, Изв. АН АрмССР, ХН 10, 347 (1957).