ДИЗЧИЧИՆ UUR ԳРЅПРЕЗПРОТОТОТО ЦЧИТОГРИЗТ ЅБОДБЧИЧРР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Հիմիական գիտո թյուններ

XV, No 4, 1962

Химические науки

А. Л. Миджоян, В. Г. Африкян, Г. А. Хоренян, Т. Н. Васильева Л. Д. Журули и С. Г. Карагезян

Исследования в области производных фурана

Сообщение XXVIII. Некоторые тносемикарбазоны и семикарбазоны ряда фурана как возможные противотуберкулезные средства

Высокая активность сульфамидных препаратов при лечении различных инфекционных заболеваний побудила исследователей проверить их действие и на возбудителя туберкулеза. Исследуя противотуберкулезные свойства сульфамидных и родственных им соединений, Домагк [1] показал, что сульфатиазол и сульфатиадиазол проявляют наиболее выраженное действие на туберкулезную палочку.

Сходность строения тиадиазолов (I) с тиосемикарбазонами (II)

которые являются исходными продуктами для синтеза тиадиазолов, вавела на мысль [2] проверить противотуберкулезные свойства этих промежуточных веществ. Так был открыт и подвергнут систематическому исследованию в поисках эффективных средств против туберкулеза новый класс соединений замещенных тиосемикарбазонов.

Было показано, что тиосемикарбазоны, в частности замещенных бензальдегидов, обладают выраженными противотуберкулезными свойствами. Замещение в тиосемикарбазидном остатке приводит к ослаблению активности. Из отобранных активных препаратов тиосемикарбазоны *п*-ацетамидо-, *п*-метокси-, *п*-этилсульфонбензальдегидов под названием ТВ—1, ТВ—2, ТВ—3 соответственно нашли применение в практической медицине.

На основе ароматического характера фуранового ядра представлялась интересной замена бензольного кольца фурановым, имеющим заместители в 5- и 4,5- положениях гетероцикла. Кроме того, проведенные ранее работы [3] по синтезу изоникотиноил-и пиколиноилгидразонов ряда фурана выявили вещества с высокой противотуберкулезной активностью, действующие в разведениях 1/10 000 000.

Описываемые в настоящей работе тносемикарбазоны соответствуют общей формуле (III):

R=H; CH₃; R'=CH₃; C₂H₃; C₆H₅CH₂; n-CH₁C₆H₄CH₂; n-CH₃OC₆H₄CH₂; R'=H; CH₃

Синтез указанных соединений был легко осуществлен на основе ранее разработанных реакций по получению 5- и 4,5-замещенных фурфуролов и 2-ацетилфуранов [4].

Несмотря на многочисленные попытки ацетилирования 4,5 диметилфурана в различных условиях, нам пока не удалось получить

его 2-ацетилпроизводное.

Все тиосемикарбазоны получены общим методом [5] в водноспиртовой среде взаимодействием солянокислого тиосемикарбазида с альдегидом или кетоном. Перекристаллизация производилась в основном из метанола или водного метанола.

Попутно, для сравнения противотуберкулезных свойств, были получены также их кислородные аналоги—семикарбазоны (IV):

Семикарбазоны также получены аналогично—взаимодействием солянокислого семикарбазида с альдегидом или кетоном [6] в водноспиртовой среде. Семикарбазоны 5-этил-, 4,5-диметилфурфуролов и 5-этил-2-ацетил-, 5-метоксибензил-2-ацетилфуранов были получены в присутствии ацетата натрия в водно-спиртовой среде [6]. Перекристаллизация производилась из метанола и водного метанола.

В таблицах 1 и 2 приведены формулы, данные элементарного анализа и биологической активности синтезированных соединений.

Опыты по изучению противотуберкулезной активности соединений проводились, как и в предыдущих наших работах [3], на яично-агаровой среде Герольда. Препараты растворялись в абсолютном спирте и изучались концентрации соединений с 1/1000 до 1/100000. Контролем к опытам служила среда Герольда, содержащая 1% спирта.

С целью сравнения в опыт были включены известные противотуберкулезные средства: фтивазид, стрептомицин и синтезированный в нашем институте армазид [3]. Как опытные, так и контрольные пробирки засевались 0,1 мл эмульсии микобактерий (штаммы Academia, H₂₇ RV, Bovinus 8, БЦЖ 67), содержащей 1 млн микробных тел в 1 мл.

Первая проверка опытов производилась через 10 дней выдерживания пробирок в термостате, а затем каждые 10 дней в течение двух месяцев.

Как видно из таблиц, противотуберкулезная активность изученных нами различных семикарбазонов и тиосемикарбазонов замещенных фуранов невысокая. Однако в пределах данного ряда соединений

	R'	R"	Выход в °/о	Т. пл. в °С	- 1	C	налн. э, в °/ ₀					3	Бактериостатическая вктивность in vitro, разве- дение 1:X			
R					вычис-	найдено	пено	найдено	вычис-	вайдено	вычис-	лайдено	Мусоі лит. Aka- demia	шт. Н _{ат} Rv	ercul. шт. Bov. 8	БЦЖ 67
Н	CH,	н	81,5	162—164	45,87	45,81	4,95	4,94	22,93	22,69	17,50	17,61	5000	5000	5000	5000
CH,	CH,	Н	78,0	148 - 150	48,71	49,01	5,62	5,18	21,30	21,72	16,25	16,45	5000	5000 ;	5000	5000
Н	C,H,	Н	83,4	177	48,71	48,33	5,62	5,52	21,30	21,11	16,25	16,47	5000	5000 .	5000	5000
CH,	C ₂ H ₅	Н	70,1	137	51,11	51,40	6,19	5,89	19,97	20,21	15,16	14,96	5000	5000	5000	5000
Н	C ₆ H ₅ CH ₂	Н	70,3	162163	60,15	59,92	5,05	5,30	16,27	16,59	12,35	12,32	5000	10000	10000	10000
CH,	C.H.CH.	H	. 70,5	153-154	61,51	61,47	5,53	5,74	15,44	15,20	11,71	11,48	10000	10000	10000	10000
Н	CH,C,H,CH,	H	52,9	134 - 136	61,51	60,62	5,53	5,59	15,44	15,67	11,71	11,83	10000	10000	10000	10000
CH,	CH ₃ C ₈ H ₄ CH ₂	Н	51,1	136—138	62,64	62,40	5,95	6,20	14,68	14,75	11,15	11,41	5000	5000	5000	5000
Н	n-CH,OC,H,CH,	H	66,.1	138—140	58,06	58,16	5,22	4,91	14,58	14,85	11,07	11,28	20000	20000	20000	20000
CH,	n-CH,OC,H,CH,	Н	35,8	132	59,34	59,64	5,64	5,58	13,91	13,87	10,56	10,42	5000	5000	5000	500()
Н	CH,	CH,	71,9	175—176	48,71	48,60	5,62	5,32	21,30	21,53	16,25	16,42	20000	20000	20000	20000

R CR-NNHCONH.

-	R'	R"	Выход в °/о	7	A	на	ли	3	в 0	/0	Бактерностатическая активность in vitro, разве- дение l:X			
R				-		- 15	ŀ	. 1	1	J				
				Т. пл. в °С	10				1 0		Myco			
					вычис-	найдено	Вычис лено	найдено	вычис-	пайдено	шт. Aka- demia	шт. Н _{з7} Rv	шт. Bov. 8	БЦЖ 67
Н	CH,	н	59,5	195—196	50,29	50,34	5,43	5,58	25,13	25,47	2000	- 2000	2000	2000
CH,	CH,	Н	51,3	179 - 180	53,03	53,62	6,12	6,17	23,18	23,34	1000	2000	2000	2000
Н	C ₂ H ₅	H	70,2	169	53,03	53,03	6,12	6,31	23,18	23,39	1000	1000	1000	1000
CH,	C ₂ H ₅	н.	64,3	171	55,32	55,41	6,70	6,90	21,61	21,88	1000	1000	1000	1000
Н	C,H,CH,	Н	74;1	193—194	64,12	64,42	5,38	5,28	17,34	17,18	5000	5000	5000	5000
CH,	C.H.CH.	. н	57,2	157—158	65,30	65,40	5,87	6,00	16,40	16,66	2000 ·	2000	2000	5000
Н	CH,C,H,CH,	Н	72,2	176—177	65,30	65,90	5,87	6,25	16,40	16,69	2000	2000	2000	2000
CH,	CH,C,H,CH,	Н	50,1	167—168	66,35	66,28	6,31	6,50	15,55	15,62	2000	2000	2000	2000
Н	n-CH,OC,H,CH,	Н	41,2	186	61.48	61,33	5,53	5,86	15,44	15,27	2000	2000	2000	2000
CH,	n-CH,OC,H,CH,	Н	75,1	130	62,66	62,68	5,96	6,20	14,69	14,35	2000	2000	2000	2000
Н	CH,	CH,	70,7	`212—213	53,03	52,73	6,12	6,18	23,18	23,23	2000	2000	2000	2000

можно отметить определенную связь между химическим строеннем и биологической активностью. Так, в ряду тиосемикарбазонов (табл. 1) наиболее простые соединения оказались наименее активными. Введение в молекулу препаратов бензильного и толильного радикалов

Rª

Таблица 3

несколько повысило активность. Наиболее выраженное противотуберкулезное действие наблюдено у тиосемикарбазонов с 5-метоксибензильным и 4,5-диметильными остатками в ядре фурана, но и в этих случаях их активность не превышает разведения 1/20 000.

В ряду семикарбазонов (табл. 2) противотуберкулезное действие выражено слабее. Наиболее активное соединение этой группы—5-бензилпроизводное действует только в разведении 1/5000.

Сравнение двух таблиц показывает, что тиосемикарбазоны несколько активнее соответствующих семикарбазонов, что, по-видимому, объясняется наличием серы. В ранее опубликованных работах серусодержащие соединения также оказались активнее своих кислородных аналогов [7].

В предыдущей работе [3] по исследованию противотуберкулезфурана были выявлены ных свойств гидразонов ряда высокой активности. Общими в этих двух группах соединений являются 4- и 4,5-замещенные фураны; поэтому представляет интерес сравнение биологической активности обеих групп. В таблице 3 приведены сравнительные результаты действия сходных по строению соединений всех пяти групп на культуру микобактерий H₃₇RV (семикарбязоны, тиосемикарбазоны, замещенные гидразидо-гидразоны α-,β- и γ пиридинкарбоновых кислот). Как видно из таблицы, противотуберкулезная активность гидразонов фуранового ряда значительно выше активности тиосемикарбазонов и семикарбазонов. Так, бензил- и толилпроизводные пиридин-7-карбоновой кислоты подавляют рост возбудителя туберкулеза в концентрации 1/10 000 000, тогда как соответствующие водные семикарбазида и тиосемикарбазида действуют только в разведении 1/2000, 1/5000, 1/10000. Противотуберкулезная активность производных пиридин-β-карбоновой кислоты менее выражена и только невначительно превышает таковую в ряду тиосемикарбазонов и семикарбазонов.

Таким образом, изыскание новых противотуберкулезных средств следует вести, по-видимому, в направлении синтеза гидразонов ряда

фурана.

Выводы

1. Получено 22 новых семикарбазона и тиосемикарбазона замещенных фуранов.

2. Изучены туберкулостатические свойства соединений in vitro

на четырех штаммях микобактерий.

3. Выявлено, что противотуберкулезная активность обеих групп соединений не высокая, однако в ряду тиосемикарбазонов она несколько более выражена, что, по-видимому, объясняется наличием серы.

. Институт тонкой органической химин АН Арм ССР

Поступило 12 VII 1962

Ա. Լ. Մնջոյան, Վ. Գ. Աֆրիկյան, Գ. Ա. Խուենյան, Ձ. Ն. Վասիլևա, Լ. Դ. Ժոււուլի և Մ. Գ. Կառագյոզյան

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ՖՈՒՐԱՆԻ ԱԾԱՆՑՅԱԼՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

Հաղորդում XXVIII։ Մի քանի թիոսեմիկարբազոններ և սեմիկարբազոններ՝ որպես ճնարավոր ճակապալարախաային նյութեր

Lúhnhniú

Զանազան վարակիչ հիվանդութ|ունների թուժման ընագավառում սուլֆամիդալին պրեպարատների բարձր ակտիվութ|ունը հիմ ը հանդիսացավ ստուդելու նրանց ազդեցութ|ունը և պալարախտի հարուցիչի նկատմամբ։ Դոմագկը ցույց է տվել, որ սրանցից սուլֆաթիազոլը և սուլֆաթիադիաղոլն օժտըված են առավել ակտիվութ|ամբ։

Թիադիազոլների (I) և թիոսեմիկարբազոնների (II) կառուցվացքի նմանությունը, ըստ որում վերջիններս ելանլութ են հանդիսանում թիադիազոլների սինթեզի համար, դրդեց Բենիշին և ուրիշներին ստուդելու այս միջանկլայ նյութերի հակապայարախտալին հատկությունները։

Ալսպես հայտնագործվեց հակապալարախտային նյութերի մի նոր շարջ փոխարկված թիոսեմիկարգազոններ, որոնց սիստեմատիկ ուսումնասիրություն-ները հնարավորություն տվեցին բժշկության մեջ կիրառելու նպատակով առանձնացնելու մի շարջ ակտիվ պրեպարատներ, ինչպես, օրինակ, պ-ացետ-ամիդա-, պ-մեթօջսի-, պ-էթիլսուլֆոնբենզալդեհիդի թիասեմիկարբազոններ, TB—1, TB—2, TB—3, անվան տակ։ Ֆուրանի օղակի արոմատիկ բնուլթը՝ նման բենզոլի օղակին, մեզ համար առիթ հանդիսացավ ձեռնարկելու 4- և 4,5-փոխարկված ֆուրանի աժանցլալների թիոսեմիկարբաղոնների սինթեզը, մանավանդ որ նախորդ աշխատություններում նկարագրված այս շարջի իզո-

նիկոաինոիլ և պիկոլինոիլ հիդրազոններն օժտված էին բարձր ակտիվությամբ (մինչև 1/10,000,000 նոսոացմամբ)։

3վլալ աշխատությունում նկարագրված թիոսեմիկարթագոնների սինթեզը հեշտությամբ իրադործվեց նախկինում մշակված 5- և 4,5-փոխարկված ֆուրֆուրալների և 2-ացետիյ ֆուրանների սինթեցի մեթոդների շնորհիվ։

անձաչանից, Նուր հղարակրրևով, վերաևնուրդանուղն չիղըակարուղ կատանվագ բը նրևչատատնը ըրծ քար ընարն Թեվագրավու արտնսերբեն, որդիկանետժսրրբևն սատնը ըրծ քար ընարն Գեվագրավու արտնսերբեն, որդիկանետժսրրբևն գախատանինը

1 և 2 աղլուսակներում բերած են ստացված միացությունների ֆորմուլները, էլեմենտար անալիզի տվլալները, ինչպես նաև բիոլոգիական ակտիվության տվյայները։

հըչպես ակնչալո է ավաշտակներից, ուսումնասիրված միացությունների չակապալարախտալին ակտիվությունը բարձր չէ։ Սակալն տվյալ շարջուժ նույնպես կարևլի է նշել որոշ կապ քիմ իական կառուցվածքի և չատկությունների միջև։ Ալսպես, թիրսեմ իկարբազոնների խմերում (աղլուսակ 1) չասարակ կառուցվածք ունեցող միացություններն օժտված են նվազ ակտիվությամբ։ Բենզիլ և տոլիլ մնացորդների մուտքը նրանց մոլեկուլի մեջ որոշ չափով բենզիլ- և 4,5- դիմեթիլ ածանցլալները, սակալն ալս դեպքում ևս նրանք ազդում են միալն 1/20000 նոսրության դեպքում։

Սեմիկարբազոնների շարքում (աղլուսակ 2) հակապալարախտալին ազդեցությունը, համեմատած թիոսեմիկարբազոնների հետ, ավելի ցածր է։ Ամենաակտիվ միացությունն է 5-բենզիլ ածանցյալը, որը սական ազդում է միալն 1/5000 նոսրության դեպքում։

Ալսպիսով, ինչպես ցուլց են տալիս մեր ուսումնասիրությունները, հակապալարախտալին նլութերի որոնումներն, ըստ երևուլթին, պետք է շարունակել ֆուրանի շարջի հիդրագոնների ուղղությամբ

ЛИТЕРАТУРА

- 1. G. Domagk, Hegler, J. Chemother. Bakt. Infek. 2 Aufl. 136 (1942); 3 Aufl. 183 (1944).
- R. Benhnisch, F. Mietsch, H. Schmidt, Naturwiss. 33, 315 (1946); F. Mietzsch, Ang. Chem. 63, 250 (1951).
- 3. А. Л. Миджиян, В. Г. Африкан, А. А. Дохикян, Л. Д. Журули, Изв. АН АрмССР, XH 15, 291 (1962)
- 4. А. Л. Миджови, В. Г. Африкви, А. А. Дохикви, А. А. Арови, М. Т. Григорян, Э. А. Маркарян, ДАН АрмССР 24, 207 (1957); 25, 133, 267, 277 (1957); Изв. АН АрмССР, ХН 12, 435 (1959); ДАН АрмССР 27, 301 (1958); Синтезы гетероциклических соединений 2, 14 (1957); 4, 15 (1959).
- 5. J. Bernstein, H. Z. Yale, K. Losee, M. Holsing, J. Martins, W. A. Lott, J. Am. Chem. Soc. 73, 906 (1951).
- 6. A. Vogel, Practical Organic Chemistry 1948, 342.
- 7. А. Л. Миджоян, Ю. З. Тер-Захарян, Л. Д. Журули, Г. М. Пароникян, Биологические свойства химических соединений. Ереван, АН АрмССР, 1962; А. Л. Миджоян, Л. Д. Журули, Ю. З. Тер-Захарян, Г. М. Пароникян, Н. А. Апоян, там же.