Քիմիական գիտություննե**ւ**

XV, № 3; 1962

Химические науки

А. А. Ароян, Т. Р. Овсепян

Некоторые синтезы на базе хлорметилпроизводных эфиров о- и м-крезолов

Проведенными ранее исследованиями по хлорметилированию алкиловых эфиров о- и п-крезолов выявлены некоторые закономерности этой реакции [1,2]. В частности, было установлено, что у этих эфиров, также как и у эфиров фенола [3], реакция затрудняется с увеличением алкильного радикала, причем эфиры о-крезола хлорметилируются в некоторой степени легче, чем эфиры п-крезола. В результате этих исследований был разработан метод получения соответствующих хлорметилпроизводных с 65—70% - ными выходами.

В данном сообщении приводятся результаты, полученные при хлорметилирования эфиров м-крезола, бисхлорметилировании эфиров о-крезола и некоторые применения хлорметилироизводных эфиров о- и м-крезолов.

Первые попытки хлорметилирования эфиров и-крезола сделаны в 1934 г. [4]. Реакция проводилась действием формальдегида и хлористого водорода в среде петролейного эфира в присутствии безводного хлористого цинка; при этом была получена весьма нестойкая жидкость, быстро разлагающаяся с выделением хлористого водорода. Выход продукта автором не указывается.

Учитывая литературные и наши данные о том, что применение катализаторов, и в частности хлористого цинка, при хлорметилировании феноловых эфиров, а иногда и других соединений, способствует осмолению и образованию различных побочных продуктов, мы проводили реакцию в условиях, описанных для эфиров о- и п- крезолов [1,2],—действием формалина и хлористого водорода в среде бензола без катализатора:

OR
$$-CH_3 + CH_2O + HCI \rightarrow CH_3 + H_2O$$

$$R = CH_2; C_2H_5$$

В этих условиях нам также не удалось получить лучших результатов. Выход хлорметилпроизводных при этом не превышал 23—33%.

Для установления оптимальных условий реакции изменяли количество формалина и хлористого водорода, время и температуру проведения реакции, однако положительных результатов мы не добились.

В результате реакции образуется также высококипящая фрак-

ция, которая при стоянии кристаллизуется. Подробное исследование

этой фракции нами не проведено.

Безуспешными оказались также попытки бисхлорметилирования эфиров о-крезола в условиях, описанных для эфиров фенола [5]. Выяснилось, что при этом получаются соответствующие монохлорметилпроизводные с выходами 80—85%.

Расположение хлорметильной группы в полученных соединениях установлено окислением перманганатом калия до соответствующих

4-алкоксифталевых кислот:

Хлорметилпроизводные эфиров м- и о-крезолов нами использованы в некоторых синтезах. Так, взаимодействием с тиомочевиной получены хлористоводородные соли S-замещенных производных тиомочевины:

OR

OR

OR

$$-\parallel$$
 $-\parallel$
 $-\parallel$

Они представляют собой легко кристаллизующиеся вещества с характерной температурой плавления и поэтому могут быть использованы для идентификации соответствующих хлорметилпроизводных, а также являются хорошеми исходными продуктами для получения различных серусодержащих веществ, в частности S-замещенных меркаптоуксусных кислот и S-замещенных β-меркаптопропионитрилов:

Взаимодействием хлорметилпроизводных эфиров о- и ж-крезолов с вторичными аминами синтезированы диалкиламинопроизводные:

 $R = CH_3$; C_2H_5

а с ацетатом натрия—ацетоксипроизводные. Омыление последних приводит к соответствующим бензиловым спиртам:

Хлорметилпроизводные эфиров о-крезола являются хорошими исходными продуктами для синтеза ряда хлорамидов и уретанов. Первые из них представляют интерес для испытания их противосудорожной активности [6], а вторые — для испытания противоопухолевых свойств [7].

Синтез этих соединений проведен по следующей схеме:

OR

OR

OR

OR

$$CH_3$$
 CH_3
 CH_3

 $R=CH_3$; C_0H_5 ; C_3H_7 ; изо- C_3H_7 ; C_4H_9 ; изо- C_4H_9

Промежуточные продукты этого синтеза—3-метил-4-алкоксибензилцианиды и 3-метил-4-алкоксифенэтиламины использованы для получения фенилуксусных кислот и фенэтилдиметиламинов:

OR

OR

$$CH_3$$
 HOH
 H_3SO_4
 CH_2COOH

OR

 CH_2COOH

OR

 CH_2COOH
 OR
 CH_3
 CH_3

Экспериментальная часть

2-Метил-4-метоксибензилхлорид. В 250 мл колбу помещают 12,2 г (0,1 моля) м-метокситолуола, 30 мл соляной кислоты и 30 мл бензола. Смесь при энергичном перемешивании охлаждают льдом и солью до 0—1 и при этой температуре пропускают ток хлористого водорода до насыщения. Затем приливают 11 г (0,15 моля) формалина, продолжая охлаждение, пропускают ток хлористого водорода еще 10—15 минут и перемешивают при комнатной температуре в течение 2 часов. Отделяют водный слой. бензольный 3—4 раза взбалтывают с ледяной водой и сушат над прокаленным сернокислым натрием. После отгонки растворителя остаток перегоняют в вакууме. Т. кип. 108—110°/2 мм, выход 5,5 г или 32,3°/0 теоретического количества.

Найдено %: C1 20,51 C₀H₁₁CIO. Вычислено %: C1 20,77.

2-Метил-4-этоксибензилхлорид получен аналогичным образом из 54.4 г (0,4 моля) м-этокситолуола, 150 мл соляной кислоты и 44 г формалина в среде 60 мл бензола. Продукт реакции перегоняется при $117-120^{\circ}/2$ мм. Выход 17.6 г или $23.8^{\circ}/_{0}$ теоретического количества; d_{1}^{20} 1,1008; d_{1}^{20} 1,5360. М R_{D} найдено 52.18, вычислено 51.28.

Найдено %: С1 19,00 С₁₀Н₁₃С1О. Вычислено %: С1 19,24.

4-Метоксифталевая кислота. В 250 мл колбу помещают 2,2 г (0,013 моля) 2-метил-4-метоксибензилхлорида, 1,2 г (0,011 моля) углекислого натрия, 50 мл воды и нагревают на кипящей водяной бане 5—10 минут. Затем, продолжая нагревание и перемешивание, в течение 2—3 часов маленькими порциями добавляют 6,8 г (0,04 моля) измельченного перманганата калия и кипятят еще 2—3 часа. Горячую смесь отфильтровывают и фильтрат подкисляют 10^{0} 0-ной соляной кислотой. Полученная 4-метоксифталевая кислота плавится при 162— 163° [10].

4-Этоксифталевая кислота получена вналогично из 4 г (0,02 моля) 2-метил-4-этоксибензилхлорида, 1,8 г (0,17 моля) углекислого натрия и 9,5 г (0,06 моля) перманганата калия. Т. пл. 173—174 [10].

Хлористоводородная S-(3-метил-4-метоксибензил)-тиомочевина. В 250 мл колбу, снабженную обратным холодильником, помещают смесь 34,0 г (0.2 моля) 3-метил-4-метоксибензилхлорида, 15,2 г (0,2 моля) тиомочевины и 50 мл абсолютного метанола и кипятят на водяной бане 5 часов. По охлаждении содержимое колбы выливают в стакан и при охлаждении льдом и перемешивании добавляют 150 мл абсолютного эфира. Полученные кристаллы отфильтровывают, фильтр дважды промывают эфиром и сущат на воздухе. Т. пл. 176—177, выход 44,8 г или 90,9% теоретического количества.

Найдено-0/0: С 48,38; Н 6,19; S 13,00 С₁₀Н₁₅СІN₂OS₃. Вычислено 0/0: С 48,66; Н 6,08; S 12,98.

Хлористоводородная S-(3-метил-4-этоксибензил)-тиомочевина получена аналогично из 36,9 г (0,2 моля) 3-метил-4-этоксибензилхлорида и 15,2 г (0,2 моля) тиомочевины в 50 мл абсолютного метанола. Т. пл. 159—160°, выход 48,2 г или 92,3 $^{\circ}$ / $_{\circ}$ 0 теоретического количества.

Найдено $^{0}/_{0}$: S 12,03 $C_{11}H_{17}CIN_{2}OS$. Вычислено $^{0}/_{0}$: S 12,28.

Хлористоводородная S-(2-метил-4-этоксибензил)-тиомочевина получена аналогично из 4,6 г (0.025 моля) 2-метил-4-этоксибензил-хлорида и 2 г (0,025 моля) тиомочевины в 10 мл абсолютного метанола. Выход 6 г или $92,3^{0}/_{0}$ теоретического количества, т. пл. $169-170^{\circ}$.

Найдено %: S 11,99 С₁₁H₁₇CIN,OS. Вычислено %: S 12,28.

3-Метил-4-метоксибензилмеркаптоуксусная кислота. В 250 мл трехгорлую колбу, снабженную мешалкой, обратным холодильником и капельной воронкой, помещают 12,3 г (0,05 моля) хлористоводородной S-(3-метил-4-метоксибензил)-тиомочевины, 7,0 г (0,075 моля) монохлоруксусной кислоты и 30 мл этилового спирта, нагревают на водяной бане 15 минут и из капельной воронки добавляют 10 г (0,25 моля) едкого натра в 100 мл 50% - ного этилового спирта. Нагревание и перемешивание продолжают еще 4 часа, после чего отгоняют этанол, а остаток при охлаждении и перемешивании подкисляют концентрированной соляной кислотой. Маслянистый слой экстрагируют эфиром, сушат над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме. Продукт реакции перегоняется при 218—220°/5 мм. Выход 9,9 г или 87,5% теоретического количества. т. пл. 60—61°.

Найдено $^{0}/_{0}$: С 58,64; Н 6,52; S 13,97 $C_{11}H_{14}O_{3}S$. Вычислено $^{0}/_{0}$: С 58,38; Н 6,23; S 14,13.

3-Метил-4-этоксибензилмеркаптоуксусная кислота получена аналогично из 13,0 г (0,05 моля) хлористоводородной S-(3-метил-4-этоксибензил)-тиомочевины и 7,0 г (0,075 моля) монохлоруксусной кислоты в 30 мл этилового спирта. Т. пл. продукта реакции 51-52, выход 8 г или 66,6% теоретического количества.

Найдено %: С 60.12; Н 6,63; S 13,04 . С₁₂Н₁₆О₃S. Вычислено %: С 60,00; Н 6,66; S 13,35.

S-(3-метил-4-метоксибензил) - β-меркаптопропионитрил. В 250 мл трехгорлую колбу, снабженную обратным холодильником, мешалкой и капельной воронкой, помещают 12,3 г (0,05 моля) хлористоводородной S-(3-метил-4-алкоксибензил)-тиомочевины и 25 мл воды. Смесь нагревают до растворения соли и из капельной воронки добавляют 4 г (0,1 моля) едкого натра, растворенного в 20 мл воды. Затем в колбу, охлаждая ее холодной водой, из капельной воронки добавляют 4 г (0,075 моля) акрилонитрила. Перемешивание продолжают еще 3 часа при комнатной температуре. Маслянистый слой экстрагируют эфиром, высушивают над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме. Продукт реакции перегоняется при 189—191 /4 мм. Выход 9,7 г или 87,8% теоретического количества; d4 1,1139; п2 1,5551. МRD найдено 63,76, вычислено 63,44.

Найдено $^{0}/_{0}$: С 65,30; Н 6,76; N 6,49; S 14,21 С $_{12}$ Н $_{15}$ NOS. Вычислено $^{0}/_{0}$: С 65,03; Н 6,77; N 6,36; S 14,49.

S-(3-метил-4-этоксибензил)-3-меркалтопропионитрил получен аналогично из 13,0 г (0,05 моля) хлористоводородной <math>S-(3-метил-4-этоксибензил)-тиомочевины и 4 г (0,075 моля) акрилонитрила в 25 мл воды. Продукт реакции перегоняется при 185-187/3 мм. Выход 10 г или 85,1% теоретического количества; d_4^{20} 1, 0005; n_D^{20} 1,5523. MRD найдено 68,31, вычислено 68,06.

Найдено ⁰/₀: С 66,49; Н 7,06; N 6,17; S 13,88 С₁₃Н₁₇NOS. Вычислено ⁰/₀: С 66,35; Н 7,22; N 5,96; S 13,62.

Метилалкоксибензилдиалкиламины. В 100 мл колбу, снабженную обратным холодильником, помещают 0,1 моля метилалкоксибензилхлорида, 0,2 моля двалкиламина и 50 мл абсолютного бензола, смесь оставляют на ночь и нагревают на водяной бане 6 часов. По охлаждении подкисляют соляной кислотой, отделяют бензольный слой, водный насыщают поташом и подшелачивают 20%,-ным раствором едкого натра. Выделившийся маслянистый слой экстрагируют эфиром, сущат над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме.

Физико-химические свойства, результаты элементарного анализа и выходы полученных метилалкоксибензилдиалкиламинов приведены в таблице 1.

1			100				10
C.H,	C ₂ H ₃	сн,	C _z H ₃	СН	≂ z	300	4
С.Н., 2-СН, С.Н. 86,3115-116 2 0,9383 1,4990 69,25 68,83 75,89 76,02 10,54	3-CH,	3-CH ₃	3-СН,	3-CH,	7		314
C,H,	C.H.	C,H,	CH,	СН	R		-
86	67.0	79.	86	8	Выход в	%	,
3115) 113	106	102	102	-	3	*
-116	67,0113—114	79,7106-107	86,5 102-103	81,0102-104	C		
2	44	ယ	2,5	4.	Давлени	ев	N.M.
0,9383	0 9423 1	0,9395	2,50,9447 1,5030	0.9441	d 20	1	
1,4990	1,5004		1,5030	1,5020	D 25		2
69 2	69, 12 68, 83	4965 64 49 64 21	60 48 59 60 74 38	56 01 54 98 73 89	найдено		2
68	68	2	59	54	вычисле	но	MRD
83	82	21	8	98	,		7
75,89	76,28	75,67	74 38	73 89	найдено	0	
76,02	76,02	75,38	74,62	73,74	вычис- лено	F 1	A H
10,54	10, 19	10,43	- 9,71	9,45	найдено	-	н алн
10,40	10,40	10,14	9,84	9,43	вычис-	H	ယ
6.41	6,58	6,65	7,02	7,98	найдено		B o
6,33	6.33	6,76	7,25	7,76	вычис- лено	Z	
1	137-138	104 -105	197-198	198-199	йодиметі латов	4-	T.
1	37-138 143-145	90-91	65-66	97 - 98	йодэтн- яатов	100	ни солей в С
1	168-169	148-149	150-151	1-15-1-16	хяоргид- ратов	1 1 1 7 1	B °C

CH_NR

3-Метил-4-метоксибензилацетат. В 250 мл двугорлую колбусснабженную мешалкой и обратным холодильником, помещают 17,0 г (0,1 моля) 3-метил-4-метоксибензилхлорида, 10,6 г (0,13 моля) безводного ацетата натрия, 100 мл ледяной уксусной кислоты, и смесь кипятят в течение 10 часов. По охлаждении содержимое колбы выливают в 150 мл ледяной воды, маслянистый слой экстрагируют эфиром, дважды промывают водой, высушивают над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме. Продукт реакции перегоняется при 132—133 /5 мм. Выход 17,6 г или 90,7% теоретического количества; d4 1,0624; n2 1,5019. МRр найдено 53,91, вычислено 52,69.

Найдено $^{0}/_{0}$: С 67,93; Н 7,08 С $_{11}$ Н $_{14}$ О $_{3}$. Вычислено $^{0}/_{0}$: С 68,01; Н 7,22.

3-Метил-4-этоксибензилацетат получен аналогично из $18.4\ z$ (0,1 моля) 3-метил-4-этоксибензилхлорида $10,6\ z$ (0,13 моля) ацетата натрия в $100\ мл$ уксусной кислоты. Продукт реакции перегоняется при $106-107\ /2\ мм$. Выход $17,5\ z$ или $84,1\ /0$ теоретического количества; $d_4^{20}\ 1,0651$; $n_D^{20}\ 1,5070$. М R_D найдено 58,18, вычислено 57,31.

Найдено %: С 69,10; Н 7,54 С₂₂Н₁₆О₃. Вычислено %: С 69,20; Н 7,74.

3-Метил-4-этоксибензиловый спирт. В 250 мл колбу помещают 12,7 г (0,06 моля) 3-метил-4-этоксибензилацетата, 50 мл 10°/о-ного раствора едкого кали и при перемешивании нагревают на водяной бане 3 часа. По охлаждении маслянистый слой экстрагируют эфиром, высушивают над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме. Продукт реакции перегоняется при 118—120°/3 мм. Выход 8,1 г или 81,3°/о теоретического количества; d_4^{20} 1,0711; n_0^{20} 1,5345. М R_D найдено 48,28, вычислено 47,94.

Найдено %₀: С 72,01; Н 8,43 С₁₀ $H_{14}O_2$. Вычислено %₀: С 72,30; Н 8,43.

3-Метил-4-алкоксибензилцианиды. В полулитровую трехгорлую колбу, снабженную мешалкой, обратным холодильником с хлоркальциевой трубкой, помещают 0,5 моля 3-метил-4-алкоксибензилхлорида, 0,8 моля тонко измельченного цианистого натрия, 5 г йодистого калия и 250 мл абсолютного ацетона. Реакционную смесь, энергично перемешивая, кипятят на водяной бане в течение 16—20 часов. Затем отфильтровывают и осадок промывают 100 мл ацетона, отгоняют ацетон, остаток растворяют в 75 мл бензола и трижды промывают 100 мл теплой воды. Бензольный слой сушат над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме.

Выходы, данные элементарного анализа и некоторые физико-хи-мические константы полученных нитрилов приведены в таблице 2.

нзо-С,Н,	C,H,	нзо-С,Н,	C,H,	C,H,	СН	R
87,6	84.4	83,9	83.2	84.8	83,6	Выход в º/。
163—164	160—162	154-156	. 140—141	141—143	150 —154	Т. кнп. в °C
1.5	2	СЛ	မ	ယ	10.	Давление в .м.м
0,9957 1,5010 60,13 60,19	1	.1,0066	1,0203	1,0310	1,0631	d 20
1,5010	1	1,5043	1,5095	1,5137	1,5265	n ₂₀
60,13	.1	55,70	55, 38	51, 13	46,55	най цено МR
60,19	1	55,58	55,47	50,85	46,24	вычислено
76,53	1	76,08	76,29	75,62	74,80	найдено
76,80	P	76, 16	76, 16	75,44	74,55	вычис-
8.72	1	8.30	8.31	7,71	7 10	найдено
8,42	1	7,98	7. 98	7,42	6 82	T E PRIMICE T E
6,61	6,91	7, 10	7,48	7.74	8 46	найдено
6,88	6.88	7,40	7,40	7,99	8 69 -	вычис-

OR CH₃CN

3-Метил-4-алкоксифенэтиламины. В качающийся автоклав емкостью 150 мл помещают 0,1 моля 3-метил-4-алкоксибензилцианида в 60 мл 10 н. раствора аммиака в метилозом спирте, 4 г катализаторанакеля на окиси хрома. В автоклав подают водород до 80 атм. и при непрерывном покачивании нагревают до 120°. В этих условиях начинается поглощение водорода. По мере поглощения давление в автоклаве падает, поэтому периодически подают в автоклав водород для поддержания давления в интервале 70—110 атм. Необходимое количаство водорода поглощается за 2—3 часа. Гидрогенизат отфильтровывают, отгоняют метанол, а остаток перегоняют в вакууме.

Физико-химические свойства, результаты элементарного анализа и выходы полученных 3-метил-4-алкоксифенэтиламинов приведены в таблице 3.

3-Метил-4-алкоксифенэтиламиды хлоруксусной кислоты. В 250 мл круглодонную колбу помещают 0,035 моля хлорангидрида хлоруксусной кислоты, 30 мл абсолютного эфира. Колбу охлаждают смесью льда и соли и через обратный холодильник из капельной воронки приливают раствор 0,07 моля 3-метил-4-алкоксифенэтиламина в 30 мл абсолютного эфира. Реакционную смесь оставляют на ночь; на следующий день смесь кипятят на водяной бане 3 часа, осадок отфильтровывают и после отгонки растворителя остаток перегоняют в вакууме.

Физико-химические свойства, результаты элементарного анализа и выходы 3-метил-4-алкоксифенэтиламидов хлоруксусной кислоты приведены в таблице 4.

Метиловые эфиры 3-метил-4-алкоксифенэтилкарбаминовых кислот. В 250 мл трехгорлую колбу, снабженную мешалкой, обратным холодильником и капельной воронкой, помещают 0,05 моля 3-метил-4-алкоксифенэтиламина в 30 мл эфира. При перемешивании к содержимому колбы одновременно прибавляют 0,05 моля метилового эфира хлоругольной кислоты в 30 мл эфира и через холодильник—0,15—0,2 моля 25—30%,-ного раствора едкого натра. Смесь перемешивают при комнатной температуре до исчезновения кристаллического хлоргидрата амина. Эфирный слой отделяют, водный дважды экстрагируют эфиром. Эфирные экстракты высушивают над сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме.

Физико-химические свойства, результаты элементарного анализа и выходы полученных метиловых эфиров 3-метил-4-алкоксифенэтил-карбаминовых кислот приведены в таблице 5.

3-Метил-4-метоксифенилучсусная кислота. В двугорлую колбу, снабженную мешалкой и обратным холодильником, помещают 5,4 г (0,04 моля) 3-метил-4-метоксибензилцианида, 12 мл концентрированной серной кислоты, 15 мл воды и нагревают 3 часа. Полученный осадок фильтруют, растворяют в 10% ном растворе едкого натра и взбалтывают с эфиром (50 мл). Водный слой отделяют, кипятят с животным углем и фильтруют. Фильтрат вливают в стакан, содержа-

нзо-С,Н,	C,H,	нзо-C ₃ H ₇	C,H,	C ₂ H ₆	CH ₃	æ
74,7	73,3	78,8	70,5	81,4	78,4	Выход в %/0
146—150	162-165	112-114	116-118	113-115	110—111	Т. кип. в °С
3	4	2	ယ	2	10	Давление в мм
0,9675	0,9713	0,9198	0,9831	1,0991	1,0223	d ²⁰
1,5070	1,5114	1,5110	1,5150	1,5240	1,5333	ngo
63,82	63,35	62,98	59,31	. 55,07	50,15	найдено Ж.В.
64,22	64,22	59,59	59,59	54,98	50,36	вычислено
75,14	74,99	74,61	74,32	74,01	73,00	найдено
75,14 75,31	74,99 75,31	74,61 74.56	74,32 74,56	74,01 73,76	73,00 72,74	рычис-
10,36	9;86	9,77	9,73	9,71	9,03	найдено =
10,45	10,45 6,65 6,75	9,90	9,90	9,49	9,08	вычис- д
7,07	6,65	7,36 7,24	7,15 7,24	7,57	8,29	найдено
6,75	6,75	7,24	7,24	7,82	8,48	вычис-
10,36 10,45 7,07 6,75 269-270	265-267	249 - 251	270-272	258-260	. 249—251	Т. пл. хлоргидрата в °C

OR -R -CH_CH_NH_

	R	CH,	C.H.	С,Н,	изо-С _з Н,	C ₄ II,	нзо С,Н,
·°/ ₀	Выход в	52,3	64,6	63,5	59,5	71,5	75,7
Т. кип. в °C		65-68	7375	75-78	68-70	69-71	58-60
C	найдено	59,71	61,56	62,60	62,12	63,58	63,71
	вычис- лено	59,62	61,05	62,32	62,32 ·	63,48	63,48
Н	найдено	6,55	7,35	7,68	7,33	7,92	7,89
Ана	вычис- лено	6,67	7,09	7,47	7,47	7,81	7.81
л н з в	найдено	5,62	-5,59	5,39	5,46	5,04	4,55
0/0	вычис- лено	5,79	5,47	5,19	5,19	4,93	4,93
C	найдено	15,01	13,68	13,30	13,57	. 12,30	12,40
	вычис-	14.66	13,47	13,14	13,14	12,49	12,49

OR CH, CH,CH,NHCOCH,CI

изо-С,Н,	С,Н,	изо-С,Н,	C,H,	C ₂ H ₅	.сн,	æ	-
77,2	77,2	76,0	79,6	85,2	89,6	Выход °/о	
168—169	171-173	162-164	161—163	160—161	190—191	Т. кип. в °С	
1,5	2	1,5	1,5	29	10	Давление в жм	120
1,0400	1,0451	1,0587	1,0581	T. 111.	1,1168	d.20	100
	1,5050	1,5075	1,5090	. 46—49°	1,5240	n 20	200
1,5045 75,60	75,31	70,69	.70,89		61,15	найдено	MED
74,24	74,24	69,62	69,62		60,38	вычислено	9
67,78	67,99	67,39	66,93	65,66	64,73	найдено	
67,89	67,89	66,90	66,90	65,79	64,55	вычис-	, V
8,40	8,43	8,73	8,78	9,55	7,61	найдено	
8,73	8,73	8,42	8,42	9,87	7,67	вычис-	
5,82	5,89	6,17	5,90	5,62	6,35	найдено г	0/
-5,28	5,28	5,56	5,56	5,90	6,26	вычис-	1

CH_CH_NHCOOCH,

щий 100 г льда и 10 мл концентрированной соляной кислоты. Выделившаяся 3-метил-4-метоксиуксусная кислота плавится при 84—85°. Выход 4,1 г или 56,8°/о теоретического количества.

Найдено $^{0}/_{0}$: С 66,65; Н 6,80 $C_{10}H_{19}O_{3}$. Вычислено $^{0}/_{0}$ С 66,67; Н 6,66.

3-Метил-4-этоксифенилуксусная кислота получена аналогичным образом из 3,5 г (0,02 моля) 3-метил-4-этоксибензилцианида, 6 мл серной кислоты в 8 мл воды. Продукт реакции плавится при 74—75°. Выход 2,1 г или 54,1% теоретического количества.

Найдено $\%_0$: С 68,28; Н 7,55 С $_{11}$ Н $_{14}$ О $_3$. Вычислено $\%_0$: С 68,05; Н 7,51.

Диметил-(3-метил-4-метоксифенэтил)-амин. В 100 мл колбу. охлаждаемую проточной водой, помещают 25,5 г (0,5 моля) 90% -ной муравьиной кислоты и медленно добавляют 16,4 г (0,1 моля) 3-метил-4-метоксифенэтиламина. К полученному раствору добавляют 23 мл (0,3 моля) формалина, колбу снабжают обратным холодильником и осторожно нагревают на водяной бане. При этом начинается бурное выделение углекислого газа. Нагревание на кипящей водяной бане продолжают еще 8 часов. По охлаждении добавляют 50 мл 4 н. соляной кислоты и раствор концентрируют в вакууме водоструйного насоса. Оставшиеся кристаллы растворяют в 30-40 мл воды и подщелачивают 25 мл 18 н. раствора едкого натра. Выделившийся маслянистый слой экстрагируют бензолом, высущивают над углекислым калнем и после отгонки растворителя остаток перегоняют в вакууме. Продукт реакции перегоняется при 106-107°/1 мм. Выход 15 6 г или $80,8^{\circ}/_{\circ}$ теоретического количества; d_{\bullet}^{20} 0,9627; n_{o}^{20} 1,5083. MRp найдено 59,86, вычислено 59,59.

Найдено %: С 74,30; Н 9,71; N 7,07 С₁₂Н₁₉NO. Вычислено % С 74,56; Н 9,90; N 7,24.

Диметил-(3-метил-4-этоксифенэтил)-амин получен аналогично из 17,9 г 3-метил-4-этоксифенэтиламина, 25,5 г 90° /₀-ной муравьиной кислоты (0,5 моля) и 23 мл (0,3 моля) формалина. Продукт реакции перегоняется при $115-116^{\circ}$ /2 мм. Выход 18 г или $86,9^{\circ}$ /₀ теоретического количества; d_4^{20} 0,9443; n_D^{20} 1,5000. М R_D найдено 64,55, вычислено 64,22.

Найдено %: С 75.04; Н 10.12; N 6.57 С₁₃Н₃₁NO. Вычислено %: С 75.31; Н 10.21; N 6.75.

Выводы

1. Исследована реакция хлорметилирования эфиров м-крезола-Выяснено, что в условиях хлорметилирования эфиров о-крезола эфиры м-крезола хлорметилируются с 23—33% ними выходами.

- 2. Проверена возможность бисхлорметилирования эфиров о-крезола. Выяснено, что в условиях бисхлорметилирования эфиров фенола эфиры о-крезола образуют только монохлорметилироизводные.
- 3. Полученные 2- и 3-метил-4-алкоксибевзилхлориды использованы для синтеза ряда серусодержащих соединений, нитрилов, метилалкоксибензилдиалкиламинов, метилалкоксифенэтиламинов, хлорамидов, уретанов и других соединений.

Институт тонкой органической химин АН АрмССР

Поступило 11 V 1962

Հ. Ա. Հաւոյան, Թ. Ռ. Հովսեփյան

ՄԻ ՔԱՆԻ ՍԻՆԲԵԶՆԵՐ՝ *O−* ԵՎ *Մ−* ԿՐԵԶՈԼՆԵՐԻ ԵԲԵՐՆԵՐԻ ՔԼՈՐՄԵԲԻԼԱԾԱՆ8ՅԱԼՆԵՐԻ ՀԻՄՔԻ ՎՐԱ

Udhnhnid

այդ ռհակցիայի մի ջանի օրինաչափությունների ընթացքում մշակված Է ֆենոլի և 0-կրեզոլի եթերների ջլորժեթիլման մեթոդ և ցուլց են տրված Հարկան այդ ռհակցիայի մի ջանի օրինաչափությունները։

- տոր անրոշանրերը։ տոր անրոշ ճորտարուն անրուն ու որ անրութերը ու համատարութերը անրութերը անրութերը և համատարութերը և համատարիում և անրութերը համատարար հրակատարան անրութերը անրութերը և համատարան հրակատարան հրակատության և համատարան և հա
- ս<mark>ևսր</mark>ժին ասածիչորրեն չթատճենեւ ճան դարիայանրուղ չախանդնուղաին Նարժիստնել չորբ դի Տաևճ ճնահադիմորհի բ ունբ<u>կարոր</u>ը որը<u>նք</u>եմի չաղաև՝ Նորդիրություն անում ան

հատկությունների, իսկ երկրորդները՝ հակաուռուցջալին հատկությունների տեսակետից։ Ալս սինթեղի միջանկլալ պրոդուկտները՝ 3-մեթիլ-4-ալկօջսիրենզիլցիանիդները և 3-մեթիլ-4-ալկօջսիֆենէթիլամինները օգտագործվել են համապատասխան ֆենիլջացախաթթուների և ֆենէթիլդիմեթիլամինների ստացման համար։

ЛИТЕРАТУРА

- 1. А. Л. Миджоян, А. А. Ароян. Изв. АН АрмССР, ФМЕТ 8, 29 (1955); А. А. Ароян. С. Г. Титанян, там же 10, 283 (1957).
- 2. А.А. Ароян, С.Г. Титанян, Г.А. Арзоян, Научные труды ЕГУ (хим. серия) 53, 45 (1956); А. А. Ароян, С.Г. Титанян, М.Г. Геворкян, там же 53, 53 (1956).
- 3. А. Л. Миджоян, А. А. Ароян, Научные труды ЕГУ (хим. серия) 36, 21 (1952).

4. R. Quelet, C. r. 198, 102 (1934).

- 5. А. Л. Миджоян, А. А. Ароян, Т. Р. Овсепян, Изв. АН АрмССР, XH 14, 157 (1961).
- 6. H. Euler, Arkiv Kemie 8, 18, 231 (1953); J. R. Sampey, J. Pharmacy 128, 7, 242 (1956); А. Л. Миджоян, Н. А. Бабиян, Изв. АН АрмССР, XH 11, 351 (1958).
- 7. A. Fritsch, Lieb. Ann. 296, 357 (1897); 286, 25 (1895).