XV, N. 3, 1962

Химические вауми

Г. Т. Есаян, С. Г. Агбалян, М. А. Григорян

Исследования в области эфиров сульфокислот

Сообщение Х. Нитрование 2-галондфениловых сульфоэфиров

Ранее взаимодействием 2-нитро-4-хлорфенола с сульфохлоридами в щелочной среде были синтезированы 2-нитро-4-хлорфениловые эфиры некоторых сульфокислот [1]. С целью получения хлорнитрофениловых эфиров с иным расположением галоида и нитрогруппы в бензольном кольце и изучения их акарицидной-инсектицидной активности нами была исследована реакция нитрования 2-хлор- и 2-бромфениловых эфиров ряда сульфокислот.

Известно, что нитрование фенилового эфира метансульфокислоты приводит к образованию 4-нитрофенилового эфира [2]. При нитровании 2-хлорфенола [3,4] и его метилового эфира [5] образуются главным образом 4- и 6-нитропроизводные.

Наши опыты показали, что практически единственным продуктом нитрования 2-галоидфениловых сульфоэфиров является 6-нитропроизводное. Эти результаты можно было ожидать, учитывая, что —OSO₂R-группа сравнима с —OCOR-группой, которая по относительному направляющему влиянию слабее гидроксила, но тем не менее сильнее галоида [6]; таким образом, в нашем случае в отличие от 2-хлорфенола ориентирующае действия галоида и—OSO₂R- группы как бы компенсируются в положении 4, а в положении 6 преобладает действие последней.

Нитрование галоидфениловых сульфоэфиров велось в условиях нитрования фенилового эфира метансульфокислоты в мононитропроизводное при помощи рассчитанного количества азотнокислого калия в присутствии Н₂SO₄.

Строение полученных нитрогалоидсульфоэфиров было установлено на примере эфира этансульфокислоты путем гидролиза в щелочной среде; при этом получен лишь один фенол—2-хлор-6-нитрофенол.

2-Хлор- и 2-бромфениловые эфиры были синтезированы обычным способом—взаимодействием 2-галоидфенола с соответствующими сульфохлоридами в присутствии щелочи.

Синтезированные эфиры за исключением 2-хлорфенилового эфира бензолсульфокислоты [7] описываются впервые:

$$HO \bigotimes_{X} \xrightarrow{RSO_{2}CI} \rightarrow RSO_{2}O \bigotimes_{X} \xrightarrow{KNO_{3}} \xrightarrow{RSO_{2}O} \bigotimes_{X} \xrightarrow{NO_{2}}$$

X-CI, Br

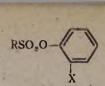
R=CH₃, C₉H₅, H-C₄H₉, H30-C₄H₉, H30-C₅H₁₁, C₆H₅, C₆H₅CH₂

Первичные испытания 2-галоид-6-нитрофениловых сульфоэфиров, проведенные в Институте земледелия МСХ АрмССР под руководством Марджаняна, показали, что большинство из них обладает акарицидной активностью. Особенно активны эфиры бензол- и бензилсульфокислот. Так, например, 2-бром-6-нитрофениловый эфир бензилсульфокислоты по активности против паутинного клещика на хлопчатнике значительно превосходит известный акарицид "эфирсульфонат". Более подробно об инсектицидной активности галопднитрофениловых сульфоэфиров будет сообщено отдельно.

Экспериментальная часть

Исходные алкилсульфохлориды были получены из соответствующих тиоцианатов, бензилсульфохлорид—из S-бензилизотиомочевины [8].

2-Галоидфениловые сульфоэфиры. К смеси 0,1 моля 2-галоидфенола и 0,1 моля сульфохлорида прибавлялись постепенно 40 мл $10^{0}/_{0}$ -ного водного раствора едкого натра (эквивалентное количество). Реакционная смесь перемешвалась при $40-45^{\circ}$ в течение 6 часов; после охлаждения экстрагировалась эфиром, эфирный экстракт промывался $5^{0}/_{0}$ -ным водным раствором едкого натра и сушился нал хлористым кальцием. В большинстве случаев после удаления эфира оставался жидкий вязкий продукт реакции, который разгонялся в вакууме. В случае получения кристаллического остатка последний перекристаллизовывался из водного ацетона.


Выход и характеристики полученных 2-галоидфениловых сульфоэфиров приведены в таблице 1.

Нитрование. К охлажденному льдом раствору 2,3 г азотнокислого калия в 10 г конц. серной кислоты медленно прибавлялась смесь 0,03 моля галоидфенилового сульфоэфира и 12 г конц. серной кислоты. После суточного стояния при комнатной температуре реакционная смесь выливалась в ледяную воду. Продукт реакции экстрагировался эфиром, эфирный экстракт сушился над хлористым кальцием. Дальнейшая обработка—как в случае галоидфениловых эфиров. Результаты этих опытов приведены в таблице 2.

Гидролиз хлорнитрофенилового эфира этансульфокислоты. Смесь 4,6 г сульфоэфира и 6,8 мл 20% ного водного раствора NaOH нагревалась при 60—65° в течение 10 часов. После охлаждения реак-

R	X	Выход в °/о	Т. пл. в °C
CH,	Cl	43,6	
CH,	Br	16,0	
C _a H _s	CI	53,2	-
C ₂ H ₃	Br	43,2	12
H-C4H	CI.	53,5	- 4
H-C ₄ H ₉	Br	19,20	-
изо-С₄Н,	CI	50,0	-
изо-С,Н,	Br	. 27,6	
нзо-С ₅ Н ₁₁	CI	58,5	· ·
нзо-С ₅ Н ₁₁	Br ·	50,8	
C _a H ₅	CI	52,2	43—44*
C _s H _s	Br	73,9	5152
C _s H _s CH _s	CI	54,6	37 – 38
C _a H _a CH _a	Br	82,1	67—68
14. The 18 state of the 18 sta	9.000		

По литературным данным, т. пл. 41—43° [7].

			-	-			1 TV 15	ADDRESS.	
		d ₄ ²⁰	MJ	RD	0/10	S	°/ ₀ X		
Т. кнп. в °С/мм	n _D ²⁰		вяйдено	вычислено	найлено	вычислено	найдено	вычислено	
157—158/12	1,5232	1,3673	45,49	46, 15	15,04	15,49	17,40	17,16	
175—176/15	1,5434	1,6520	47,86	48,32	12,45	12,72	32,74	31,87	
160—163/9	1,5222	1,3242	50,85	50,11	14,30	14,51	16,36	16,09	
182—183/14	1,5384	1,5662	52,95	53,00	12,10	12,07	30,01	30,18	
180-181/13	1,5120	1,2550	59,50	59,34	13,03	12, 88	14,43	14,28	
193—194/13	1,5278	1,4311	62,81	62,17	10,90	10,92	27,21	27,30	
160-162/15	1,5180	1,2346	60,66	59,34	13,12	12,88	14,02	14,28	
183—184/14	1,5247	1,4380	62,33	62,17	10,86	10,92	27,52	27,30	
176-177/6	1,5050	1,2738	63,53	63,96	12,30	12,19	13,27	13,52	
185/11	1,5279	1,3726	67,22	66,79	10,55	10,42	26,51	26,05	
_	1	.4	_	-	7	6-1		10-12	
275	1	-	13	1	10,70	10,22	26,09	25,55	
			-	_	12,72	11,32	12,75	12,56	
100 July 100 100 100 100 100 100 100 100 100 10	-	7		1 3	9,75	10,15	24,63	24,46	
			-	200	10000	300	1 3 3	9- 11-1	

							MRD		°/ ₀ S		0/0 X		°/ _° N	
R	х	Выход в %	Т. пл. в °С	Т. кпп. в *С/мм	n D 20	d ₄ ²⁰	пайдено	вычислено	пайдено	вычислено	найдево	вычислено	найдено	вычнстено
CH,	Cl	43,3	-	167—168/13	1,5498	1,5125	51,58	51,69	11,88	12,72	13,57	14,11	-0	3-
CH,	Br	50,8	7 L	183—184/13	1,5572	1,6444	55,27	55,22	10,46	10,81	-	12 14	-	
C ₂ H ₅	CI	40,9		210—211/11	1,5519	1,4802	57,36	56,31	11,85	12,05	13,40	13,37	5,79	5,28
C ₂ H ₃	Br	33,9		183/5	1,5654	1,6709	59,97	59,34	10,94	10,32	25,87	25,80	4,46	4,51
II-C ₄ H ₈	CI	70,5	-	231—232/14	1 5335	1,3746	66,31	65.55	10,75	10,90	12,45	12,09	5,14	4,77
н-С ₄ Н ₉	Br	46,4	_	.219—220/9	1,5492	1,5587	68,82	68,37	9,23	9,46	23,80	23,96	4,19	4,14
1130-C ₄ H ₉	C1	62,0	7	201—204/4	1,5412	1,3884	66,38	65,55	11,02	10,90	11,78	12,09	5,26	4,77
изо-С ₄ Н ₉	Br	50,0	_	219—220/13	1,5532	1,5577	72,33	73,09	9,46	9,09	23,17	22,72	3,59	3,97
изо-С ₅ Н ₁₁	CI	49,5	_	220-222/10	1,5293	1,3426	70,67	70,17	10,29	10,40	11,20	11,34	4,63	4,55
1130-C ₃ H ₁₁	Br	50,0	_	219-220/8	2,5532	1,5577	72,33	73,09	9,46	9,09	23,17	22,72	3,59	3,97
C ₆ H ₅	Cl	57,9	8587		-	-	_	_	10,27	10,20	11,25	11,32	4,26	4,46
C ₆ H ₈	Br	27,8	- 1		1,5922	1,6188	74,86	74,01	9,51	8,94	22,60	22,34	3,41	3,91
C ₆ H ₅ CH ₅	CI	60,0	-		1,6154	1,4435	75,80	75,80	9,62	9,77	10,44	10,84	4,09	4,27
. C ₆ H ₅ CH ₂	Br	56,0	62—63	1000	-	_	-	-	8,85	8,60	21,31	21,50	3,40	3,76

[•] При перегонке разлагается, исследован остаток после удаления растворителя,

ционная смесь промывалась эфиром, фенолят раст эрялся в воле и прибавлялась соляная кислота до кислой реакци! на конго. Выпавшее масло при стоянии закристаллизовывалось (г. : 2,7 г); из него перекристаллизацией из горячей воды выделены келтые кристаллы ст. пл. 70—71°. Выпариванием фильтрата не выделено существенных количеств какого-либо другого вещества.

2-Хлор-4-нитрофенол плавится при 111° (бесцветные кристаллы из воды), 2-хлор-6-нитрофенол (желтые кристаллы из воды)—при 70° [3]. Проба смешения с заведомым образцом последнего не дала депрессии.

Выводы

Нитрованием 2-хлор- и 2-бромфениловых эфиров метан-, этан-, н-бутан-, изобутан-, изопентан-, бензол- и бензилсульфокислот синтезированы соответствующие 2-галоид-6-нитрофениловые сульфоэфиры, представляющие интерес как акарициды.

Институт органической химии АН АрмССР

Поступило, 30 III 1962

Հ. 8. Եսայան, Ս. Գ. Աղբալյան, Մ. Ա. Գրիգույան

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ՍՈՒԼՖՈԹԹՈՒՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

Հաղորդում X: 2-Հալոիդֆենիլային սուլֆոէսթերների նիարումը

Ufhnhnif

րիցիդային հատկութլունները։ րոֆենիլալին նոր սուլֆոէսթերներ և պարզել նրանց ինսեկտիցիդակին—ակարոֆենիլային հատկութլունները։

տալիս է միալն 6-նիտրոաժանցլալ։ «Հարիկ սուլֆոթթեուների 2-քլոր- և 2-բրոմֆենիլալին էսթերների նիտրումը

Ելանլութ հանդիսացող 2-քլոր- և 2-բրոմֆևնիլային էսթերները ստացել ենք 2-հայոիդֆենոլները փոխազդելով համապատասխան սուլֆոքլորիդների հետ (մեթան-, էթան-, նորմալ բուտան-, իզոբուտան-, իզոպենտան-, բենզոլև բենզիլսուլֆոքլորիդ) կծու նատրիումի ջրալին լուծուլթի ներկալությամբ։

2-Հալոիդֆենիլային սուլֆոէսԹերների նիտրումը կատարել ևնք կալիումի նիտրատի և խիտ ծծմբական ԹԹվի խառնուրդի ներկալությամբ սենլակային ջերմաստիճանում։

Ստացված հալոիդնիտրոֆենիլալին սուլֆոէսԹերների կառուցված ջը՝ որպես 2-հալոիդ-6-նիտրոֆենիլալին էսԹերներ, հաստատված է հիքնալին հիդրոլիզով էԹանսուլֆոԹԹվի քլորնիտրոֆենիլալին էսԹերի օրինակի վրա։ Հիդրոլիզի միակ արդլունքը հանդիսացել է 2-քլոր-6-նիտրոֆենոլը։ Ըստ Հակական ՍՍՌ Գլուղմինիսարության Երկրագործական ինստիտուտի տվյալների սինթեզված 2-հալոիդ-6-նիտրոֆենիլային էսթերներից որպես Թերները։

ЛИТЕРАТУРА

1. Г. Т. Есаян, М. А. Григорян, Изв. АН АрмССР, ХН 13, 433 (1960).

2. E. Schall, J. pr. Chem. [2] 48, 257 (1893).

- 3. A. Faust, H. Müller, Ber. 5, 777 (1872); Lieb. Ann. 173,303 (1874).
- 4. S. Takagi, M. Tanaka, J. Pharm. Soc. Japan 517. 15 (1925) [C. 1926, 1, 182].

5. K. C. Ingold, E. W. Smith, J. Chem. Soc. 1927, 1690.

- 6. Е. Мюллер, Новые воззрения в органической химин. ИЛ, Москва, 1960, 486.
- 7. Л. Г. Вольфсон, С. Д. Володкович, Н. И.Мельников, И. А. Рублева, ЖОХ 26, 2579 (1956).
- 8. T. C. Johnson, I. B. Douglass, J. Am. Chem. Soc. 61, 2548 (1939).