Քիմիական գիտություններ

XV, № 3, 1962

Химические науки

А. Л. Миджоян, А. А. Ароян

Конденсация малеинового ангидрида и малеиновой кислоты с некоторыми S-замещенными производными тиомочевины

Ранее нами было показано, что S-замещенные производные тиомочевины в щелочной среде легко конденсируются с алкил-, аралкил-, аминоалкилгалондами и галондокислотами. Оказалось, что эта реакция имеет довольно широкую область применения и может быть использована для синтеза различных серусодержащих алифатических, ароматических и гетероциклических соединений [1].

Дальнейшие работы, проведенные по конденсации S-замещенных производных тиомочевины с некоторыми соединениями, содержащими сопряженные двойные связи, показади, что в присутствии небольшого избытка едких щелочей эти соединения конденсируются также с акрилонитрилом и метиловым эфиром акриловой кислоты. В результате получаются S-замещенные β-меркаптопропионитрилы и β-меркаптопропионовые кислоты. Выяснилось, что акролеин в условиях реакции полимеризуется, а эфир β-(фурил)-акриловой кислоты вовсе не реагирует [2,3]. Согласно некоторым литерятурным данным, меркаптаны могут конденсироваться с малеиновым ангидридом и малеиновой кислотой. Так, Жабо и Стиллер взаимодействием бензилмеркаптана с маленновым ангидридом в присутствии тритона. В с 74%,-ным выходом синтезировали ангидрид бензилмеркаптоянтарной кислоты [4]. Хенриксон и Хатч конденсировали ряд алкилмеркаптонов с малеиновой кислотой в щелочной среде [5]. О проведении ряда других аналогичных реакций указывается в некоторых патентах [6,7].

Исходя из этих и полученных нами рянее данных, было интересно проверить возможность конденсации малеинового ангидрида и малеиновой кислоты с различными S-замещенными производными тиомочевины. Это позволило бы разработать более простой метод синтеза S-замещенных меркаптоянтарных кислот, исключающий необходимость работы непосредственно со свободными меркаптанами.

Можно было предполагать, что при взаимодействии S-замещенных производных тиомочевины с маленновым ангидридом, как и при конденсации с акрилонитрилом и метилакрилатом, из производных тиомочевины будут образовываться соответствующие меркаптаны, которые действием избытка щелочи будут конденсироваться с малеиновой кислотой до соответствующих S-замещенных меркаптоянтарных кислот:

$$RSC \stackrel{NH}{\underset{NH_{2}}{}} \cdot HX \stackrel{NaOH}{\underset{NH_{2}}{\longrightarrow}} RSH + NH_{2}CONH_{2}$$

$$RSH + \underbrace{\begin{array}{c} CH - C \\ 0 \end{array}}_{CH - C} \stackrel{O}{\underset{O}{\longrightarrow}} \stackrel{NaOH}{\underset{HCI}{\longrightarrow}} RSCHCOOH$$

$$CH_{2}COOH$$

Опыты, проведенные с хлористоводородной S-бензилтиомочевиной и малеиновым ангидридом, показали, что при этом с достаточно высокими выходами $(80-81^{\circ}/_{\circ})$ получается S-бензилмеркаптоянтарная кислота.

Бромистоводородная S-бутилтиомочевина в аналогичных условиях

дает S-бутилмеркаптоянтарную кислоту.

Данные элементарных анализов и сравнение температур плавления полученных соединений с литературными дянными не оставляют сомнений в их идентичности. Выяснилось, что при конденсации с таким же успехом вместо малеинового ангидрида можно использовать и малеиновую кислоту.

Мы проводили эту реакцию также с некоторыми другими S-замещенными производными тиомочевины, в частности с хлористоводородными солями S-4-алкоксибензил-(I) и S-5-карбэтоксифурфурилтиомочевины (II):

Во всех этих случаях мы получили соответствующие S-замещенные меркаптоянтарные кислоты.

Сравнительно низкий выход S-бутил- и S-(5-карбоксифурфурил)меркаптоянтарных кислот следует объяснить некоторой растворимостью этих кислот в воде, а S-(4-алкоксибензил)- меркаптоянтарных кислот—необходимостью повторной перекристаллизации из воды (метокси и этоксипроизводные) и из ледяной уксусной кислоты (пропокси-и бутоксипроизводные).

Исходные S-замещенные производные тиомочевины получены четырехчасовым нагреванием эквимолярных количеств соответствую-

щих галогенидов с тномочевиной в среде абсолютного спирта или ацетона с последующим осаждением продукта реакции абсолютным эфиром. Для получения хлористоводородных солей S-(4-алкоксибензил)-тиомочевины целесообразно в качестве растворителя использовать абсолютный ацетон.

Окисление S-замещенных меркаптоянтарных кислот перекисью водорода в среде ледяной уксусной кислоты приводит к соответствующим сульфонам:

Выяснилось, что если реакцию проводить при 50—60° и по методике, описанной для получения 5-бензилсульфометилфуран-2-карбоновой кислоты [2], то окисление идет глубже, образуется ряд побочных продуктов, вследствие чего затрудняется выделение основного продукта в чистом виде. Лучшие результаты получаются при проведении реакции при комнатной температуре.

Экспериментальная часть

S-замещенные меркаптоянтарные кислоты. В трехгорлую колбу, снабженную мешалкой, обратным холодильником и капельной воронкой, помещают 0,1 моля галоидоводородной соли соответствующего S-замещенного производного тиомочевины, 0,12 моля малеинового ангидрида или малеиновой кислоты и 75 мл воды. Смесь нагревают на водяной бане и при перемешивании и нагревании из капельной воронки в течение 30 минут приливают 24 г (0,6 моля) едкого натра, растворенного в 100 мл воды.

Нагревание на кипящей водяной бане и перемешивание продолжают 8—10 часов. По охлаждении реакционную смесь фильтруют и подкисляют концентрированной соляной кислотой. Выделившиеся кристаллы отсасывают и промывают водой. Ввиду умеренной растворимости бутил-и 5-карбоксифурфурилмеркаптоянтарных кислот в воде необходимо при проведении реакции избежать больших объемов растворителя. Перекристаллизацию этих соединений проводили из воды, перекристаллизацию остальных S-замещенных янтарных кислот— из ледяной уксусной кислоты.

Формулы, данные элементарного анализа и некоторые физико-химические константы приведены в таблице 1.

S-замещенные сульфонилянтарные кислоты. 0,01 моля β-замещенной меркаптоянтарной кислоты растворяют в 20 мл ледяной уксусной кислоты, колбу погружают в ледяную воду и приливают 10 мл [около 3,4 г (0,1 моля)] пергидроля (30%).

Затем смесь оставляют при комнатной температуре в течение 3 суток, фильтруют, фильтрат выпаривают на водяной бане до половины объема и в дальнейшем в токе сухого воздуха.

Полученные кристаллы перекристаллизовывают из небольшого количества воды (таблица 2, продукты 2, 5, 6, 7) или растворяют в смеси эфира и бензола (3:1), кипятят с животным углем, фильтруют и испаряют растворитель в токе сухого воздуха (таблица 2, продукты 1,3,4).

RSCHCOOH CH,COOH

Таблица І

To be the second	The state of the s								
SI 31 5	13.0	Т. пл. в °С	Анализв °/0						
			C		н		S		
R	Выход в °/о		найдено	вычислево	найдено	вычислено	найдеко	вычнслено	
C ₄ H ₉	63,4	105—106*	46,39	46.58	6,92	6.84	15,27	15,54	
C	H _a 81,2	188—189**	55,27	55.00	4.97	5,03	13,13	13,32	
сн,о	H ₂ 52.5	147—148	53.52	53,32	5,48	5,22	12,02	11,86	
C,H,O	50,3	141—142	55,12	54,91	5,82	5,67	11,33	11,28	
C,H,O	H ₂ 51,2	157—158	56,54	56,36	6,37	6,08	10,65	10,75	
C ₄ H ₉ O	H ₂ 51,5	130—131	57,43	57.67	6,61	6,45	10,59	10,26	
ноосСосн	48,7	179—180	43,52	43,80	3,95	3,67	11,44	11,69	
The same of the sa		20- 20-	17. 19	- '	30		-		

^{*} По литературным данным, 103,7—104,0° [5]:

^{**} По литературным данным, 188,4--188,9° [5].

Таблица 2

RSO,CHCOOH CH,COOH

R		Выход в %	Т. пл. в °С	Анализ в °/о					
				С		Н		S	
				найдево	вычислено	найдено	вычислено	найдено	вычислево
C₄H•		78,3	111—113	40,22	40,33	5,88	5,92	13.22	13,45
	Сн.	82,3	191—192•	48,25	48,52	4,16	4,44	10,57	11,77
сн,о	усн,	84,5	169—170	47,58	47,67	4,55	4.66	10,83	10,60
C,H,O	Сн,	82,2	160—161	49,14	49,36	5,33	5,09	10,11	10,10
с,н,о	Сн.	82,5	163 –164	50,92	50,90	5,47	5,49	10,00	9,70
C,H,O	Сн.	84,3	159—160	52,18	52,21	5,79	5,85	9,45	9,31
ноос	Јсн,	80,5	175—176	39,33	39,22	3,46	3,29	10,63	10,47

По литературным данным, 193—194° [8].

Выводы

- 1. Исследована конденсация малеинового ангидрида и малеиновой кислоты с некоторыми S-замещенными производными тиомочевины в щелочной среде. Показано, что в указанных условиях получаются S-замещенные меркаптоянтарные кислоты.
- 2. Окислением S-замещенных меркаптоянтарных кислот перекисью водорода в среде ледяной уксусной кислоты получаются соответствующие сульфоны.

Институт тонкой органической химии АН АрмССР

Поступило 14 IV 1962

U. L. Մնջոյան և Հ. U. Հաrոյան

ՄԱԼԵԻՆԱԹԹՎԻ ԵՎ ՆՐԱ ԱՆՀԻԴՐԻԴԻ ԿՈՆԴԵՆՍՈՒՄԸ ԹԻՈՄԻԶԱՆՅՈՒԹԻ ՄԻ ՔԱՆԻ Տ-ՏԵՂԱԿԱԼՎԱԾ ԱԾԱՆՑՅԱԼՆԵՐԻ ՀԵՏ

Ամփոփում

թեղի ընագավառում։

Թեղի ընագավառում։

Հետագալում ցույց տրվեց, որ ԹիոմիզանյուԹի Տ-տեղակալված ածանցլալները հիմնալին միջավալրում կոնդենսվում են նաև զուգորդված կրկնակի կապեր ունեցող մի ջարք միացութլունների՝ մասնավորապես ակրիլանիտրիլի ժանում է, իսկ β-ֆուրիլակրիլաթթվի էսթերը ընդհանրապես չի մասնակցում ռեակցալին։

Ելնելով այս տվյալներից, մենք փորձեցինք կոնդենսել տեղակալված Թիոմիզանյութի մի ջարք ածանցյալներ մալեինաթթվի և նրա անհիդրիդի հետ։ Գարզվեց, որ հիճնալին միջավալրում այդ ռեակցիան կարելի է իրակա-նացնել հաջողությամբ և ստանալ համապատասխան Տ-տեղակալված մերկապ-տասաթաթթուներ (տղյումակ 1)։ Անհրաժեշտ Տ-տեղակալված թիոմիզանյութի աժանցյալները ստացել ենք համապատասխան հայոգենիդները սպիրտի կամ ացետոնի միջավալրում տաքացնելու միջոցով։

Տ-որմարանվաց դի շաևճ ոսւնֆորինոանան հուրրև (ամնուսան s)։ Տ-որմարևուղ ծևացրի արևօճոիմի դիծսնով օճոիմանրընով ոստնել թրճ Տ-որմարանանից գրևանարանան հուրրև որոնանից ճանարան և հր

ЛИТЕРАТУРА

- 1. А. Л. Миджоян, А. А. Ароян, Изв. АН АрыССР, ХН 11, 45 (1958); А. Л. Миджоян, А. А. Ароян, ДАН АрыССР 17, 101 (1958),
 - 2. А. Л. Миджоян, А. А. Ароян, Изв. АН АрмССР, ХН 12, 63 (1959).
 - 3. А. Л. Миджоян, А. А. Ароян, Изв. АН АрмССР, ХН, 12, 283 (1959).
 - 4. I. L. Szabo, E. T. Stiller, J. Am. Chem. Soc. 70, 3667 (1948).
- 5. I. G. Hendrickson, L. F. Hatch, J. Org. chem. 25, 1747 (1960).
- 6. Патент США 2, 434, 100 (1948) [С. А. 42, 2289 (1948)].
- 7. Патент США 2, 581, 514 (1952) [С. А. 47, 4363 (1953)].
- .8. B. Holmberg, Arkiv. Kemi, Minerol. Geol. 14A, 8, 13 (1940) [C. A. 35, 2114 (1941)].