Քիմիական գիտություննե**ր**

XV, № 2, 1962

Химические науки

А. А. Абрамян и Р. С. Саркисян

Новый, упрощенный метод микро- и полумикроопределения фтора в органических соединениях

За последние годы опубликовано значительное число статей, посвященных разработке методов количественного определения фтора в органических соединениях.

Определение фтора в органических соединениях, как известно, осуществляется разложением фторорганического соединения путем окисления, восстановления, щелочного сплавления или гидролитическим способом с переводом связанного фтора в ионную форму, и определением фтор-иона разными методами.

Самое большое распространение в аналитической практике получило определение фтор-иона титрованием с помощью водных растворов нитрата тория [1].

Предыдущие наши сообщения [2] явились основой для предложения нового, упрощенного метода микро- и полумикроопределения фтора в органических соединениях. Преимуществами разработанного нами метода являются непродолжительность и простота выполнения анализа. Органические вещества подвергаются полному разложению перманганатом калия в запаянных тугоплавких стеклянных трубках при 400° в течение одного часа. При этом фтор восстанавливается и количественно переходит в ионную форму. Количество его определяют объемным способом—ториумометрически.

Экспериментальная часть

Разложение фторсодержащих органических вешеств производили в запаянных трубках тугоплавкого стекла. Вес навески 7—16 мг, в зависимости от содержания фтора в анализируемом веществе. Запаивание трубок, процесс разложения и вскрывание трубок производят так, как описано нами ранее [2]; перманганата калия берется приблизительно 180 мг.

Содержащееся в трубке вещество при помощи дистиллированной воды переносят в конвческую колбу емкостью в 150 мл. Трубку два раза промывают мадым количеством 0,5 н. HNO3 и $10^{\circ}/_{\odot}$ Н $_2^{\circ}$ О $_2$ так, чтобы общий расход HNO3 был 5,5 мл, а $_2^{\circ}$ О $_3$ —2 мл, затем промывают дистиллированной водой. Содержимое колбы нагревают до полного разложения остатка MnO2 и $_3^{\circ}$ О $_3$, упаривают, пока объем раствора не составит 20 мл. После охлаждения раствора

прибавляют 10 капель $0.1^{\circ}/_{0}$ -ного водного раствора ализарин-сульфоната натрия (индикатор). Остаток азотной кислоты нейтрализуют 0.1 н. раствором NaOH и добавляют 25 мл буферного раствора, приготовленного из смеси 1 н. монохлоруксусной кислоты и 1 н. NaOH [3]. Затем добавляют дистиллированной воды в таком количестве, чтобы общий объем составил приблизительно 25 мл (оптимальная рН раствора должна быть 2.9—3). Холодный раствор титруют 0.04—0.05 н. раствором $Th(NO_3)_4$, пока цвет раствора из розового не станет слабофиолетовым. Титр $Th(NO_3)_4$ определяют по осядку, полученному при прокаливании $Th(NO_3)_4$ [3, 4]. 1 мл 0.05 н. $Th(NO_3)_4$ соответствует 0.8341 мг фтора.

Полученные результаты приведены в таблице.

Таблица

Вещества	Навеска в мг	F B °/ _e		
		вычислено	найдено	разница
анилиновая соль α-фтор-α,β-дихлор- пропионовой кислоты CH ₂ CICFCICOOH·C ₆ H ₅ NH ₂	14,38 11,47		7,18 7,70	-0,30 +0,22
т. пл. 139—140°	12,56 11,06	7,48	7,30 7,54	-0,18 +0,06
анилид β,β-ди-(трифторметил)-акриловой кислоты (CF ₃) ₄ C= CHCNH	16,24 14,05 10,47	40,24	40,29 40,35 40,52	+0,05 +0,11 +0,28
т. пл. 114—114,5°	14,50		40,09	0,15
этиловый вфир β,β-ди-(трифторметил)-β-оксипропионовой кислоты (CF ₂) ₂ CCH ₂ COOC ₂ H ₅	13,27 11,56	44,88	44,87 44,73	-0,01 -0,15
т. кип. 157—158°	15,32 12,85		44,64 45,13	-0.24 + 0.25
анилия α-гидроперфторизомасляной кислоты (CF ₃) ₂ CHCONH ₂ C ₆ H ₅	7,25 10,52 9,08 14,30	42,06	42,37 42,15 42,00 42,25	+0.31 +0.09 -0,06 +0,19

Выводы

Предложен новый, упрощенный метод микро- и полумикроопределения фтора в органических соединениях разложением последних перманганатом калия в запаянных тугоплавких стеклянных трубках при 400° в течение одного часа. При этом фтор количественно переходит в конную форму. Количество фтор-иона определяют объемным

методом, титрованием 0.04—0,05 н. раствором Th(NO₃)₄ в присутствии ализарин-сульфоната натрия.

Точность определения фтора ±0,30%:

Институт органической химии АН АрмССР

Поступило 16 III 1962

Ա. Ա. Աբrահամյան և Ռ. Ս. Սաբգսյան

ՕՐԳԱՆԱԿԱՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՄԵՋ ՖՏՈՐԻ ՈՐՈՇՄԱՆ ՆՈՐ, ՊԱՐԶԵՑՐԱԾ ՄԻԿՐՈ– ԵՎ ԿԻՍԱՄԻԿՐՈԵՂԱՆԱԿ

Ufhnhnif

Առաջարկված է ֆտորօրդանական միացությունների մեջ ֆտորի որոշման նոր, պարզեցրած միկրո- և կիսամիկրոեղանակ։ Ֆտոր պարունակող օրդանական միացությունների քալքալումը կատարվում է կալիումի պերմանդանատի միջոցով 400°-ում մեկ ժամվա ընթացքում։ Այս պայմաններում ֆտորը քանակապես փոխարկվում է ֆտոր իոնի. վերջինիս քանակը որոշվում է ծավալային եղանակով։ Ֆտոր իոնը նատրիումի ալիզարին սուլֆոնատի ներկայությամբ (ինդիկատոր) տիտրում են 0,04-0,06 ն. Tr(NO) ի լուծուլթով։ Ֆտորի որոշման բացարձակ ճշտությունը ±0,300/ը է։

ЛИТЕРАТУРА

- 1. А. И. Лебедева, Н. А. Николаева, В. А. Орестова, ЖАХ 18, 469 (1961); R. D. Strahm, Analyt. Chem. 31, 615 (1959); Ch. Eger, A. Yarden, Analyt. Chem. 28, 512 (1956).
- 2. А. А. Абрамян. Р. С. Саркисян, Изв. АН АрмССР, ХН 12, 341 (1959); А. А. Абрамян, С. М. Аташян, М. А. Балян, Изв. АН АрмССР, ХН 13, 343 (191); А. А. Абрамян, Р. С. Саркисян, Изв. АН АрмССР, ХН 14, 35 (1961); А. А. Абрамян, С. М. Аташян, Изв. АН АрмССР, ХН 14, 441 (1961); А. А. Абрамян, Р. С. Саркисян, М. Е. Балян, Изв. АН АрмССР, ХН 14, 561 (1961).
- 8. М. О. Коршун, В. А. Климова, М. Н. Чумаченко, ЖАХ 10, 358 (1955).
- 4. Н. Е. Гельман, М. О. Коршун, К. И. Новожилова, ЖАХ 15, 342 (1960).