Քիմիական գիտություններ

XV, № 1, 1962

Химические науки

Л. В. Гюльбудагян и Э. О. Чухаджян

Новые производные 5-пиразолона

После открытия антипирина пиразол и его производные, в частности 4-замещенные 1-фенил-3-метил-5-пиразолона, подвергались широкому исследованию.

Повышенный интерес к этим соединениям объясняется тем, что среди аналгезирующих, жаропонижающих и противовоспалительных средств указанные соединения завоевали себе прочное место в качестве лучших общедоступных средств (антипирин, пирамидон, анальгин и др.).

Из числа 4-алкилзамещенных антипиринов особый интерес представлял 4-изопропилантипирин, который в некоторых странах нашел практическое применение.

В связи с этим некоторый интерес представлял также и синтез 4-(n-алкоксибензил)-замещенных антипиринов.

Нами синтезированы 1-фенил-2,3-диметил-4-(n-алкоксибензил)-5пиразолоны метилированием соответствующих 1-фенил-3-метил-4-(nалкоксибензил)-5-пиразолонов диметилсульфатом в среде ксилола [1]. Полученные четвертичные соли обработкой 40%-ной щелочью преврящены в свободные основания—1-фенил-2,3-диметил-4-(n-алкоксибензил)-5-пиразолоны:

$$n = ROC_{6}H_{4}CH_{2}CH - CCH_{3}$$

$$OC \qquad N + (CH_{3})_{3}SO_{4} \rightarrow$$

$$C_{6}H_{5}$$

$$ROC_{6}H_{4}CH_{2}CH - CCH_{3}$$

$$OC \qquad NCH_{3} \qquad CH_{3}OSO_{3} \rightarrow$$

$$N = ROC_{6}H_{4}CH_{2}C - CCH_{3} \rightarrow$$

$$C_{6}H_{5} \qquad OC \qquad NCH_{5} \rightarrow$$

$$OC \qquad NCH_{5} \rightarrow$$

$$OC \qquad NCH_{5} \rightarrow$$

$$OC \qquad NCH_{5} \rightarrow$$

$$C_{7}H_{6} \rightarrow$$

1-Фенил-3-метил-4-(n-алкоксибензил)-5-пиразолоны получены нагреванием в бензоле фенилгидразонов соответствующих эфиров α -(n-алкоксибензил)-ацетоуксусных кислот [2]:

$$CH_{3}C_{8}H_{4}OR$$

$$CH_{3}COCHCOOC_{2}H_{5}$$

$$H_{2}NNHC_{8}H_{5}$$

$$\rightarrow ROC_{8}H_{4}CH_{2}CH - CCH_{3}$$

$$OC N$$

$$N/$$

$$C_{8}H_{5}$$

$$R = CH_{3}, C_{9}H_{5}, C_{3}H_{7}, C_{4}H_{8}$$

Конденсация эфиров α-(n-алкоксибензил)-ацетоуксусных кислот с фенилгидразином была проведена в спирте и бензоле. В первом случае при циклизации фенилгидразонов побочно образуются также незначительные количества 1-фенил-3-метил-4-(n-алкоксибензил)-5-это-ксипиразолов.

Синтезированные 4-(n-алкоксибензилированные) антипирины с треххлористым железом дают красное окрашивание. В этих соединениях с увеличением алкильных радакалов в алкокси-группах до группы бутокси понижаются и точки плавления. Это же явление наблюдается и в ряду неметилированных пиразолонов.

Полученные N-метилпиразолоны—белые кристаллические вещества без запаха.

Экспериментальная часть

1-Фенил-3-метил-4-(п-алкоксибензил)-5-пиразолоны. В круглодонную колбу емкостью 250 мл, соединенную через водоотделитель с обратным холодильником, взято 70 мл бензола, 0.1 моля а-(п-алкоксибензил)-ацетоуксусного эфира и 0,11 моля фенилгидразина. Реакционная смесь в течение часа перемешивалась при комнатной температуре, а затем 3 часа нагревалась на водяной бане. Го охлаждении к содержимому колбы добавлялся эфир ло появления первых кристаллов. После длительного охлаждения осадок отфильтровывался, на фильтре промывался бензолом и эфисом, а затем перекристаллизовывался из спирта.

Полученные 1-фенил-3-метил-4-(n-алкоксибензил)-5-пиразолоны представляют собой белые кристаллические вещества, некоторые данные о которых приведены в таблице 1.

1-Фенил-2,3-диметил - 4 - (п-алкоксибензил) - 5-пиразолоны. В 250 мл трехгорлую круглодонную колбу, снабженную мешалкой, обратным холодильником с хлоркальциевой трубкой и капельной ворон-

Таблица 1

R	Выход в °/о	Т. пл. в °С	Анализ в °/ ₆ С Н N					
			найдено	вычис-	найдено	вычис-	найдено	вычис- лено
CH,	65	163—163,5	73,56	73,49	6,21	6,12	9.58	9,52
C.H.	56,8	155—156	73,91	74,02	6,60	6,49	9,14	9,09
C,H,	71,4	139—139,5	74,45	74,53	6.94	6.83	8,82	8,69
C.H.	74,4	142—143	74,73	74,82	. 7.27	7,13	8,46	8,33

кой, взято 0,002 моля 1-фенил-3-метил-4-(п-алкоксибензил)-5-пиразолона и 10 мл ксилола. Реакционная смесь нагрета на масляной бане. По достижении 150° (термометр в бане) из капельной воронки по каплям, при энергичном перемешивании и сохранении указанной температуры, прибавлено 0,03 моля свежеперегнанного диметилсульфата. Нагревание смеси и ее перемешивание продолжено еще 4-5 часов. Образовавшиеся после охлаждения два слоя отделены: верхнийксилольный, нижний — густой, вязкий, представляющий собой сульфометилат N-метилпиразолона; нижний профильгрован на специальном фильтре. К нижнему слою прибавлено 10 мл воды и после нагревания до 50° 10 мл 40°/0-ного раствора едкого натра. Реакционная смесь при энергичном перемешивании нагревалась при 50° полчаса, затем после прибавления 40 мл бензола еще 1 час при той же температуре. Теплый раствор перенесен в делительную воронку. Верхний слой отделен, а нижний в перфораторе экстрагирован бензолом, экстракт высушен поташом. После отгонки растворителя в вакууме водструйного насоса остаток слит в кристаллизатор. Закристаллизовавшееся при охлаждении вещество отфильтровано и на фильтре промыто бензолом. Сырой продукт перекристаллизован из 20%-ного спирта. При перекристаллизации из воды удается получить более чистый продукт. С этой целью одну весовую часть сырого продукта растворяют в шестикратном количестве воды и добавляют 1-2% животного угля от веса вещества, при перемешивании нагревают один час при 70-80°. После охлаждения до 30° фильтруют, фильтрат упаривают до начала образования кристаллов. Выпавшую при помешивании и охлаждении • густую массу кристаллов отсасывают, отжимают, промывают водой и высущияают при 40-50° (лучше в вакуум-сушилке).

Полученные данные о синтезированных N-метилпиразолонах сведены в таблицу 2.

Таблица 2

R	Выход в %	Т. пл. в°С	Анализ в °/а						
			C		Н		N		
			найдено	вычис- онэл	найдено	вычис- лено	пайдено	вычис-	
CH,	42	109,5	73,96	74,02	6,37	6,49	9,26	9,09	
C,H,	56,1	101,5	74,42	74,53	6,96	6,83	8,63	8,66	
C,H,	48,2	81	74,67	74,82	7,28	2,13	8,31	8,31	
C ₄ H ₆	42,1	91,5	75,29	75,43	7,56	2,43	7,86	7,97	

Выводы

- 1. Этиловые эфиры α -(n-алкоксибензил)-ацетоуксусных кислот, вступая в реакцию с фенилгидразином, образуют феналгидразоны соответствующих эфиров α -(n-алкоксибензил)-ацетоуксусных кислот, которые при нагревании в бензоле превращаются в соответствующие 1-фенил-3-метил-4-(n-алкоксибензил)-5-пиразолоны.
- 2. 1-Фенил-3-метил-5-(*п*-алкоксибензил)-5-пиразолоны в среде ксилола при 150°, вступая в реакцию с диметилсульфатом, образуют сульфометилаты 1-фенил 2,3-диметил-4-(*п*-алкоксибензил)-5-пиразолонов, которые под действием 40°/₀-ной шелочи превращаются в свободные основания, т. е. 1-фенил-2,3-диметил-4-(*п*-алкоксибензил)-5-пиразолоны.

Ереванский государственный университет Кафедра органической химии

Поступило 28 IX 1961

L. Վ. Գյուլբուդադյան և Է. Հ. <mark>Հու</mark>բաջյան

5-ՊԻՐԱԶՈԼՈՆԻ ՆՈՐ ԱԾԱՆՑՅԱԼՆԵՐ

Ամփոփում

Անտիպիրինի հայտնագործումից հետո պիրազոլի շարքի միացութվունները լալն ուսուննասիրութվան ենթարկվեցին։ Հատկապես խորը ուսումնասիրվեցին 4-տեղակալված 1-ֆենիլ-3-մեթիլ-6-պիրազոլները։ Վերջիններիս շարքում առանձին հետաքրքրութվուն ներկայացրեց 4-իզոպրոպիլանտիպիրինը։ Այս շարքի դեղանյութերը աչքի են ընկնում իրենց մատչելիութվամբ և բարձր որակով։ Այս նկատառումներով մեզ հետաքրքրեց անտիպիրինի նոր աժանցլալների սինթեզը։

Մենք սինթեզել ենք 1-ֆենիլ-2,3-դիմեթիլ-4-(պ-ալկօքսիրենզիլ)-5-պիրազոլներ, համապատասխան 1-ֆենիլ-3-մեթիլ-4-(պ-ալկօքսիրենզիլ)-5-պիրազոլոնները դիմեն Թիլսուլֆատի միջոցով քսիլոլի միջավալրում 150°-ում մեն Թիլելու միջոցով։ Սկզբում ստացվում են 1-ֆենիլ-2,8-դիմեն իլ-4-(պ-ալկօքսիրեննցիլ)-5-պիրազոլոնների մեն իլսուլֆատալին աղերը, որոնք 40%-անոց ալկալիով մշակելիս փոխարկվում են համապատասխան ազատ հիմքերի։

1- Ֆևնիլ-3-մեթիլ-4-(պ-ալկօջսիբենզիլ)-5-պիրազոլոններն ստացվել են ամապատասխան α-(պ-ալկօջսիբենզիլ)-ացետաջացակաաթթուների էթիլէս-

Երևրրե ֆրրիլչիմետասորրբեն երըմսնուղ թատնրբես ղիծսնավ։

α-(պ-Ալկօքսիրենզիլ)-ացհատ քացախաթթուների էսթերները ֆենիլհիդրագինի հետ կոնդենսվել են սպիրտի, բենզոլի և տոլուոլի միջավալրում։ Սաացված ֆենիլհիդրազոնները ցիկլիզացիալի ենթարկվելիս առաջին դեպքում ստացվում են նաև որոշ քանակությամբ 1-ֆենիլ-3-մեթիլ-4-(պ-ալկօքսիրենզիլ)-5-էթօքսիպիրազոլներ։

Սին թեզված 4-պ-ալկօքսիթենզիլած անտիպիրինները սպիտակ բլուրեղական նյութեր են. երկաթի եռքլորիդի լուծուլթի հետ տալիս են կարմիր գունավորում։

ЛИТЕРАТУРА

1. А. Л. Клебанский, А. Л. Лемке, ЖПХ 8, 269 (1935).

2. Л. В. Гюльбудагян, Р. В Карапетян, Изв. АН АрмССР, ХН 12, 145 (1959)

3. Л. В. Гюльбудагян, Ш. А. Шагбатян, Изв. АН АриССР, ХН 12, 207 (1959).