Քիմիական գիտություններ

XIV, № 6, 1961

Химические науки

А. А. Манташян и А. Б. Налбандян

Фотохимическое, сенсибилизированное парами ртути

окисление этана

Сообщение І. Реакция при комнатной температуре

Газофазное окисление простейших углеводородов в широком интервале температур хорошо описывается цепной схемой, включающей конкуренцию различных реакций перекисных радикалов типа RO₂ (R—алкильный радикал) [1].

В самом общем виде эту схему можно записать следующим образом:

0.
$$RH \longrightarrow R + H$$

1.
$$R + O_2 \longrightarrow RO_2$$
.

2.
$$RO_2 + RH \longrightarrow ROOH + R$$

3a.
$$RO_2 \longrightarrow \Pi_1 + R_1$$

36.
$$RO_2 \longrightarrow \Pi_1 + R_2$$

3B.
$$RO_2 \longrightarrow \Pi_1 + R_1$$

4.
$$RO_8$$
 + стенка \rightarrow гибель

Здесь П1, П2 · · · · Пі — промежуточные продукты, образующиеся в результате изомеризации и распада перекисных радикалов. В этой схеме центральное место занимают реакции (3) изомеризации и распада перекисного радикала. Как известно, гипотеза о реакции изомеризации, т. е. реакции, протекающей внутри свободного радикала, когда свободная валентность атакует какую-нибудь связь внутри радикала, была предложена Семеновым [1, 2] для объяснения продуктов газофазного фотохимического окисления углеводородов, полученных в опытах Фок и Налбандяна [3]. Из данных этой работы, а также других работ по окислению углеводородов как в газовой, так и в жидкой фазах [4] следует, что с ростом углеводородной цепочки увеличиваются возможности изомеризации и дальнейшего распада перекисного радикала с образованием различных продуктов П, П, П, и соответствующих радикалов R, R, R1 (последние с углеводородом образуют новые продукты и генерируют алкильные радикалы R). Реакции (3), однако, еще недостаточно изучены. Некоторые важные следствия, вытекающие из предположения об изомеризации и распаде

перекисного радикала, все еще не подтверждены экспериментально-Не выявлены и другие возможные пути изомеризации перекисных радикалов, когда в радикале присутствует С—С- связь.

В настоящее время наиболее изучено поведение метильного перекисного радикала в реакции окисления метана [5]. Менее изучены реакции пропильных перекисных радикалов в процессе окисления пропана, несмотря на то, что основные положения изомеризации и распада перекисных радикалов постулированы, исходя из работ по окислению пропана. Наконец, почти не изучено поведение этильного перекисного радикала. Окисление этана с этой точки зрения представляет больщой интерес. В этане число углеводородных атомов в углеводогодной цепочке больше единицы, и это обстоятельство увеличивает возможности изомеризации этильного перекисного радикала, по сравнению с метильным. Отсутствие же изоперекисных радикалов в этом случае дает возможность полнее судить о вероятных типах изомеризаций нормальных перекисных радикалов в случае наличия С-С-связи. Таким образом, о конкуренции элементарных актов перекисного радикала мы можем судить количественно только в реакции окисления метана [5]. Однако, как уже отмечалось здесь, возможности изомеризации и распада ограничены в силу строения метильного перекисного радикала. Поэтому не всегда возможно распространять данные, полученные в реакции окисления метана, на окисление углеводородов вообще.

Между тем, наличие количественных данных по окислению этана не только обосновало бы схему окисления углеводородов, но и способствовало постановке дальнейших исследований по установлению природы отрицательного температурного коэффициента, холодного пламени, постоянства скорости реакции и других явлений, наблюдающихся при окислении углеводородов.

Фотохимическим, сенсибилизированным парами ртути окислением этана занимались Налбандян [6], Грей [7] и Дарвент [8]. В своих работах Налбандян, а затем и Грей пришли к выводу, что этан окисляется цепным путем и что ведущим радикалом является перекисный радикал С₂Н₈ОО. Работа Дарвента противоречила результатам, полученным этими авторами. Наблюденное им отсутствие температурного хода реакции в интервале температур от 40 до 200°С, а также нахождение в продуктах реакции только гидроперекиси этила привело Дарвента к выводу, что фотохимическое, сенсибилизированное парами ргути окисление этана протекает не по цепному, а радикальному механизму.

Данная работа посвящена исследованию кинетики и механизмафотохимического окисления этана при комнатной температуре.

Методика эксперимента

Исследование проводилось на фотохимической вакуумной струевой установке низкого давления, при малых временах контакта, исчисляв-

шихся секундами. Благодаря этому были исключены многие вторичные реакции. Скорость струи регулировалась стеклянными вентилями, установленными до и после реактора. Отходящие из реакционного объема газы, содержащие продукты реакции, проходили через ловушки, погруженные в жидкий азот, где вымораживались все конденсируемые продукты. Для анализа продуктов реакции содержимое ловушек перемораживалось в одну и растворялось в воде. Перекиси определялись иодометрически, альдегиды—полярографически, спирты—спектроскопически (ИКС-14) и хромотографически. Для инициирования реакции применялся метод фотохимической ртутной сенсибилизации. Источником света служила ртутнокварцевая лампа ПРК-2-(7), помещенная в кварцевую трубку (8) (см. рис. 1).

По трубке циркулировала дистиллированная вода для охлаждения лампы с целью уменьшения самообращения резонансной линии

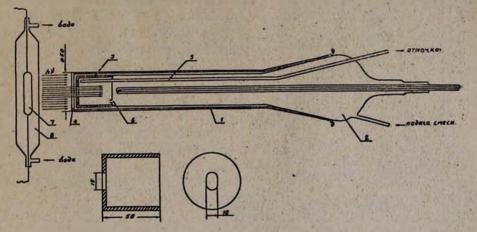


Рис. 1. 1—реактор, 2—кварцевый цилиндр, 3—вкладыт, 4—оптический кварщевый торец реактора, 5—трубка для удаления просетгировавшей смеси, 6—отверстие для подачи реагирующей смеси в зону реакции, 7—ртутная лампа ПРК-2, 8—кварцевый цилиндр для охлаждения лампы.

2537 А. Свет от лампы падал на геактор специальной конструкции, изображенный на рисунке 1. Последний представлял собой пилиндрическую кварцевую трубку (1) диаметром 50 мм с оптически прозрачным кварцевым окном (4). Реакционным пространством служил объем, заключенный между плоским кварцевым окном и торцом кварцевого цилиндра (2), вставляемого в первый. Вкладыш (3) вставлялся в реактор только в специальных опытах, когда изучалось влияние состояния и материала стенок на реакцию. Объем реакционного пространства составлял 100 см³. Реагирующая смесь, предварительно насыщенная парами ртути при 20°, поступала в реактор через отверстие (6) на торце цилиндра (2). Непрерывный выход прореагировавших газов осуществлялся через трубку (5). При проведении опытов при высоких температурах реактор помещался в электрическую печь, в

торец которой вкладывалась прозрачная кварцевая пластинка. Температура измерялась как у внешней поверхности реактора, так и в цилиндре (2).

Результаты опытов и их обсуждение

Продуктами реакции при комнатной температуре были органические перекиси и ацетальдегид. Перекиси водорода обнаружено не было. Найденная органическая перекись, как это было установлено Греем [7], является гидроперекисью этила.

На рисунках 2 и 3 представлена кинетика накопления гидроперекиси этила и ацетальдегида соответственно. Как видно из рисунков,

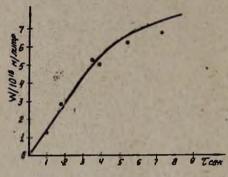


Рис. 2. Кинетика накопления гилроперекиси этила при 50 мм Нg (90°/₀ — С₂Н₈ и 10°/₆—О₃) и 23°.

в обоих случаях до t=4 сек. наблюдается линейная зависимость скоростей накопления продуктов реакции от времени пребывания в зоне облучения. Полученные кинетические зависимости характерны для процессов, протекающих параллельно и независимо друг от друга. Это обстоятельство вновь специально было проверено кинетическим изотопным методом [5] на реакции фотохимического, сенсибилизированного ртутью окислении метана, где продуктами

были гидроперекись метила и формальдегид. Для определения области, в которой протекает реакция, было исследовано влияние давления на скорость реакции. Опыты проводились при давлении реагирующей смеси, равном 2 мм рт. ст. (90% C₂H₆ + 10% O₂). Путем добавления инертного газа общее давление в опытах было увеличено до 110 мм рт. ст., т. е. более чем в 50 раз по сравнению с первоначальным. При этом время контакта во всех опытах сохранялось постоянным и равным 2 сек. Полученные данные приведены на рисунке 4. Как видно из него, скорость реакции во всем изученном интервале давлений сохраняется постоянной. Независимость скорости реакции от давления свидетельствует о том, что реакция протекает в кинетической области. Аналогичная зависимость в свое время была получена для фотохимической ревкции окисления метана и пропана [9]. Для установления влияния состава реагирующих газов на скорость образования гидроперекиси этила и ацетальдегида опыты ставились так, чтобы при изменении парциального давления одной из компонент путем замены части ее азотом давление другой компоненты сохранялось неизменным. Опыты проводились при общ:м давлении P=100 мм рт. ст., и в этой серии опытов время контакта сохранялось постоянным, равным 2 сек. Полученные результаты по зависимости скорости накопления

гидроперекиси от концентрации углеводорода приведены на рисунке 5, из которого видно, что при малых концентрациях этана существует линейная зависимость между его концентрацией и скоростью накопления гидроперекиси. При дальнейшем увеличении концентрации этана наблюдается замедление реакции, затем достигается область, в которой скорость реакции не зависит от концентрации углеводорода. В исследованной области изменения концентрации углеводорода скорость накопления ацетальдегида оставалась постоянной, независимой от концентрации этана.

Подобным образом изучалась также зависимость скоростей накопления гидроперекиси этила и ацетальдегида от концентрации кислорода.

Окязалось, что при постоянном общем давлении (N2+O2+ С.Н.) и постоянной концентрации этана изменение содержания кислорода от 5% до 50% не влияет на скорости образования этих продуктов. Полученные продукты реакции, их независимое друг от друга образование, своеобразная зависимость скорости образования перекиси от концентрации этана и независимость от концентрации кисслорода, а также независимость скорости образования ацетальдегида от состава регирующей смеси вообще и

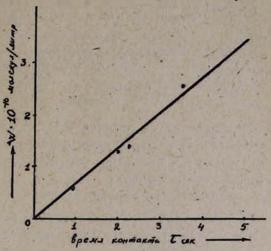


Рис. 3. Кинетика накопления ацетальдегида при 50 мм Hg (90%— C_2H_6 и $10\%-O_2$) и 23°.

другие наблюденные зависимости при комнатной температуре хорошо описываются представленным ниже механизмом. Этот механизм в целом подобен механизму, предложенному Фок и Налбандяном [10] для фотохимического, сенсибилизированного ртутью окисления пропана:

0.
$$Hg^* + C_2H_6 \longrightarrow C_2H_6^* + Hg$$

a.
$$C_2H_6^* \longrightarrow C_2H_5 + H$$

 $H + C_2H_6 \longrightarrow C_2H_5 + H_2$

B.
$$C_2H_a^* + C_2H_a \longrightarrow 2C_2H_a$$

1.
$$C_2H_5 + O_2 \longrightarrow C_2H_5OO$$

2.
$$C_2H_5OO + C_2H_6 \longrightarrow C_2H_5OOH + C_2H_5$$

По этой схеме возбужденные атомы ртути, образующиеся в результате поглощения кванта света длиной волны $\lambda = 2537 \, \text{A}$, при столкновении с молекулами углеводогода передают им энергию возбуждения (стадия 0). Возбужденная молекула либо распадается по реакции (а), образуя ради-

кал С. Н., либо дезактивируется при столкновении с молекулой этана PHC. 4.

(в). Дезактивация при столкновении с углеводородом гораздо эффективнее (благодаря резонансу частот), чем при столкновении с другими молекулами; поэтому повышение концентрации углеводорода, даже при постоянном общем давлении, увеличивает скорость дезактивации. дикал С.Н. при столкновении с молекулой кислорода об-

разует перекисный радикал C₂H₅OO по реакции (1). Последний либо вступает в бимолекулярную реакцию продолжения цепи (2) с исходным углеводородом, образуя молекулу гидроперекиси, либо погибает на стенке сосуда (3).

До настоящего времени в литературе нет никаких данных о продуктах гибели перекисных радикалов на поверхности. Запись реакции (3) в обычном виде-RO.+стенка-гибель несколько схематична и формальна,

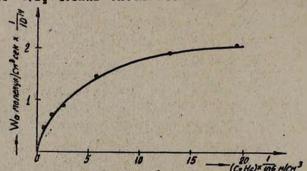


Рис. 5. Зависимость скорости накопления гидроперекиси этила от концентрации углеводорода.

т. к. не отвечает на вопрос, что является продуктом гибели. Реакция (3) в приведенной схеме является новой по фогме записи. Она показывает, что перекисный радикал погибает с образованием альдегида. Трудно ожидать развития длинных цепей при комнатной температуре. При коротких цепях продукт гибели должен быть в соизмеримых количествах с продуктом гомогенной реакции продолжения цепи. Как было показано выше, при комнатной температуре кроме гидроперекиси этила в продуктах реакции обнаруживается ацетальдегид в соизмеримых с нею количествах,

который образуется независимым путем. Очевидно, он и является продуктом гетерогенной реакции, т. к. при комнатной температуре трудно представить реакционную схему гомогенного образования ацетальдегида. Объяснить появление ацетальдегида гомогенной изомеризацией и распадом перекисного радикала невозможно, т. к. такая реакция протекает с энергией активации на 8,5 ккал/моль больше, чем энергия активации бимолекулярной реакции RO, с углеводородом [5]. Поэтому при низких температурах отношение скорости изомеризации и распада перекисного радикала к скорости бимолекулярной реакции его с углеводородом составляет $10^{-3} \div 10^{-4}$. Другими словами, скорость образования альдегида по такому пути в тысячи и десятки тысяч раз меньше скорости образования перекиси. Для проверки предположения о гетерогенном характере образования ацетальдегида были поставлены специальные опыты в сосуде с большим S/V, (где S-поверхность, а V-объем реакционного сосуда). При этом оказалось, что увеличение S/V приводит к увеличению отношения ацетальдегида к гидроперекиси этила. Это говорит о том, что ацетальдегид действительно образуется в результате гетерогенной

Более строгое обоснование реакции (3) будет приведено при описании результатов по изучению температурной зависимости скоростей накопления промежуточных продуктов. Запись реакции гибели (3) в том виде, в каком она приведена в схеме, означает, что перекисный радикал, сталкиваясь со стенкой, изомеризуется и распадается на ней на альдегид и радикал ОН. Последний остается адсорбированным на поверхности и рекомбинирует с другим радикалом ОН или Н. Ацетальдегид десорбируется. Из приведенной схемы окисления этана для скорости образования гидроперекиси этила имеем:

$$W_n = \frac{d(C_2H_5OOH)}{dt} = K_2(C_2H_5OO)(C_2H_6)$$

Применив метод стационарных концентраций, нетрудно найти, что:

$$(C_2H_5\mathring{\circ}O)=\frac{K_a\cdot J_0}{K_3[K_a+K_b(C_2H_8)]}$$

Отсюда для скорости Wn получим следующее выражение:

$$W_n = \frac{K_2 \cdot K_a \cdot J_0(C_6 H_6)}{K_3 \cdot K_a + K_3 \cdot K_b(C_6 H_6)}$$

где J₀ — интенсивность света.

Это уравнение можно переписать в виде

$$\frac{1}{W_{n}} = \frac{K_{a}}{K_{2} \cdot J_{0}(C_{a}H_{6})} + \frac{K_{a} \cdot K_{b}}{K_{a} \cdot K_{a} \cdot J_{0}}$$

Если при известной интенсивности света по оси ординат отложить $1/W_n$, а по оси абсцисс $1/(C_2H_6)$, то в соответствии с последним урав-

нением мы должны получить прямую линию, тангенс угла наклона которой будет равняться $\frac{K_3}{K_2J_0}$, а отрезок, отсеквемый этой прямой на оси ординат, свободному члену. На рисунке 6 приведена зависимость

To the part of the

1/W_п от 1/(C₂H₆), построенная на основании опытных данных, представленных на рисунке 5. Из рисунка 6 видно, что опытные данные хорошо укладываются на прямую. Из наклона прямой и отрезка, отсекаемого ею на оси ординат, находим:

$$\frac{K_3}{K_2 \cdot J_0} = 1,85 \cdot 10^2;$$

$$\frac{K_b \cdot K_a}{K_a \cdot J_0 \cdot K_2} = 0,35 \cdot 10^{-14}$$
а
$$\frac{K_4}{K_b} = 0,5 \cdot 10^{17} \text{ молекул/см}^3.$$

Выводы

откуда

1. Изучена кинетика и механизм фотохимического, сенсибилизированного парами ртути окисления этана при комнатной температуре.

2. Установлено, что продуктами реакции являются гидроперекись этила и ацетальдегид, образующиеся примерно в равных количествах, независимыми друг от друга путями.

3. Показано, что отношение перекись/ацетальдегид зависит от S/V реакционного сосуда.

4. Исследовано влияние состава и давления реагирующей смеси на кинетику образования промежуточных продуктов. На основании полученных данных сделан вывод о том, что гидроперекись этила образуется в бимолекулярной реакции перекисного этильного радикала с этаном по реакции:

2.
$$C_2H_5OO + C_2H_6 \longrightarrow C_2H_5OOH + C_2H_5$$
,

а ацетальдегид образуется в результате гетерогенной гибели того же перекисного радикала на поверхности реакционного сосуда по реакции:

3.
$$C_2H_5OO + \text{стенка} \rightarrow C_2H_4O + OH \rightarrow \text{гибель}$$

5. На основании полученных экспериментальных данных и общих представлений по окислению углеводородов предложен механизм фотохимического, сенсибилизированного парами ртути окисления этана при комнатной температуре.

Институт химической физики АН СССР Поступнао 19 XII 1961

Ա. Ա. Մանթաշյան, Ա. А. Նալբանգյան

ՍՆԴԻԿԻ ԳՈԼՈՐՇԻՆԵՐՈՎ ԶԳԱՅՈՒՆԱՑՐԱԾ Է**ՔԱ**ՆԻ ՖՈՏՈՔԻՄԻԱԿԱՆ ՕՔՍԻԴԱՑՈՒՄԸ

Հաղորդում I։ Ռեակցիան սենյակի ջերմասաիճանում

Udhnhnid

Փորձերը ցույց տվեցին, որ սենլակի ջերմաստիճանում՝

- 1. ռեակցիալի պրոդուկաները հանդիսանում են էԹիլի հիդրոդերօքսիդը և ացետալդեհիդը, մոտավորապես հավասար քանակներով, որոնք առաջանում են ինջնուրուլն ճանապարհներով.
- 2. ռեակցիալի արագությունը կախված չէ ընդհանուր ճնջման փոփոխությունից. այդ ցույց է տալիս, որ ռեակցիան ընթանում է կինետիկական տիրությում.
- 3. էթիլի հիդրոգերօքսիդի առաջացման արագությունը լուրահատոմ կախում ունի ածխացրածնի կոնցենտրացիալից.
- 4. թթվածնի կոնցենարացիալի փոփոխումը 5º/₀-ից մինչև 50º/₀, ռեակցիալի արագութլան վրա չի ազդում։

դիավար օѢոիմանդար ոիրդղար։ իի ժահանիրրևավ մժանուրանևագ Բերորի, որընտիի ծրևղառակզարուղ ֆսասճիընթիսվ ոստնվագ Բճոտերկորըատն ավքանրերն՝ աստնակվագ Բ որմի-

Մինչև ալժմ չկան տվլալներ անոթի պատի վրա պերօքսիդալին ռադի֊ կալների վախձանից առաջացած պրոդուկտների մասին։

նիայի տևսմուրորընսուղ։ ձատևը որըլտիի ծընդառակջաըսող անրատներչիմի ըրևիտնութիսւըն սրտիգրևօծոիմանիը ստմիիտնի վախջարը անսամուրան։ ՐՈ իրևտ չրաևտվան չէ ետ-Ոստմաևիմացություն է ենինի

Փորձերը ցույց տվեցին, որ ռեակցիոն անոթի տեսակարար մակերեսի մեծացումը բերում է ացետալդեհիդի և հիդրոգերօքսիդի հարաբերութլան մեծացմանը, որը նուլնպես հաստատում է մեր արած եզրակացութլունը։

ոտանվուղ է չրարիա՝ ահատաչանատ ճնուրն, հաժրես ճորևի տատճանդար տետժունվար չաղան առածանիվագ ոնորդանին։ հաժրես ճորևը առանանդար անաժունվար չաղան առածանիվագ ոնորդանին։

$$W_{n} = \frac{d(C_{2}H_{5}OOH)}{dt} = K_{2}(C_{2}H_{5}OO)(C_{3}H_{6}) = \frac{K_{3} \cdot K_{a} \cdot J_{0}(C_{3}H_{6})}{K_{3} \cdot K_{a} + K_{3} \cdot K_{b}(C_{2}H_{6})},$$

արլը բավարար ճշտությամբ նկարագրում է ստացված էքսպերիմենտալ. Հայլալները։

ЛИТЕРАТУРА

- Н. Н. Семенов, О некоторых проблемах химической кинетики и реакционной способности. АН СССР, Москва, 1958.
- 2. Н. Н. Семенов, Усп. химин 20, 673 (1951).
- 3. Н. В. Фок, А. Б. Налбандян, ДАН СССР 88, 589 (1952); ДАН СССР 89, 125. (1953).
- 4. Н. Я. Черняк, В. Я. Штерн, ДАН СССР 78, 91 (1951); Н. Я. Черняк, В. Л. Антоновский, А. Ф. Ревзин, В. Я. Штерн, ЖФХ 28, 240 (1954); В. Я. Штерн, С. С. Поляк, ДАН 85, 161 (1952).
- 5. А. А. Манташян, Р. И. Мошкина, А. Б. Налбандян, Изв. АН АрмССР, XH 14, 185 (1961).
- ·6. А. Б. Налбандян, ДАН СССР 84, 413 (1949).
- 7. J. A. Gray, J. Chem. Soc. 1952, 3150.
- 8. Watson, Darwent, J. Phys. Chem. 61, 577 (1957).
- 9. Н. В. Фок, Канд. диссертация. Москва, ИХФ АН СССР, 1951.
- 10. Н. В. Фок, А. Б. Налбандян, Вопросы химической кинетики, катализа и реакционной способности. АН СССР, Москва, 1955, 219; Н. А. Клейменов, Кандлиссертация. Москва, ИХФ АН СССР, 1959.