2034U4U1 UUP 475П1Р3П1 СБР U4U16U76U7637 56764U477 ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Քիմիական գիտություններ

XII, Nº 4, 1959

Химические науки

С. А. Вартанян и Ш. О. Баданян

Химия винилацетилена

Сообщение XVIII. Присоединение аминов к винилацетиленовым пиперидолам

Ранее нами было установлено [1], что при нагревании винилацетиленовых спиртов с водными растворами аминов в запаянной ампуле с хорошими выходами получаются соответствующие аминоацетиленовые спирты. В настоящей статье мы описываем реакцию присоединения аминов к другим винилацетиленовым спиртам, содержащим пиперидоновое кольцо. Эти аминоацетиленовые пиперидолы могут являться хорошими и доступными исходными продуктами для синтеза разнообразных физиологически активных веществ.

Винилацетиленовые пиперидолы синтезированы по методу Назарова [2]: конденсацией винилацетилена с соответствующими 4-пиперидонами. Последние синтезированы нами видоизмененным способом Назарова [3]: путем перемешивания соответствующих β-алкоксикетонов с водными растворами аминов и аммиака, оставлением при компатной температуре в течение трех суток и последующей обработкой. Таким образом выход 4-пиперидонов достигает 80%.

Присоединение аминов к 4-винилэтинил-4-пиперидолам проводилось нагреванием смеси водных растворов диалкиламинов и соответствующих винилацетиленовых пиперидолов в течение 30—40 часов в металлической бомбе на кипящей водяной бане; при этом образуются 4-(4'-диалкиламино-2-бутинил)-4-пиперидолы. Таким путем нами просинтезирована целая серия ацетиленовых аминопиперидолов.

При взаимодействии водных растворов диметил- и диэтиламинов с отдельными стереоизомерами 1,2,5-триметил-4-винилэтинил-4-пиперидола получаются с хорошими выходами соответствующие 1,2,5-триметил-4-(4'-диалкиламино-2-бутинил)-4-пиперидолы (I, II), а из 1,2,3,5-тетраметил-4-винилэтинил-4-пиперидола — 1,2,3,5-тетраметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидол (III). Присоединение вторичных аминов к 2,5-диметил-4-винилэтинил-4-пиперидолу и 2,3,5-триметил-4-винилэтинил-4-пиперидолу приводит к получению 2,5-диметил-4-(4'-ди-метиламино-2'-бутинил)-4-пиперидола (IV), 2,3,5-триметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидола (V) и 2,3,5-триметил-4-(4'-N-пиперидил-2-бутинил)-4-пиперидола соответственно (VI):

HO
$$C \equiv C - CH = CH_2$$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 R

HO $CH_2C \equiv C - CH_2N(R'')_2$
 $CH_3 - CH_3$
 R

(I) $R=R''=CH_3$; R'=H; (II) $R=CH_3$; R'=H; $R''=C_2H_3$; (III) $R=R'=R''=CH_3$; (IV) R=R'=H; $R''=CH_3$; (V) R=H; $R''=CH_3$; (VI) R=H; $R''=CH_3$; $R''=CH_3$; (VI) R=H; $R''=CH_3$;

Аналогично протекает и реакция присоединения аминов к 2- и β-формам 2-метил-4-винилэтинилдекагидро-4-оксихинолина, что и приводит к получению соответствующих форм 2-метил-4-(4'-диметиламино-2'-бутинил)-декагидро-4-оксихинолина (VII):

O HO
$$C \equiv C - CH = CH_3$$
 HO $CH_3C \equiv CCH_3N(R)_3$
 HO
 CH_3
 H

На примере 1,2,5-триметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидола (I) и 2,5-диметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидола (IV) показано, что при гидрировании аминоацетиленовых пиперидолов в спиртовом растворе в присутствии незначительного количества платинового катализатора они поглощают по две молекулы водорода и превращаются в соответствующие предельные замещенные 4-(4'-диметиламинобутил)-4-пиперидолы:

Экспериментальная часть

Синтез 4-пиперидонов. 1 моль соответствующего метоксикетона перемешивался с 3-5 молями водного раствора амина ($25^0/_0$ -ного) и оставлялся на двое-трое суток, затем обрабатывался известным способом [3]. Константы полученных 4-пиперидонов совпадают с литературными данными [3].

Винилацетиленовые спирты готовились по известным прописям, константы полученных соединений соответствуют литературным данным [2]. 2-Метил-4-винилэтинил-4-оксидекагидрохинолин получен у нас в кристаллическом виде, в то время как в литературе он описан

как жилкий [2]. Соответствующей обработкой нам удалось выделить его х- и β-формы, константы которых приведены в таблице. х-Форма растворяется в эфире, а β-форма в метаноле.

Присоединение аминов к 4-винилэтинил-4-пиперидолам. Смесь соответствующего винилацетиленового пиперидола и водного раствора амина нагревалась в металлической бомбе в течение 30—40 часов на кипящей водяной бане. Избыток амина удалялся в вакууме на водяной бане при 45°. Органическое основание высаливалось поташем, экстрагировалось эфиром, сушилось сульфатом магния и перегонялось в вакууме. Константы соответствующих аминоацетиленовых 4-пиперидолов приведены в таблице.

Присоединение диметиламина к 2- и 3-формам 2-метил-4-винилэтинил-4-оксидекагидрохинолина. Синтез проводился аналогично
вышеописанному. Константы полученных изомерных аминоацетиленовых 2-метил-4-(4'-диметиламино-2'-бутинил)-4-оксидекагидрохинолинов приведены в таблице.

Пикраты получены обычным способом: после добавления амина к спиртовому раствору пикриновой кислоты дипикрат выпадает в виде густой массы, которая затем кристаллизуется из ацетона. Монопикрат остается в растворе спирта и выпадает после удаления чясти спирта.

Гидрирование 1,2,5-триметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидола. 6 г аминопиперидола в растворе безводного спирта гидрировались в присутствии платинового катализатора. Поглотилось 1.3 л водорода. Для гидрирования тройной связи требуется по теории 1,2 л. После отгонки спирта остаток отогнан в вакууме. Получено 4,8 г 1,2,5-триметил-4-(4'-диметиламинобутил)-4-пиперидола; т. кип. 145—146 при 7 мм: n_D^{20} 1,4920.

Найдено °/₀: N 11,49; -11,68 С₁₄Н₃₀ОN₂. Вычислено °/₀: N 11,61. Т. пл. дипикрата 145—146°.

Гидрирование 2,5-диметил-4-(4'-диметиламино-2'-бутинил)-4-пиперидола. Аналогично вышеописанному гидрировалось 6 г пиперидола. Поглотилось 1,2 л водороди вместо 1,3 л (теоретического). Голучено 4,5 г 2,5-диметил-4-(4'-диметиламинобутил)-4-пиперидола; т. кип. 138° при 5 мм; n_D^{20} 1,4930.

Найдено $^0/_0$: N 11,85; 11,97 $C_{13}H_{28}ON_3$. Вычислено $^0/_0$: N 12,28.

		K	
	Т. пл.	Количество исходных веществ	
Структурная формула	исходных винплацети- леновых спиртов	винилаце- тил. спирт в г	водный амин 25°/ в и
I R=CH ₃ , R'=H, R"=-CH ₂ -C=C-CH ₂ N(CH ₃) ₂	9697	17	80
1.	81—82	17	90
1	смесь изомерных спиртов	15	80
$I R = CH_3$, $R' = H$, $R' = -CH_3 - C = C - CH_2N(C_2H_5)_3$	300	6	4
I R=CH ₃ , R'=H, R'=-CH ₂ CH ₂ CH ₂ CH ₂ N(CH ₃) ₂	-	-	_
$I R=H$, $R'=H$, $R'=-CH_2C\equiv CCH_2N(CH_3)_2$	-	25	150
I R=H, R'=H, R'=-CH ₂ CH ₂ CH ₂ CH ₂ N(CH ₃) ₂	-	-	-
$I R=CH_3, R'=CH_3, R''=-CH_2C=CCH_2N(CH_3)_2$	-	17	90
I R=H, R'=CH _a , R"=-CH _a C=CCH _a N(CH _a) _a		20	150
I R=H, R'=CH, R'= CH, C ± CCH, N	-	10	80
II R=-C≡C-CH=CH _s	125—127	-	-
u .	180—181	-	-
n .	изомерных спиртов	-	-
II $R = -CH_2C \equiv CCH_2N(CH_3)_2$	126—127	9	150
II $R = -CH_2C \equiv CCH_2N(CH_2)_2$	1 0-181	9	160

Выводы

1. Показано, что при нагревании смеси вод ых растворов аминов и винилацетиленовых пиперидолов в металлической бомбе происходит присоединение аминов к винилэтинильному радикалу и образуются соответствующие замещенные 4- 4'-диметиламино-2'-бутинил)-4-пиперидолы.

Важия		777			Анализ на N в °/0		Т. пя. в °С	
Время вагревания в часах	Выход в	Т. кип. в °С	Давление в	n ²⁰	найдено	вычислено	дипикратов (из ацетона)	моноликратов (из спирта)
30	82	148	3	1,5083	12,00 12,27	11,76	171—173	147—148
31	80	135—136	3	1,5030	12,25 11,97	11,76	83—90	129—133
28	75	133—134	0,5	1,5090	11,61 11,78	11,76	-	-
40	50	155—156	3	1,5030	10,21 10,28	10,51	_	3 -
714	37.	145—146	6	1,4920	11,49 11,68	11,61	145—146	
30	83	149—150	3	1,5108	12,31 12,20	12,50	_	-
1-70	3	138	5	1,4920	11,85 11,97	12,28		-
30	75	158 — 159	4	1,5110	11,00 10,90	11,11	-	_
31	79	150—151	3	1,5100	11,40 11,52	11,76	-	-
34	58	171—172	3,5	+	9,81 9,87	10,00	-	
-	-	-	-	1-	6,35 6,63	6,48	_	-
-	-	- 2	-	100	6,28 6,21	6,48	3700	16 - 36
-	-5	145 – 146	4	-	5,98 5,94	6,48	-100	
36	72	163—164	3	-16	10,62 10,52	10,72	14-17	16-20 11
34	74	166—167	3	1	10,70 10,84	10,72	-	3-3-15 YE

- 2. Установлено, что диметиламин присоединяется к α- и β-формам 2-метил-4-винилэтинил-4-оксидекагидрохинолина с образованием α- и β-форм диметиламинояцетиленовых 4-оксидекагидрохинолинов.
- 3. Гидрированием 2,5-диметил-4-(4'-диметиламино-2'-бутинил)—
 -4-пиперидола и 1,2,5-триметил-4-(4'диметиламино-2'-бутинил)-4-пиперидола получены соответствующие предельные аминопиперидолы.

Институт органической химии

Ա. Հ. Վաւդանյան. Շ. Հ. Բադանյան

ՎԻՆԻ**ԼԱՑԵՏԻ**ԼԵՆԻ ՔԻՄԻ**Ա**Ն

Հաղորդում XVIII. Ամինների միացումը վինիլացետիլենային պիպիրիդոլներին

Udhnhned

Առաջննրում մենը ցույց էինք ավել [1], որ վինիլացետիլենալին սպիրտների և ջրային ամինների խառնուրդը փակ ամպուլում եռացող ջրալին բաղնիջի վրա տաքացնելիս լավ ելքերով առաջացնում են համապատասիան ամինաացետիլենալին սպիրտներ։

մար մատչելի ելանլուներ հանդիսանալ։

Ելանլութ վինիլացնաիլենալին պիպիրիդոլննրը սինթեզված են Նազա-

րովի հղանակով [2]։

Վինիլացետիլենալին 4-պիպիրիդոլների և համապատասկան ալկիլամինների խառնուրդը փակ ամպուլալում եռացող ջրային բաղնիքի վրա 30—40 ժամ տաքացնելիս լավ ելքերով առաջանում են համապատասկան ամինտացետիլենալին պիպիրիդոլներ։ Ալս ռեակցիան ուսուքնասիրված է ինչպես N-այկիլ և N-չտեղակալված պիպիրիդոլների տարբեր տարածական իզոմերների, նուլնպես և 4-օքսիդեկահիդրոխինոլինի օղակ պարունակող վինիլացետիլենալին սպիրտների տարածական իզոմերների դևպքում։

Սուացվող ամինաացետիլենավին սպիրոմեն էթիլ սպիրտի միջավայրում պլատինի կատալիզատորի ներկալությամբ հիդրավելիս կլանում են ջրածընի երկու մոլնկուլ և վեր են ածվում համապատասևան հագեցած ամինա-

ւկղեմուղկաւ

ЛИТЕРАТУРА

- 1. С. А. Вартанян, Ш. О. Баданян, Изв. АН АрмССР, ФМЕТ 9, 107 (1956); ХН 10, 347 (1957); ХН 12, 37 (1959).
- 2. И. Н. Назаров, В. Я. Райгородская, В. А. Руденко, Изв. АН СССР, ОХН 1849, 68. 3. И. Н. Назаров, В. А. Руденко, Изв. АН СССР, ОХН 1848, 610, 622,