Քիմիական գիտություններ

XII, N. 3. 1959

Химические науки

С. А. Вартанян и Г. А. Чухаджян

Химия винилацетилена

Сообщение XVII. Синтез и превращения замещенных дивинилкетонов

Дивинилкетоны отличаются большой реакционной способностью и легко вступают в разнообразные реакции присоединения, что обусловливается наличием в них сопряжения карбонильной группы с двумя двойными связами. Они легко присоединяют аммиак, амины, водород, сероводород, галоидоводороды, воду и т. д., представляя широкие возможности синтезировать простым и легким путем разнообразные соединения карбоциклического и гетероциклического рядов.

Изомеризация винилацетиленовых спиртов является удобным методом синтеза алифатических дивинилкетонов [1].

Интересно было проверить возможность изомеризации полученных ранее нами циклогексенилэтинилкарбинолов [2] в соответствующие алициклические дивинилкетоны, могущие служить хорошими исходными соединениями для синтеза новых алициклических и гетероциклических соединений.

Оказалось, что циклогексенилэтинилкарбинолы (II—IV, VI) при нагревании (30—50°) в абсолютном метаноле в присутствии сернокислой ртути подвергаются изомеризации с образованием соответствующих дивинилкетонов (VII—X). Упомянутые дивинилкетоны получаются также при гидратации этих карбинолов в водных растворах метанола (80—90%) в присутствии сернокислой ртути:

$$C = CH + OC \setminus_{R'}^{R} \rightarrow C = C - C \setminus_{R'}^{R} \rightarrow C = C - C \setminus_{R'}^{R} \rightarrow C = C - C \setminus_{R'}^{R} \rightarrow CO - CH = C \cap_{R'}^{R} \rightarrow$$

CH₃ CH₃ CH₃ (III, VIII, XII) $R=CH_3$; $R'=C_2H_3$; (IV, IX) $R \bowtie R'=O$

(V) $R = CH_3$; $R' = C_6H_8$; (VI, X) $R = CH_3$; $R' = CH_2CH_2OC_4H_8$

Строение дивинилкетонов на примере VII и VIII доказано их гидрированием. Последние гидрируются в растворе этилового спирта в присутствии платинового катализатора, превращаясь в известные пре-

дельные кетоны. Точки плавления семикарбазонов совпали с литературными данными [3]. Вышеупомянутые дивинилкетоны, подобно другим дивинилкетонам [4], при нагревании с первичными аминами легко циклизуются в производные 4-кетодекагидрохинолина. При этом на примере кетона (IX) показано, что циклизация протекает в две стадии: сначала амин присоединяется по винильной группе дивинилкетона с образованием β-аминокетона (XIII), который при дальнейшем нагревании циклизуется в соответствующее производное 4-кетодекагидрохинолина:

CH₃ CH₃ CH₃

$$(XIII, XVI) R H R' = O \longrightarrow =; (XIV) R = R' = CH3; (XV) R = CH3; R' = C2H5$$

Дивинилкетоны (II) и (III) по способу Назарова [5] под влиянием фосфорной кислоты циклизуются в производные тетрагидроинданона. Последние получаются также при циклогидратации соответствующих карбинолов:

$$C \equiv C - C \setminus R \longrightarrow R$$

$$R = R' = CH_3; \qquad (XVIII) \quad R = CH_3; \quad R' = C_2H_5$$

При нагреванив изобутенил- Δ' -циклогексенилкетона (VII) с $5^{0}/_{0}$ -ной серной кислотой, в присутствии сернокислой ртути, получается 2,2-диметилоктагидро-4-хромон (XIX):

Экспериментальная часть

Карбинолы (II—IV) получены по ранее описанному нами методу [2].

Метилфенил-(Δ' -циклогексенил)этинилкарбинол (V). Из 0,3 г-ат. магния и 0,3 моля бромистого этила обычным способом приготовлен этилмагнийбромид, затем в течение 2-х часов при 30°

внесено 0,3 моля Δ' -этинилциклогексена в 100 мл сухого эфира. Реакционная масса оставлена на ночь. На следующий день при непрерывном перемешивании в течение одного часа внесено 0,3 моля ацетофенона в 100 мл сухого эфира, и масса оставлена на ночь. На следующий день перемешивание продолжалось 6 часов при 28. Затем реакционная смесь была охлаждена ледяной водой и гидролизована $7^0/_0$ -ной соляной кислотой. Водный слой экстрагирован, эфирные экстракты объединены и высушены сернокислым магнием. После отгонки эфира остаток перегнан в вакууме. Выход метилфенил-(Δ' -циклогексенил)этинилкарбинола составляет $80^0/_0$; т. кип. $150-150,5^\circ$ при 1 мм.

Найдено $^{0}/_{0}$: С 85,0; 84,74; Н 8,12; 8,16 С₁₈Н₁₈О. Вычислено $^{0}/_{0}$: С 84,95; Н 8,18.

Аналогично был получен метил- $(\beta$ -бутокси)-этил- $(\Delta'$ -циклогексенил)этинилкарбинол с т. кип. 135—136° при 1 мм (с разложением); n_D^{20} 1,4930; d_A^{20} 0,976. MRD найдено 74,28; вычислено 73,68.

Найдено ⁰/₀: С 75,60; Н 10,70 С₁₈Н₂₆О₂. Вычислено ⁰/₀: С 76,27; Н 10,40.

Гидрирование. З г карбинола гидрировались в присутствии Рt-катализатора. Гидрирование остановилось после поглощения одной молекулы водорода. Дальнейшее гидрирование продолжалось в присутствии Nt-Penes. Получено 2 г метилфенил- $(\Delta'$ -циклогексил)этилкарбинола с т. кип. $126-127^\circ$ при 1 мм; n_D^{20} 1,4340; d_A^{20} 0,996.

Найдено °/0: С 84,09; 83,94; Н 9,90, 9,99 С₁₆Н₂₀О. Вычислено °/0: С 84,16; Н 10,00.

Получение дивинилкетонов. а) Гидратация карбинолов. В трехгорлую колбу с обратным холодильником и механической мешалкой помещены 8 г этинил-(Δ'-циклогексенил)-2,2-диметилтетрагидро-4-пиранола (IV), 30 г водного раствора метанола (90%), 0,5 г серной кислоты и 1,5 г сернокислой ртути. Содержимое колбы перемешивалось при 30—35° в течение 1,5 часов. Под конец было внесено еще 0,5 г сернокислой ртути. Раствор был профильтрован, основная часть метанола отогнана в небольшом вакууме, остаток разбавлен водой, высален поташем и экстрагирован эфиром. Эфирный экстракт промыт водой и высушен сернокислым магнием. После отгонки эфира остаток перегнан в вакууме. Аналогично гидратированы и остальные карбинолы. Условия реакции и константы полученных соединений приведены в таблице.

б) Изомеризация. 5—8 г соответствующего карбинола в 20 мл абсолютного метанола и 1 г сернокислой ргути (внесенной маленькими порциями) перемешивались в течение 2,5 часов при 45—50°. Дальнейшая обработка—как описано выше. Получаемые дивинилкетоны оказались идентичными с кетонами, которые получаются при гидратации

Кетоны	Условня реакции	Температура в °С	Время в часах	
CO-CH=C(CH,	5 г карбинола, 15 г 90°/о (H.OH, 12 HgSO ₄ (по пор- циям) и 0,2 г H ₂ SO ₄	45	2	
CH, CH,	8 г карбинола. 20 г 90°/ _о СН_ОН, 2 г НдSО ₂ (по пор- циям) и 0,3 г Н ₂ SO ₄	30—35	1,5	
CO-CH=CCCH3	30 г карбинола, 90 г абс. СН₃ОН и 2 г HgSO₄ (по порциям)	40—45	5	
CO-CH=C CH ₂ CH ₂ OC ₄ H ₉	12 г карбинола, 30 г 90°/ _о СН ₃ ОН, 0,9 г HgSO ₄ (по порциям)	35—38	2	

того же карбинола. Пробы смешения их 2,4-динитрофенилгидразонов

депрессии не дают.

Гидрирование изобутенил- Δ' -циклогексенилкетона (VII). 2 г кетона гидрировались в спиртовом растворе над Рt-катализатором. Гидрирование идет гладко. Получено 1,7 г β , β -(диметил)-этилциклогексилкетона с т. кип. 96—98° при 8 мм пр 1,4545 (XI). Семикарбазон плавился при 171,5—172° [3].

Гидрирование (β -метил- β -этил)винил- Δ' -циклогексенилкетона (VIII). 2 г кетона гидрировались аналогично вышеописанному. Получено 1,8 г (β -метил)бутилциклогексилкетона (XII) с т. кип. 103—105° при 9 мм; пр 1,4570. Семикарбазон плавился при 156° [3].

1-Метил-1-этилгидроиндан-3-он (XVIII). а) Циклогидратация карбинола (III). Смесь 5 г карбинола и 5 мл фосфорной кислоты (d=1,75) перемешивалась в течение одного часа при комнатной температуре, а затем при 60—65° в течение 5 часов. Реакционная смесь охлаждена, нейтрализована поташем, экстрагирована эфиром. Эфирный экстракт высушен сульфатом магния. и после отгонки эфира остаток перегнан в вакууме. Получено 3,7 г 1-метил-1-этилгидроиндан-3-она с т. кип. 86° при 0,5 мм; по 1,4960; d 0,9540. М при найдено 54,11, вычислено 52,95.

Найдено %: С 80,48; 80,42; Н 10,99; 10,75 С₁₂Н₁₈О. Вычислено %: С 80,89; Н 10,71.

Tas	100	 	-

Т. кип. в °С	n _D ²⁰ d ₄ ²⁰	MRD		Анализ			нон	Анализ			
		d20 4	найдено	вычислено	найдено		вычислено		rpo-		H0
					С	Н	С	Н	2,4-динитро- фенилгидразон	найдево	вычислено
91-93/ 3 мм	1,5130	0,9695	50,984	49,976	79,85 80,10	9,65 9,61	80,49	9,76	128°, из спирта	16,36 16,38	16,27
128—130/ 2 мм	1,5128	1,015	69,167	68,190	77,25 77,40	9,40 9,41	76,97	9,40	-	-	-
119 – 120/ 9 мм	1,4983	0,952	54,968	54,696	80,59 80,75		80,89	10,11	124°, из спирта	15,83 16,00	15,65
135—36/ 1 мм	1,4968	0,984	73,678	73,690	75,55 75,39	10,55 10,55	76,8	10.40	-	-	-

Семикарбазон с т. пл. 189—190° (из абсолютного спирта).

Найдено °/0: N 18,16; 18,04 С₁₃Н₂₁О₂N₃. Вычислено °/0: N 17,88.

б) Циклизация (β-метил-β-этил)-Δ'-циклогексенилкетона (VIII). Смесь 6 г кетона и 6 мл фосфорной кислоты перемешивалась 30 минут при 30°, затем в течение 5 часов при температуре 60°. Обработка—как описано выше. Выход 4,1 г. Семикарбазон с т. пл. 189—190° не дает депрессии с предыдущим образцом.

1,1-Диметилгидроиндан-3-он (XVII). а) Циклогидратация. Смесь 5 г диметил-(Д'-циклогексенилэтинил) карбинола (II) и 5 мл фосфорной кислоты в течение одного часа перемешивалась при комнатной температуре (при этом температура повысилась до 35°), затем 3 часа при 50° и один час при 60 - 65°. После экстракции эфиром кислота разбавлена водой, осторожно нейтрализована поташем и снова экстрагирована. Эфирные вытяжки высушены над сернокислым магнием. Получено 4 г 1,1-диметил-4,5,6,7-тетрагидроиндан-3-она (XVII) с т. кип. 102° при 4 мм; про 1,5020; d4° 0,9968. М RD найдено 47,712, вычислено 48,342.

Найдено %: С 80,00; 80,14; Н 9,80; 10,04 С₁₁Н₁₆О. Вычислено %: С 80,49; Н 9,72.

Гидроинданон—бесцветная подвижная жидкость с камфорным запахом; с хлорным железом дает фиолетовое окращивание.

6) Циклизация. Смесь 7 г изобутенил-Δ'-циклогексенилкетона (VII) и 7 мл фосфорной кислоты перемешивалась при комнатной температуре в течение одного часа (при этом температура повысилась до 45°) и при 55—60° 3 часа. Обработка — как описано выше. Получено 5,3 г вышеописанного гидроинданона с т. кип. 102—103° при 4 мм; пр 1,5018.

1,2,2-Триметил-4-кетодекагидрохинолин (XIV). Смесь 5 г изобутенил-Δ'-циклогексенилкетона (VII), 16 мл 30%, ного водного раствора метиламина и 10 мл метанола нагревалась в запаянной ампуле при 60—65° в течение 3-х часов. Избыток метиламина и метанол отогнаны в небольшом вакууме, остаток подкислен соляной кислотой до кислой реакции, нейтряльные продукты экстрагированы эфиром, водный раствор органических оснований высален поташем, экстрагирован эфиром, эфирный раствор высушен сернокислым магнием, и после отгонки эфира остаток перегнан в вакууме. Получено 3,6 г 1,2,2-триметил-4-кетодегидрохинолина с т. кип. 93—94° при 2 мм; пр 1,4958; d 1,0158. МR найдено 57,90, вычислено 57,36.

Найдено ⁰/₀: N 6,79; 6,61

С₁₂Н₂₁ОN. Вычислено ⁰/₀: N 7,12.

Пикрат с т. пл. 195—196° (из спирта).

Найдено ⁰/₀: N 13,03; 13,08

C₁₈H₂₄O₈N₄. Вычислено ⁰/₀: N 13,2.

1,2-Диметил-2-этил-4-кетодекагидрохинолин (XV). Опыт проводился аналогично вышеописанному: из 5 г (β -метил- β -этил)винил- Δ' -циклогексенилкетона (VIII) и 25 мл метиламина, разбавленного 16 мл метилового спирта, нагреванием в течение 8 часов при $60-65^\circ$ получено 3,2 г 1,2-диметил-2-этил-4-кетодекагидрохинолина, представляющего собою желтоватую жидкость со специфическим аминным запахом. Т. кип. $128-130^\circ$ при 9 мм; n_D^{20} 1,4990; d_4^{20} 0,9950. MRD най-дено 60,61, вычислено 61,98.

Найдено ⁰/₀: N 6,28; 6,16

С₁₃Н₈₃ON. Вычислено ⁶/₀: N 6,7.

Пикрат, т. пл. 174-175° (из смеси ацетон-метанол).

Найдено %: N 12,76; 12,80

С₁₉Н₂₅О₈N₄. Вычислено ⁰/₀: N 12,78.

Спиро (1-метил-4-кетодекагидрохинолин-2',2'-диметил-2,4'-пирон) (XVI). Смесь 3 г кетона (IX), 8 мл метилового спирта, 10 мл водного раствора метиламина ($30^{0}/_{0}$) нагревалась в течение трех часов при $60-65^{\circ}$. Дальнейшая обработка— как в предыдущих опытах. Получены две фракции:

1. т. кип. 125—127° при 4 мм; пр 1,5025—0,6 г,

II. т. кип. 150—153° при 4 мм; пр 1,5177—1,8 г.

I фракция представляет собой спиро(1-метил-4-кетодегидрожинолин-2',2'-диметил-2,4'-пирон) с т. кип. $125-126^\circ$ при 4 мм; пр 1,5020.

Найдено ⁰/₀: N 5,24; 5,66

C₁₆H₂₇O₂N. Вычислено %: N 5,28.

Пикрат плавился при 194° (из смеси спирт-ацетон).

Найдено ⁰/₀: N 11,23; 11,19.

С₂₂Н₃₀О₀N₄. Вычислено ⁰/₀: N 11,21.

II фракция представляет собой β -аминокетон с т. кип. 150—151° при 4,5 мм; n_D^{20} 1,5177.

Найдено ⁰/₀: N 4,95

 $C_{10}H_{27}O_2N$. Вычислено $^0/_0$: N 5,28.

Пикрат, т. пл. 161° (из спирта).

Найдено %: N 10,98; 10,96

С₂₂Н₃₀О₀N₄. Вычиолено ⁰/₀: N 11,21.

При нагревании второй фракции она нацело циклизуется в соответствующий пиперидон (XVI): так, например, 1 г из второй фракции нагревялся в запаянной ампуле при 80° в течение 8 часов. Получено вещество с т. кип. 119—120° при 2 мм; пр 1,5023. Пикрат плавился при 194—195° и не дал депресии с пикратом первой фракции.

2,2-Диметилоктагидро-4-хромон (XIX). В трехгорлой колбе с обратным холодильником и мешалкой взято 7,5 г изобутенил-∆'-циклогексенилкетона (VII), 30 мл 5⁰/₀-ной серной кислоты и 16 г ацетона. Смесь нагревалась на водяной бане при 60—65° в течение 18 часов (при этом по порциям внесено 4 г сернокислой ртути) и 6 часов при кипении воды, осторожно профильтрована, нейтрализована поташем, экстрагирована эфиром и высушена сернокислым магнием. Получена смесь 2,2-диметилоктагидро-4-хромона и исходного кетона. Многократной разгонкой удалось выделить 1,3 г 2,2-диметилоктагидро-4-хромона с т. кип. 102—103° при 8,5 мм; пр 1,4812; d4 0,9887. МRD найдено 50,22, вычислено 50,45.

Найдено %: С 72,72; 72,45; Н 9,52; 9,40 С₁₁Н₁₈О₃. Вычислено %: С 72,52; Н 9,89.

Семикарбазон плавился при 211°.

Найдено ⁰/₀: N 17,72 Вычислено ⁰/₀: N 17,58.

Выводы

- 1. Установлено, что как при гидратации, так и при изомеризации винилацетиленовых спиртов с замещенной винильной группой получаются одни и те же дивинилкетоны.
- 2. При нагревании карбинола (II) или дивинилкетона (VIII) с фосфорной кислотой они циклизуются с образованием 1,1-диалкил-4,5,6,7-тетрагидроиндан-3-она.

3. Показано, что при нагревании дивинилкетонов (VII, VIII, IX) с водными растворами метиламина получаются производные 1-метил-2,2-диалкил-4-кетодекагидрохинолина (XIV, XV, XVI).

Институт органической химии АН АрмССР

Поступило 10 111 1959

Ս. Հ. Վարդանյան, Գ. Ա. Չուխաջյան

ՎԻՆԻԼԱՑԵՏԻԼԵՆԻ ՔԻՄԻԱՆ

Հազորդում XVII- Տեղակալված վինիլ խմբերով դիվինիլկետոնների սինթեգը եվ փոխարկումները

Udhnhnid

Ալիֆատիկ դիվինիլկհաոնները շատ ռեակցիոնընդունակ նլուԹեր են։ ՓոխազդեցուԹլան մեջ մտնելով զանազան միացուԹլունների հետ, նրանք առաթյուններ։

գրհանդար բ ջիմհասանդար ջարատահչավ։ Նրկիրինիրասրրը, ոատնըն ըրճ ջաղատատասիսար ոտկիսարրևին, ընտրն իմս-Տաևճ միվիրինիրասրրը բ ընտրն փսխանկուղրբևի սւոսողրասինուն, ևսրը իմս-Տաևճ միվիրինիրասրը նուղ ընտրահեսող ըրճ արմականվագ վիրին իոլերևով դի

8ույց է արված, որ հրկահղակալված վինիլ խմբերով վինիլացհաիլենալին սպիրաների իզոմերացման և հիդրատացման հետևանքով ստացվում են միեվնուլն կառուցվածքով տեղակալված դիվինիլկետոններ։

Ինչպես նկարագրված դիվինիլկետոնները, ալնպես էլ նրանց համապատասխան տեղակալված վինիլ խմբերով վինիլացետիլենալին սպիրտները ֆոսֆորական ԹԹվի հետ տաջացնելիս են Թարկվում են ցիկլիզացիալի, առաջացնելով 1,1-դիալկիլ-4,5,6,7-տետրահիդրոինդան-3-ոններ։

Վերը նշված տեղակալվուծ դիվինիլկետոնները, մենիլամինի ջրալին լուծուլնի հետ տաքացնելիս չտեղակալված վինիլ խմբերով դիվինիլկետոնների նման, առաջացնում են համապատասխան 1-մենիլ-2, 2-դիալկիլ-4 կետոդեկահիդրոխինոլիններ։

Նկարագրված չհագեցած միացությունները ենթարկվել են հիդրման. ստացվել են համապատասխան հիդրված միացությունները։

ЛИТЕРАТУРА

- 1. И. Н. Назаров, Усп. хим. 14, 1 (1945).
- 2. С. А. Вартанян, Г. А. Чухаджян, В. Н. Жамагорцян, Изв. АН АрмССР, ХН 12 107 (1959).
- 3. И. Н. Назаров, Т. Д. Нагибина, Изв. АН СССР, ОХН 1946, 91.
- 4. И. Н. Назаров, В. А. Руденко, Изв. АН СССР, ОХН 1948, 610.
- 5. И. Н. Назаров, Усп. хим. 20, 71 (1951).