24344446 UUR ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Քիմիական գիտություններ

XII, Nº 2, 1959

Химические науки

М. Г. Манвелян, Г. Г. Бабаян, Э. А. Саямян, С. С. Восканян

Изотерма растворимости Na2SiO3-K2SiO3-HO при 0 С

Исследование системы Na₂SiO₃—K₂SiO₃—H₂O вытекает из необходимости разработки условий отделения метасиликата натрия от метасиликата калия.

Кристаллизация силикатов натрия из растворов изучалась в широком интервале температур многими авторами [1]. Хёгг [2] на основании исследования гидролиза силиката натрия показал, что Na₂SiO₈ в водных растворах образует почти исключительно ионы HSiO₈. Аналогичный результат был получен [3] при исследовании электропроводности растворов силикатов натрия. Мейном [4] была изучена вязкость растворов силиката натрия с разными отношениями SiO₂: Na₂O. Изучение светорассеивания свежеприготовленных растворов силиката натрия Дебайем и Науманом [5] показало, что даже при отношении SiO₂:Na₂O = 4 коллоидные частицы не наблюдаются.

Система $K_2O - SiO_2 - H_2O$ исследована сравнительно мало: имеются только проведенные в гидротермальных условиях работы Мари [6], в которых показано существование ряда гидросиликатов калия: $K_2O \cdot SiO_2 \cdot i/2H_2O$; $K_2O \cdot SiO_2 \cdot H_2O$; $K_2O \cdot 2SiO_2 \cdot H_2O$; $K_2O \cdot SiO_2 \cdot 2H_2O$; $K_3O \cdot 2SiO_3 \cdot 2H_2O$; $K_2O \cdot 4SiO_2 \cdot H_2O$; $K_2O \cdot 6SiO_2 \cdot H_2O$ и $K_3O \cdot 8SiO_3 \cdot H_2O$. Данные по изучению растворимости системы $Na_2SiO_3 - K_2SiO_3 - H_2O$ в литературе отсутствуют.

Экспериментальная часть

Изучение диаграммы растворимости системы Na₂SiO₃—K₂SiO₃— -H₃O производилось методом установления равновесия исходного раствора в термостате при постоянной температуре 0°C.

Исходными веществами для приготовления исследуемых растворов с отношением SiO₂: Na₂O=1:1 и SiO₂: K₂O=1:1 были кремневая кислота марки "ХЧ", едкие натр и кали, концентрированные растворы которых (14—15н.) подвергались выдержке для удаления карбонатов. Время установления равновесия определялось путем систематического аналитического контроля за составом жидкой фазы. Составы твердых фаз устанавливались методом "остатков" Шрейнемакерса. При помощи полученных данных была построена изотерма растворимости системы Na₂SiO₈—K₂SiO₈—H₂O при 0°C.

Изотерма растворимости при 0°С

Диаграмма растворимости (рис. 1, табл. 1) содержит три основные области кристаллизации: 1. Н₂О-А-Б-В-область ненасыщенных растворов.

2. А-Б-Na₂SiO₃ 9H₂O — область смеси растворов. содержащих Na₂SiO₃ и K₂SiO₃, насыщенных метасиликатом натрия с твердой фазой Na2SiO3.9H2O.

Рис. 1. Диаграмма растворимости системы Na2SiO2-K2SiO3-H2O при 0°С.

Таблица 1

при 0°С в вес, процентах					
Фильтрат		Осадок			
Na _s SiO ₃	K ₂ SiO ₃	Na ₂ SiO ₃	K ₂ SiO,	H ₂ O	Донная фаза
8,75 7,48 8,34 8,11 9,03 9,67 8,19 10,36 8,36 6,8 6,8 6,8 6,31 7,22 13,58 17,62 9,35 17,45 5,09	2.85 3.12 3.47 5.24 6.47 7.03 8.65 11.34 13.12 15.71 21.21 24.40 30.45 31.11 31.49 38.0 45 30	28,60 29,68 31,40 26,48 30,99 31,60 30,40 30,33 27,71 26,99 23,0 26,30 32,20 26,30 32,20 26,35 27,10 3,60 3,85	$\begin{array}{c} 2,10\\ 2,03\\ 2,10\\ 3,91\\ 2,88\\ 3,90\\ 4,30\\ 4,44\\ 6,85\\ 7,45\\ 14,40\\ 16,0\\ 15,10\\ 16,73\\ 15,50\\ 59,80\\ 55,50\end{array}$	69.30 68,29 66,50 69,61 66,13 65,30 65,25 65,44 65,56 62,60 57,70 52,70 52,70 52,70 52,70 52,70 56,92 57,30 36,60 40,65	Na2SIO3.9H2O K2SIO3.nH2O

-K.SIO.-H.O Na.SIO.

3. В-Б-К, SIO3 H2O - область, отвечающая смеси растворов Na₂StO3 и K₂SiO3, насыщенных K₂SiO3 с донной фазой K₂SiO3 · nH₂O. Ветвь АБ - кривая растворимости силиката калия в насыщенном растворе Na₂SIO₃·9H₂O, БВ — кривая растворимости силиката натрия в насыщенном растворе K₂SiO₃ · *n*H₂O. Несмотря на принятые меры (охлаждение, выпаривание, затравка и т. д.), силикат калия не удалось осадить в виде твердой фазы. Для построения ветви БВ исходные растворы с донной фазой K₃SIO₃ в виде густой жидкости подвергались центрифугированию (500 об/мин), в результате чего образовались два жидких слоя: верхний отвечал фильтрату, а нижний - "остатку". Аналогичная методика была применена Блидиным [7] для определения донной фазы в системе BeCl2-ZnCl2-H2O. Донные фазы, полученные как кристаллизацией в области А-Б-Na2SiO3.9H2O, так и из области насыщенных растворов силиката калия, были записаны на пярометре Курнакова. Температуры превращений Na₂SiO₈.9H₂O полностью совпадали с имеющимися в литературе данными [8]. Термограмма донной фазы K.SIO. . nH2O (рис. 2) содержит три основных термических эф-

Рис. 2. Кривая нагревания донной фазы K₂SiO₃ nH₃O.

фекта; первый эндотермический эффект при 40°С, природа которого неясна, связан, по всей вероятности, с окончательным плавлением кристаллогидрата силиката калия; второй эндотермический эффект начинается при 100 и кончается при 290°. Кривая термического обезвоживания K₂SiO₃ nH_2O (рис. 2), полученная при помощи гидрида кальция [8], в этом интервале температур имеет скачок, отвечающий удалению основного количества (\sim 70°/₀) воды. Следует указать на наличие маленьких эффектов в интервале 100—290°; визуальные наблюдения показывают, что происходит бурное кипение всей массы. При дальнейшем повышении температуры из жидкости образуется

Известия XII, 2-7

белая тестообразная масса, которая затвердевает при 485, и на термограмме наблюдается экзотермический эффект.

Обсуждение результатов

Как видно из изотермы растворимости, поле кристэллизации Na₃SiO₃·9H₃O занимает значительную часть концентрационного треугольника. Это дает возможность осаждать гидрометасиликат натрия из растворов с содержанием Na₂SiO₃ до 35%. При сравнении с ранее исследованными нами изотермами при 20 и 35°С можно указать, что величина поля кристаллизации Na₂SiO₃·9H₂O закономерно увеличивается с понижением температуры.

Трудность выделения силиката калия из растворов в виде твердой фазы при этих условиях ($t = 0^{\circ}$) можно объяснить тем, что, вероятно, силикат калия находится в состоянии, аналогичном состоянию силиката натрия выше 40°С, т. е. отвечает жидкости с большей вязкостью. К сказанному надо добавить имеющиеся в литературе [9] указания на сильную гигроскопичность безводного метасиликата калия, который расплывается при соприкосновении с воздухом. Участок кривой БВ проведен пунктирной линией, так как нам не удалось получить твердой фазы, отвечающей кристаллизации силиката калия.

Бергом [10] была произведена классификация процессов дегидратации кристаллогидратов. Кривая термического нагрева K₂SiO₂. *n*H₂O, возможно, отвечает первой группе реакций дегидратации, т. е. удаление конституционной воды протекает с перестройкой кристаллической решетки соли.

Выводы

1. Исследована изотерма растворимости системы Na₂SiO₃---K₂SiO₃---H₂O при 0°C.

2. Химических соединений и твердых растворов между изученными компонентами при указанной температуре не обнаружено.

3. Показано, что в широком интервале концентраций путем кристаллизации можно отделить метасиликат натрия в виде Na₂SiO₃·9H₂O от метасиликата калия (см. рис. 1).

4. Изучена кривая нагревания K₂SiO₃ · *n*H₂O в присутствии гидрида кальция. Найдено, что термограмма содержит два эндотермических эффекта при 40 и 100-290°-и один экзотермический эффект-при 485°.

Институт химии Совнархоза АрмССР

Поступило 16 11 1959

Մ. Գ. Մանվելյան. Հ. Գ. ռաբայան, Է. Ա. Սայամյան, Ս. Ս. Ոսկանյան

$Na_2SiO_3 - K_2SiO_3 - H_2O$ UPUSEUP LUPUELPUPERUP PROPERUE 0°C-UPU

Ամփոփում

Na2SIO3-K2SiO3-H2O սիստեմի ուսումնասիրությունը չնարավորություն կատ նշել կալիումի և նատրիումի սիլիկատներն իրարից բաժանելու ուղիներ։

Գրականունյան մեջ Na2SiO3—K2SiO3—H2O սիստեմի վերաբերյալ տեդիկունյուններ չկան։ Այս սիստեմի լուծելիունյան դիագրամի ուսումնասիրունյունը կատարվում է սկզբնական հագեցած լուծուլնը ներմոստատում 0 C-ում հավասարակշռունյան վիճակի բերելու մենոդով։ Սիստեմի հավասարակշռունյան վիճակի գալու ժամանակը որոշվել է հեղուկ ֆազի բաղադրունյունը սիստեմատիկորեն ստուգելու միջոցով։ Գինդ ֆազի բաղադրունյունը որոշվել է Շրենսեմակերսի «մնացորդների մենոդով»։

Լուծելիության դիագրամը պարունակում է երեք հիմնական ընագավառ՝

1. H2O-A-B-B- չհագեցած լուծուլ Թների բնագավառ

2. $A-B-Na_{3}SIO_{3} \cdot 9H_{2}O-Na_{2}SIO_{3} \& K_{2}SIO_{3}$ պարունակող ևառը լուծույնների բնագավառ, որը հագեցված է նատրիումի մետասիլիկատով և ունի Na_2SIO_{3} · 9H_{2}O պինդ ֆազ։

3. $B-5-K_3SIO_3 \cdot nH_2O$ բնագավառ, որը համապատասխանում է Na₃SIO₃ և K₃SIO₃-h լուծուլ (հների որոշ խառնուրդին՝ հադեցված K₂SiO₃-ով և K₃SIO₃ · nH₃O նստված քի պարունակու (հլամր։ Ինչպես A-5-Na₃SIO₃. 9K₂O բնադավառում ստացված նստված քը, նուլնպես և կալիումի սիլիկատով հադեցվածը, գրանցվել է Կուրնակովի խնջնագրող ապարատի վրա։ Na₃SIO₈. 9H₂O փոխակերպման ջերմաստիճանները լրիվ համընկնում են գրականու (հլան մեջ եղած տվլալսերին։ K₂SIO₃· nH₂O-h (հերմոգրամը պարունակում է երեջ հիմնական (հերմիկ է հեկտներ. առաջին էնդոներմիկ է հեկտը՝ 40°C-ում, երկրորդը սկսվում է 100 C-ում և վերջանում 290°C-ում, իսկ երրորդ էկզո-(հերմին է հեկտն սկսվում է 485°C-ում)

ЛИТЕРАТУРА -

1. G. W. Morey, J. Am. Chem. Soc. 36, 215 (1914); G. W. Morey, E. Ingerson, Am. Journ. Sci 35 A, 217 (1938); C. L. Baker, J. Jue, J. Phys. Coll. Chem. 54, 299 (1950); J. H. Wills, там же 54, 304 (1950); J. W. Spaner, D. W. Peares, J. Phys. Chem. 44, 909 (1940); C. L. Baker, J. Am. Chem. Soc. 72, 5369 (1950); O. Ф. Тутта и И. И. Фридман, Вопросы физико-химии в минералогии и петрографии. ИЛ, Москва. 1950, 9-22; Д. Мари и Д. Хессельгессер, Экспериментальные исследования в области петрографии и рудообразования. ИЛ, Москва, 1954, 7.

^{2.} G. Hagg, Z. anorg. allg. Chem. 155, 21 (1926).

^{3.} М. Г. Манвелян, Т. В. Кр. моян. А. Г. Еганян, Изв. АН АрмССР, СХН 10, 225 (1957). 4. V. R. Mein, J. Phys. Chem. 30, 335 (1926).

^{5.} R. V. Nauman, P. Debye, J. Phys. Coll. Chem. 55, 1 (1951).

6. G. W. Morey, J. Am. Chem. Soc. 39, 1173 (1917); G. W. Morey, M. Fleischer. Bl. Geolog. Soc. Am. 51, 1035 (1940).

7. В. П. Блидин, ЖНХ 2, 1151 (1957).

8. М. Г. Манвелян, Г. Г. Бабаян, А. А. Абрамян, Изв. АН АрмССР, ХН 11, 159 (1958).

9. М. А. Матвеев, Растворимость стекдообразных силикатов натрия. Промстройнздат. Москва, 1957, 41.

10. Л. Г. Берг, Изв. Казанского ФАН СССР, серня хим. наук 4, 133 (1957).