2 Ц 3 Ч Ц Ч Ц С Т И Я А К А Д Е М И И Н А У К А Р М Я Н С К О Я С С Р

Քիմիական գիտություններ

XI, № 2, 1958

Химические науки

В. Г. Мхитарян

Действие 2-хлорбутадиена-1,3 (хлоропрена) на процесс окисления жиров

Сообщение III

Изучая действие хлоропрена на животный организм мы пришли к выводу, что хлоропрен способствует окислению ряда легко окисляемых веществ. Было установлено, что в организме под действием хлоропрена заметно уменьшается количество аскорбиновой кислоты [1], адренэргических веществ, а также восстановленного глютатиона и соответсвенно повышается содержание их окисленной формы [2]. В дальнейшем нам удалось показать в опытах іп vitro окисляющее действие хлоропрена на рибофлавин и каротиноиды [3].

Ряд исследований, посвященных нами изучению действия хлоропрена на активность тиоловых ферментов, позволиль нам заключить, что в некоторых органах заметно снижается активность сукциндегидразы, аденозинтрифосфатазы, холинэстеразы, ксантиноксидазы и др., что, по-видимому, обуславливается окислением сульфгидрильных групп тиоловых ферментов.

Результаты вышеуказанных исследований, а также литературные данные о некоторых химических свойствах хлоропрена дали нам основание полагать, что токсическое действие хлоропрена на организм обусловлено не только хлором, имеющимся в молекуле, но и сопряженной системой двойных связей, которая способна легко окисляться и образовывать перекиси.

Керн, Иоскуч и Вольфрам [4] показали, что с целью получения свободного от перекисей хлоропрена необходимо производить его перегонку в атмосфере азота и хранить его в запаянных трубках. Перекиси хлоропрена ими не были изолированы вследствие их нестойкости.

Перекиси хлоропрена обладают способностью окислять такие антиоксиданты, как фенил-2-нафтиламин, пирогаллол, тиофениламин и т. п. Фермер с сотрудниками [5] установил образование гидроперекисей при окислении изопренового каучука, а также сквалена.

Как неоднократно подчеркивалось Бахом, автоксидация через первичное образование перекисей свойственна ненасыщенным соединениям. Перекисная теория Баха-Энглера нашла полное подтверждение в многочисленных экспериментальных фактах.

В вышедшей сравнительно недавно монографической работе Найтрем [6] показал, что окисленный и неокисленный хлоропрен (пере-

гнанный в атмосфере чистого азота и хранившийся в запаянных ампулах) неодинаково токсичны. Его опыты на белых крысах показали, что окисленный хлоропрен в 4 раза токсичнее неокисленного.

По литературным данным [7] ряд ненасыщеных соединений оказывает воздействие на самоокисление жиров. Особый интерес представляет их превращение в мощные прооксидантные системы, когда они сочетаются с иозами меди, железа, кобальта и т. п.

Приведенные факты побудили нас изучить действие как самого хлоропрена, так и его сочетаний с ионами меди на окисление жиров.

Наши опыты были поставлены с рыбьим жиром и хлопковым маслом. В ходе этих исследований было обнаружено, что под действием хлоропрена и особенно при сочетании его с ионами меди происходит заметное изменение вязкости хлопкового масла и, особенно, рыбьего жира. Исходя из этого мы заинтересовались также вопросом применения хлоропрена в небольших количествах для приготовления олифы из невысыхающих масел, что безусловно представляет определенный практический интерес.

Нам удалось найти в доступной нам литературе лишь несколько патентных заявок и одну работу Дринберга, Фундылера и Аветовой [8] о сополимеризации хлоропрена с подсолнечным маслом, причем в этих опытах соотношение реагирующих компонентов колебалось в значительно больших пределах и количество хлоропрена в реакционной смеси составляло от 5 до 30°/0. Им удалось найти соответствующие условия для сополимеризации хлоропрена как с сырым, так и с окисленным подсолнечным маслом и выделить сополимеры с различным содержанием хлоропрена.

Экспериментальная часть

В плоскодонные колбы емкостью в 200 мл вносилось по 60 мл рыбьего жира (дельфиний), имеющего следующие константы: иодное число 92,05, кислотное число—1,63, перекисное число 0,89, п 1,4754. Первая колба служила контролем. В остальные колбы прибавлялся свежеперегнанный (не в атмосфере азота) хлоропрен с температурой кипения 59°, в количествах от 0,2 до 2,0 мл. В некоторые колбы одновременно с хлоропреном добавлялся также раствор CuSO4. Во избежание внесения излишка воды в реакционные смеси нами употреблялся концентрированный раствор CuSO4 из расчета 1 мг Си в 0,1 мл раствора. В одной колбе к рыбьему жиру был добавлен только раствор CuSO4. Колбы плотно закрывались корковой пробкой и хранились в термостате при 25°. Для устранения побочного влияния света, значительно ускоряющего процесс самоокисления жиров, колбы хранились в темноте.

Ежедневно через колбы пропускался высушенный серной кислотой кислород в течение двух минут, со скоростью 80—100 пузырьков в минуту, после чего колбы плотно закрывались и взбалтывались в течение 5 минут.

Через определенные промежутки времени из каждой колбы брались пробы для определения иодного и кислотного чисел и, особенно, перекисного индекса, ибо характеристика порчи жира лучше всего может быть основана на определении перекисей, так как они образуются в жирах раньше других окисленных соединений и могут превращаться в активные радикалы—, инициаторы" и катализировать процесс окисления жиров.

Иодное и кислотное числа определялись по общепринятой методике; перекисное число определялось по методу Дроздова и Стариковой в модификации Стариковой [9], как наиболее точной: в колбу
с притертой пробкой вносится навеска жира около 1 г и приливается
5—7 мл хлороформа. К полученному раствору жира в хлороформе
добавляется 3,5 мл сернокислого пиридина, смесь перемешивается и
прибавляется 1 мл почти насыщенного раствора иодистого калия,
встряхивается и оставляется стоять на 4 минуты (время реакции 5 минут). По истечении пяти минут в колбу прибавляется 50 мл воды и
избыток 0,01 н. раствора тиосульфата, колба закрывается пробкой и
энергично встряхивается, в результате чего водный слой смеси обесцвечивается. Избыток тиосульфата оттитровывается 0,01 н. раствором
иода в присутствии 1 мл 1°/о раствора крахмала. Параллельно ставится слепой опыт. Перекисное число жира выражается в мл 0,01 н. тиосульфата на 1 г жира.

Как видно из данных таблицы 1, рыбий жир в присутствии хлоропрена подвергается заметным изменениям, особенно при увеличении количества хлоропрена. При сопоставлении полученных данных видно, что в рыбьем жире уже под действием 0,2 мл хлоропрена происходят некоторые изменения по сравнению с контролем; так, если в контрольном опыте на тридцатый день опыта перекисное число составляет 26,45, а кислотное—3,02, то в опыте, где количество добавленного хлоропрена составляло 0,2 мл, перекисное число было равно 43,74 (повышение на 65°/0), а кислотное—4,98. Соответственно отмечается уменьшение иодного числа.

Увеличение количества хлоропрена до 2,0 мл на 60 мл рыбьего жира приводит к еще большему накоплению перекисей и на тридцатый день опыта перекисное число доходит до 66,33, увеличиваясь по сравнению с контролем на 155%, Определенный интерес представляют данные, полученные на пятый день опыта, где количество перекисей, по сравнению с контролем, повышается примерно в 10 раз. Так, если в контрольном опыте перекисное число составляет всего 1,41, то в опыте, где количество хлоропрена было равно 2,0 мл, оно достигает 11,45.

Удлинение сроков хранения рыбьего жира приводит все к большему накоплению перекисей и на 24 день опыта перекисное число достигает 70,61, тогда как в контрольном опыте оно составляет всего лишь 13,27. Дальнейшее удлинение сроков опыта приводит к

	30	Иодное число через							Перекисное число через							Кислотное число через						
Взятые вещества	5	11	17	24	30	38	5	11	17	24	30	38	5	11	17	24	30	38				
	дней						дней							дней								
Рыбий жир* (дельфиний)	92,05	92,05	89,51	90,43	84,78	78,68	1,41	3,17	6,88	13,27	26,45	41,26	1,70	1,70	1,92	2,24	3,02	5,44				
. +0,2 мл хлоропрена**	92,05	90,0	85,54	82,64	71,21	69,07	1,56	3,38	7,75	23,73	43,74	57,25	1,68	1,67	2,08	2,92	4,98	7,76				
. +0,5 мл	92,05	90,0	85,80	78,76	75,06	70,26	1,88	3,72	22,23	38,24	46,67	52,55	1,62	1,74	2,55	3,34	5,33	7,82				
. +1,0 мл	92,05	87,84	80,65	70,50	64,74	58,30	2,03	11,71	46,01	58,55	59,6	61,48	1,73	1,89	4,36	9,73	8,24	11,94				
. +2,0 мл	92,0	84,79	74,88	64,96	57,33	52,49	11,15	31,07	34,85	70,61	66,33	64,84	1,96	3,61	6,95	7,96	13,55	16,72				
• +0,2 мл ХП+1 мг Си	92,0	89,20	87,20	74,12	69,3	62,88	9,41	13,96	33,77	47,62	63,85	76,23	1,69	2,02	3,09	4,74	8,97	11,0				
. +0,5 мл ХП+1 мг Си	92,0	83,55	79,40	68,81	66,69	60,51	17,80	27,78	46,52	57,61	60,60	66,09	2,25	2,99	4,76	5,97	8,74	9,70				
. +1,0 мл XП+1 мг Cu	88,07	81,76	78,16	72,75	61,44	56,4	19,52	36,48	53,74	77,15	61,93	66,59	2,32	3,23	6,32	6,98	14,80	16,5				
■ +2,0 мл XП+1 мг Cu	86,24	77,44	70,15	62,70	57,0	50,5	28,85	36,72	45,82	67,00	58,6	61,33	4,30	5,12	6,97	8,35	13,26	17,7				
. +1 M2 Cu	92,0	89,20	82,99	77,08	68,9	62,01	11,25	21,18	31,81	59,52	66,15	63,10	1,74	2,23	3,83	5,58	7,82	12,3				

^{*} Константы рыбьего жира: нодное число 92,05, кислотное число — 1,63, перекисное — 0,189, $n_D^{20} = 1.4754$.

^{**} Хлоропрен — XП.

уменьшению перекисей, тогда как в контрольном опыте ее количество все еще возрастает.

Эти данные свидетельствуют о том, что индукционный период окисления жиров под действием хлоропрена значительно сокращается, т. е. хлоропрен оказывает прооксидантное действие на процесс окисления жиров.

Как видно из данных таблицы 1, в рыбьем жире при сочетании хлоропрена с нонами меди с первых же дней опыта происходит резкое увеличение количества перекисей. Так, например, на пятый день опыта в колбе № 9, где количество хлоропрена составляло 2,0 мл и имелся 1 мг меди, перекисное число было равно 28,85, тогда как в колбе № 5 (2,0 жл хлоропрена без меди) оно равнялось 1,115. Однако в последующие дни опыта эта комбинация не приводит к более резкому нарастанию перекисей и их образование протекает почти так же, как в колбе № 5, где к рыбьему жиру добавлен только хлоропрен. Таким образом, сочетание хлоропрена с нонами меди приводит к заметному нарастанию перекисей в рыбьем жире лишь в первые 10 дней, а в дальнейшем это нарастание протекает почти так же, как и в присутствии одного хлоропрена. Подобные данные были получены и в отношении кислотного и нодного чисел. Как видно из той же таблицы 1, кислотное число в колбе № 9 составляло на 5 день опыта 4,30 и на 11 день-5,12, тогда как с одним хлоропреном в опыте № 5 они составляли соотвественно 1,96 и 3,61.

Подобную закономерность мы наблюдали и в отношении иодного числа, которое соответственно уменьшалось. В наших исследованиях мы неоднократно замечали также обесцвечивание жира и увеличение его вязкости особенно в тех опытах, где к рыбьему жиру, помимо хлоропрена, была добавлена и медь. Это обстоятельство принудило нас в ряде случаев ставить реакцию Карр и Прайса на каротиноиды и витамин "А". Эти определения показали, что под действием хлоропрена в рыбьем жире происходит заметное уменьшение каротиноидов и витамина "А" вплоть до полного их исчезновения. Таким образом, хлоропрен заметно сокращает индукционный период окисления рыбьего жира, приводит к быстрому накоплению в нем перекисей, которые и катализируют процесс его окисления. Следствием этого является повышение кислотного числя, уменьшения числа Гюбля и исчезновение каротиноидов. Комбинация хлоропрена с ионами меди еще больше повышает его окислительный потенциал и приводит к более резкому сокращению индукционного периода.

Имея эти данные в отношении рыбьего жира, мы поставили в дальнейшем серию опытов с хлопковым маслом, ибо из полувысыхающих масел чаще всего подвергаются обработке именно хлопковое и подсолнечное масло. Несмотря на то, что выработка хлопкового масла растет весьма значительно и по количеству выработки она занимает одно из первых мест в СССР, однако его применение для производства олиф и лаков до настоящего времени крайне ограничено ввиду Известия XI, 2—4

его низких высыхающих свойств. С целью повышения этих свойств были предложены различные методы обработки хлопкового масла, но по имеющимся работам нельзя считать эту проблему полностью разрешенной и поэтому новые исследования в этом направлении представляют определенный практический интерес и могут иметь значение для лаковой промышленности.

Данная серия опытов преследовала задачу путем добавления небольших количеств хлоропрена к хлопковому маслу ускорить процесс высыхания полувысыхающих масел и применить этот способ для

приготовления олифы.

Постановка опытов была такая же, как и с рыбьим жиром. Перед опытами были определены константы хлопкового масла: иодное число—87,47, кислотное число—0,176, перекисное число 2,61, пр—1,4725.

Как видно из данных таблицы 2, хлопковое масло под действием

одного хлоропрена не подвергается заметным изменениям.

Перекисное, кислотное и иодное числа хлопкового масла в течение всего периода опыта колеблются почти в пределах, характерных для контрольного опыта. Необходимо отметить, что в этой серии опытов различные количества хлоропрена (0,2—2,0 мл) оказывают почти одинаковое действие на процесс окисления хлопкового масла, тогда как в опытах с рыбым жиром с увеличением количества хлоропрена происходит более резкое накопление перекисей и увеличение кислотного числа.

Совершенно иначе влияет хлоропрен на процесс окисления хлопкового масла, когда он сочетается с ионами меди. Как видно из таблицы 2, при наличии меди в пробах хлопкового масла, где имеются различные количества хлоропрена, образуется система, оказывающая неодинаковое прооксидантное действие на окисление масла.

Если в колбах №№ 6 и 7, где количество хлоропрена составляло 0,2-0,5 мл и имелось по 1 мг меди, перекиси образуются в таком же точно количестве, как в колбе № 10, где имелась только одна медь, то в опытах №№ 8 и 9, где количество хлоропрена составляло 1-2 мл, сочетание меди в том же количестве приводит к образованию мощной прооксидантной системы. Эта разница особенно заметна в пробе № 9, где количество хлоропрена составляло 2 мл.

При сопоставлении данных опытов №№ 9 и 10 видно, что по истечении 35 дней в пробе, содержавшей хлоропрен и медь, оказалось перекисей в 4 раза больше, чем в пробе, в которой имелась одна только медь. Подобную картину мы имеем и в отношении кислотного числа. В этой серии опытов также наблюдается заметное повышение вязкости по сравнению с контролем. Данные, полученные в отношении хлопкового масла и рыбьего жира, показывают, что хлоропрен оказывает неодинаковое окисляющее действие на масла, имеющие различное происхождение и что рыбий жир окисляется под действием хлоропрена значительно интенсивнее, чем хлопковое масло. Такое отношение хлоропрена к различным по происхождению жирам мы склон-

Взятые вещества					Иодное число через						рекиси	по чер	Кислотное число через						
					6	14	20	27	35	6	14	20	27 35		6	14	20	27	35
			•			The same	дней					дней	375			199	дней	- 175	
Хлопковое	масло				87,12	86,5	86,18	82,76	81,88	2,93	3,59	4,51	4,72	5,36	0,176	0,20	0,23	0,34	0,46
18-16	+ 0,2 мл хл	оропр			86,56	86,82	85,72	81,39	80,76	2,91	3,79	4,23	5,31	5,57	0,177	0,170	0,25	0,34	0,46
1000	+ 1),5 MA				85,54	82,9	81,49	80,1	77,20	3,06	4,82	4,88	4,99	5,89	0,180	0,180	0,270	0,280	0,42
3/4	+1 мл				84,58	83,42	85,31	82,92	82,23	3,08	3,96	4,24	5,23	5,45	0,22	0,25	0,29	0,29	0,46
-	+2 мл	3	+1 4	c Cu.	84,09	83,09	82,6	79,28	78,08	3,02	4,12	4,71	4,74	6,28	0,210	0,235	0,380	0,385	0,61
11-3/1-7/3	+ 0,2 мл		+1 4	z Cu.	87,47	85,3	87,1	82,3	81,03	3,84	7,54	8,73	10,12	11,60	0,190	0,250	0,320	0,330	0,59
	+ 0,5 MA		+14	ce Cu.	84,33	85,5	86,3	82,92	80,50	3,64	7,72	8,00	10,02	10,60	0,170	0,180	0,275	0,340	0,63
	+1 мл		+14	ce Cu.	84,89	84,17	80,04	74,40	65,80	3,88	9,39	23,69	32,73	36,12	0,210	0 230	0,470	1,190	2,55
10.74	+2 мл		+ 1 .a	cz Cu.	85,19	81.07	78,75	76,18	65,20	4,07	19,31	27,29	36,51	37,31	0,260	0,460	0,79	1,530	2,21
23511	+1 .uz Cu .				86,24	86,16	82,27	81,58	80 00	4,33	7,15	7,41	10,12	10,61	0,170	0,210	0,460	0,34	0,73

Примечание: Хлопковое масло из Масложиркомбината имело следующие константы; нодное число = 87,47; перекисное число = 2,61; кислотное число = 0,176; $n_D^{20} = 1,4725$,

man to be seen	the second second			-4											1 40.	nuna 3		
Взятые вещества			ное	числ	о чер	ез	Пер	екисн	ое чи	Р ОКО	ерез	Кислотное число через						
			16	24	42	75	9	16	24	42	75	9	16	24	42	75		
			,	цней				2 -	дней					дней				
Вазелиновое	масло	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,33	0,42	0,34	0,37	0,37		
6 .	+0,2 мл хлоропрена.	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,36	0,42	0,38	0,41	0,39		
w 5, 10	+ 0,5 мл	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,33	0,38	0,41	0,34	0,38		
	+ 1,0 ma	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,32	0,43	0,38	0,44	0,37		
	+ 0,2 MA XII+1 M2 Cu	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,44	0,57	0,43	0,42	0,38		
(Er . 15)	+0,5 MA XT1+1 ME Cu	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,37	0,42	0,36	0,49	0,34		
A. The	+ 1,0 мл ХП+1 мг Сц	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,37	0,39	0,46	0,33	0,35		
•	+1 жг Си	нет	нет	нет	нет	нет	нет	нет	нет	нет	нет	0,37	0,43	0,44	0,45	0,39		

 Π р и м е ч а н и е: Константы вазелинового масла: нодное число = 0; перекисное число = 0; кислотное число 0,33.

ны приписать физико-химическим свойствам того жира или масла, с которым он сочетается. Не исключалось, что в определенных жирах или маслах хлоропрен, легко образуя свои перекиси, в дальнейшем уже сам индуцирует окисление тех жиров или масел, которые богаты ненасыщенными жирными кислотами, являясь тем самым пусковым механизмом в цепной реакции, которая имеет место при самоокислении жиров или масел. С этой целью были поставлены дополнительные опыты с вазелиновым маслом, которое имеет минеральное происхождение и не содержит двойных связей. Постановка опытов была такой же, как с рыбьим жиром и хлопковым маслом.

Как видно из таблицы 3, в вазелиновом масле из хлоропрена если даже и образуются перекиси, то они бывают в столь незначительных количествах и так они быстро разлагаются, что их определение становится невозможным той методикой, которой мы пользовались для их определения. Эти данные говорят о том, что накопление перекисей в жирах происходит за счет ненасыщенных жирных кислот.

Учитывая, что первоначальным этапом при высыхании масел является интенсивный процесс окисления ненасыщенных жирных кислот, а также и то, что под действием хлоропрена этот процесс значительно ускоряется, можно полагать, что хлоропрен в малых количествах найдет применение для приготовления доброкачественной олифы из хлопкового масла. Поставленные в этом направлении предварительные опыты показали, что хлопковое масло в присутствии хлоропрена и, особенно, в сочетании его с медью, высыхает значительно быстрее, чем в их отсутствии. Этот факт безусловно имеет важное значение при изготовлении доброкачественной олифы из полувысыхающих масел [10, 11], однако, помимо этого, необходимо изучить и целый ряд других свойств образующейся пленки, для чего необходимы специальные исследования, к которым мы уже приступили.

Выводы

- 1. Хлоропрен іп vitro оказывает прооксидантное действие на процесс окисления жиров. Его сочетание с нонами меди еще больше сокращает индукционный период окисления жиров и приводит к заметному нарастанию количества перекисей.
- 2. Хлоропрен оказывает на масла различного происхождения неодинаковое прооксидантное действие. Рыбий жир окисляется значительно быстрее, чем хлопковое масло.
- 3. Хлоропрен, и особенно его сочетание с ионами меди, приводит к увеличению вязкости хлопкового масла и рыбьего жира по сравнению с контролем.
- 4. Под действием хлоропрена заметно уменьшается количество каротиноидов и витамина "A".

5. Хлопковое масло после хранения в течение 30—35 дней в присутствии хлоропрена и, особенно, в комбинации его с медью, высыхает значительно быстрее, чем без хлоропрена.

Ереванский медицинский

Поступило 1611 1958

институт

վ. Գ. Մխիթարյան

ՔԼՈՐՈՊՐԵՆԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՃԱՐՊԵՐԻ ԻՆՔՆՕՔՍԻԴԱՑՄԱՆ ՎՐԱ Ա Մ Փ Ո Փ Ո Ւ Մ

գուկցիոն շրջանը և տեղի է ունևնում պերօքսիդների կուտակում է համ օքսիդանապին ազդեցութվուն, որն ավելի է ուժեղանում, երբ նրան համակցում են Ճարպերի օքսիդացման վրա քլորոպրինը ցուցաբերում է համակում։

Տարբեր ծագում ուննցող ճարպերի վրա քլորոպրինը տարբեր համօքսիդանտալին ազդեցություն է ցուցաբերում. այսպևս, օրինակ, ձկան լուղն ավելի արագ է օքսիդանում, քան բամբակի ձևթը։ Քլորոպրենի ազդեցության տակ, մանավանդ երբ այն համակցվում է պղնձի իոնների հետ, մեծանում է թե ձկան լուղի և թե բումբակի ձեթի մածուցիկությունը։

Քլորոպրենի ազդեցութվան տակ զգալի կերպով պակասում է ձկան լուղի մեջ եղած A վիտամինի ջանակը։ Բամբակի ձեթը 30—35 օրվա ընթացջում բլորոպրենի ներկալութվամբ, մանավանդ պղնձի հետ համակցված լինելու դեպջում, չորանում է շատ ավելի մեծ արագութվամբ, ջան առանց նրանց։

ЛИТЕРАТУРА

- 1. В. Г. Мхитарян, Изв. А. АрмССР, биол. н., 10, № 6, 11 (1957); Материалы XVI выездной научной сессии, посвященной 40-ой годовщине Вел. Окт. соц. рев. Ереван, 1957.
- 2. В. Г. Мхитарян, Тезисы докладов Второго Закавказск. съезда физиологов, биохим. и фармакологов. Тбилиси, 1956.
- 3. В. Г. Мхитарян, Тезисы докладов выездной научной сессии Ермединститута. Ереван, 1957.
- W. Kern, H. Iockusch, A. Wolfram, Makromol. Chem. 3, 223 (1949); 4, 213 (1950);
 [C. A. 44, 2269f, 8150 (1950)].
- 5. E. Farmer, J. Chem.: Soc. 125, 541 (1943).
- 6. A. E. Nystrom, Acta Medica Scand., Supp. 219, 1948.
- 7. Г. Х. Бунятян, Фосфатиды как про- и антиоксиданты при самоокислении жиров, витамина "А" и каротиноидов. Мединститут АрмССР, Ереван, 1937.
- 8. А. Я. Дринберг, Б. М. Фундылер, Л. В. Асетисова, ЖПХ 27. 684 (1954).
- 9. Л. Старикова, Мясная индустрия СССР, 2, 72 (1953).
- А. Я. Дринберг, Искусственные олифы. Госхимиздат, Москва—Ленинград, 1947;
 А. Я. Дранберг, В. С. Варламов, Жиры и масла как пленкообразователи. Пищепромиздат, Москва—Ленинград, 1949.
- А. Я. Дринберг, Технология пленкообразующих веществ, Госхимиздат, Москва— Ленинград, 1948; В. С. Киселев, Олифа и лаки. Химлитература, Москва—Ленинград, 1940.