ДИЗЧИЧИՆ UUP ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Քիմիական գիտ. սեrիա

X, № 3, 1957

Серия химических наук

Л. Е. Тер-Минасян

Электросинтез о-фенилендиамина

Сообщение I. Влияние материала катода на электровосстановление о-нитроанилина

В процессе изыскания новых лекарственных веществ А. Л. Миджояном и его сотрудниками [1] были синтезированы многочисленные органические соединения, при синтезе целого ряда из коих возникла необходимость разработать препаративный метод получения одного из промежуточных продуктов — о-фенилендиамина. Именно поэтому нами и было предпринято исследование процесса электрохимического восстановления о-нитроанилина.

Таким образом, задачей настоящего исследования являлось изучение катодного процесса восстановления о-нитроанилина с целью разработки рационального метода электрохимического синтеза о-фенилендиамина.

Вопросу электрохимического восстановления о-нитроанилина в литературе посвящено лишь небольшое число работ. Эльбс [2] при восстановлении о-нитробензолазофенола в спиртовом растворе серной кислоты на никелевом катоде получил п-аминофенол и о-нитроанилин; последний в этих условиях восстанавливался дальше в о-фенилендиамин. Роде [3] путем электрохимического восстановления о-нитроанилина в водно-спиртовом растворе уксуснокислого натрия на катоде из никелевой сетки получил о-фенилендиамин с 700/о-ным выходом. Мак-Ки и Герапостолоу [4] подвергли о-нитроанилин электрохимическому восстановлению в концентрированных растворах смесей натриевой и калиевой солей ксилолсульфокислоты на катодах из монель-металла и получили высокие выходы о-фенилендиамина (88,0-96,0%, однако, авторами после электролиза о-фенилендиамин не был извлечен из католита и выходы продукта восстановления определялись только методом диазотирования. Кроме того, не было изучено влияние различных факторов на процесс электровосстановления о-нитроанилина. Затруднения, возникающие при выделении продукта восстановления из католита и малодоступность электролита сильно снижают ценность данной работы для использования ее в лабораторной практике.

Установка, использованная для электросинтеза, а также способ извлечения кристаллического о-фенилендиамина из католита после электролиза описаны нами ранее [5]. В большинстве опытов точка плавления полученного о-фенилендиамина колебалась в пределах 100—103°С, что хорошо совпадает с литературными данными (102—103°С). Однако в некоторых опытах, при получении малых выходов

о-фенилендиамина, продукт реакции был загрязнен значительными количествами исходного о-нитроанилина. В этих случаях продукт очищался перекристаллизацией из воды. Для сравнения результатов, полученных на различных катодах (медь, цинк, ртуть, алюминий, графит, олово, свинец, железо, никель, платина) здесь использованы некоторые данные, опубликованные нами в упомянутой выше статье.

Общей характеристикой течения процесса электровосстановления о-нитроанилина в каждом отдельном случае служили выходы о-фенилендиамина по току и по веществу в процентах. Для определения выходов по току при электролизе пропускалось только теоретически необходимое для восстановления о-нитроанилина количество электричества. Для определения выходов по веществу пропускалось дважды превышающее теоретически необходимое количество электричества.

Для расчета выхода *о*-фенилендиамина по току использовалась следующая формула:

$$B = \frac{a \times 100}{0,672 \times Q},$$

где: В — выход o-фенилендиамина по току в $^{o}/_{o}$; а — количество полученного o-фенилендиамина в z; Q — количество пропущенного через электролит постоянного тока в a-час; 0,672 — теоретическое количество o-фенилендиамина в z, которое должно образоваться при прохождении через электролит одного a-часа постоянного тока.

Выход по веществу рассчитывался по формуле:

$$M = \frac{a \times 100}{0,783 \times b},$$

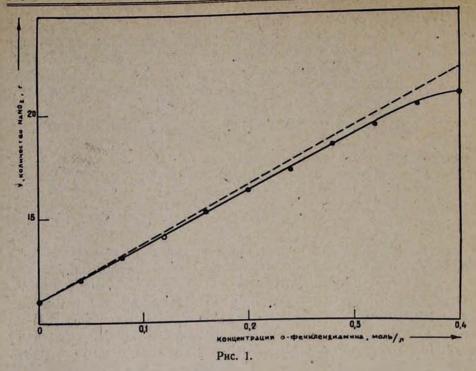
где: М — выход o-фенилендиамина по веществу в $^0/_0$; а — количество полученного o-фенилендиамина в z; b — количество вводимого в электролизер o-нитроанилина в z; 0,783 — теоретическое количество o-фенилендиамина в z, которое должно образоваться из одного z o-нитроанилина при его восстановлении.

Для проверки надежности полученных результатов выходы *о*-фенилендиамина по току и по веществу после электролиза определялись не только методом извлечения из католита кристаллического *о*-фенилендиамина и его взвешивания, но и методом диазотирования.

После электролиза диазотирование производилось следующим образом. Объем католита доводился дистиллированной водой до 400 мл, пипеткой отбиралось 5,0 мл католита, на водяной бане выпаривался этиловый спирт, остаток помещался в коническую колбу емкостью 200 мл, куда добавлялось 20,0 мл концентрированной соляной кислоты и затем колба доливалась дистиллированной водой до 50 мл. Этот раствор охлаждался до 3—4° в бане с толченым льдом и титровался 0,2-молярным раствором азотистокислого натрия. Под конец титрования раствор азотистокислого натрия приливался медленно, по каплям.

Реакция диазотирования считалась законченной, если по истечении 5 минут после прибавления последней капли азотистокислого натрия в реакционной смеси обнаруживалась свободная азотистая кислота (иодкрахмальная бумага).

Результаты титрования не могли рассчитываться по уравнению


$$NH_{2} + 2NaNO_{2} + 4HCl \rightarrow N=NCl + 2NaCl + 4H_{2}O$$

ввиду наличия в католите исходного *о*-нитроанилина, реагирующего с одной молекулой азотистой кислоты

$$\begin{array}{c|c} -NO_2 \\ -NH_2 + NaNO_2 + 2HCl \rightarrow \\ -N=NCl + NaCl + 2H_2O \end{array}$$

Поэтому нами был разработан графический способ вычисления абсолютных количеств о-фенилендиамина по данным титрования.

Расчет результатов титрования производился следующим образом. Так как в 1 мл 0,2-молярного раствора азотистокислого натрия содержится 0,01380 г азотистокислого натрия, то в израсходованных на пробу (5,0 мл) А мл раствора азотистокислого натрия содержится х = 0,01380 А г азотистокислого натрия. Так как после электролиза, в целях получения сравнительных данных и для упрощения вычислений, во всех случаях объем католита доводился дистиллированной водой до 400 мл, то получаем следующее выражение для общего количества израсходованного на весь объем католита азотистокислого натрия: y = 1,1040 A 2 азотистокислого натрия. Из величины у определялись количества о-нитроанилина и о-фенилендиамина следующим образом: предварительно, на основании опытных данных, был построен график, на оси абсцисс которого откладывались концентрации о-нитроанилина и о-фенилендиамина в католите в моль/л, а на оси ординат — количества израсходованного на диазотирование азотистокислого натрия в г. Зная величину у, легко по графику (рис. 1) найти концентрации о-нитроанилина и о-фенилендиамина и на основании этих данных вычислить выходы о-фенилендиамина по току и по веществу. Для построения этого графика нами были взяты одиннадцать смесей о-нитроанилина и о-фенилендиамина, с различным содержанием в них обоих компонентов, но так, чтобы общее содержание обоих компонентов в растворе (200 мл этилового спирта + 200 мл 40/6-ного раствора едкого натра) равнялось 0,40 молыл. Таким образом, концентрации о-фенилендизмина в смеси постепенно возрастали (0; 0,04; 0,08; 0,12; 0,16; 0,20; 0,24; 0,28; 0,32; 0,36; 0,40), а концентрации о-нитроанилина соответственно падали (0,40; 0,36; 0,32; 0,28, 0,24; 0,20; 0,16; 0,12; 0,08; 0,04; 0). Эти смеси с заведомо известными концентрациями обоих компонентов диазотировались и, таким образом, определялись израсходованные в каждом отдельном случае количества 0,2-молярного раствора азотистокислого натрия (табл. 1).

Результаты наших определений (сплошная кривая) при малых концентрациях о-фенилендиамина в смеси хорошо совпадали с результатами теоретических вычислений (пунктирная кривая). С повыше-

Таблица 1
Данные по диазотированию различных смесей о-нитроанилина и о-фенилендиамина

Концентрац	Количество израсходован-				
о-ннтроани- лина	о-феннлен- диамина	ного при дназо- тировании 0.2-молярного раствора NaNO ₂ мл			
0,400	0 040	11,01			
0,360 0,320	0,040 0,080	12,04 13,09			
0,280	0,120	14,07			
0,240 0,200	0,160	15,22 16,25			
0,160	0,240	17,23			
0,120	0,280 0,320	18,40 19,31			
0,040	0,360	20,32			
0	0.400	20.86			

нием концентрации о-фенилендиамина в смеси получается некоторое расхождение между опытной и теоретической кривыми в сторону заниженности опытных данных. Повидимому, такое отклонение можно приписать своеобразным затруднениям, возникающим при диазотировании диаминов, у которых обе аминогруппы принадлежат одному ядру. В этих случаях успешно можно получить дважды диазотированный продукт лишь при условии применения избытка концентрированной соляной кислоты [6].

Сопоставление данных таблиц 2 и 3 показывает, что выходы *о*-фенилендиамина, определенные для одного и того же опыта двумя

различными методами — взвешиванием выделенных количеств о-фенилендиамина и методом титрования католита — значительно отличаются

Таблица 2
Влияние материала катода на выходы о-фенилендиамина по току и по веществу (данные получены методом выделения кристаллического о-фенилендиамина)

Материал катода	№ опы- та	Выходы	о-фениле по току	ндиамина	N ₂	Выходы <i>о</i> -фенилендиамина по веществу			
		на 400 <i>мл</i> католита г	для отдельн. опыта в ⁰ / ₀	среднее значение в ⁰ / ₀	опы-	на 400 жл католита г	дия отдельн. опыта опыта	среднее значение в ⁰ / ₀	
Cu	15 16	12,82 12,96	74,1 74,9	74,5	19 20	15,05 14,91	87.0 86,2	86,6	
Zn	21 22	11,61	67,1 65,9	66,5	24 25	12,63 12,42	73,0 71,8	72,4	
Hg	26 27	13,75 13,86	79,5 80,1	79,8	28 29	14,86 15,00	85,9 86,7	86,3	
AI	30 31	7,85 8,03	45,4 46,6	46,0	32 33	9,81 9,98	56,7 57,7	57,2	
Графит	34 35	11,19	64,7	64,2	36 37	12,32	71,2 70,6	70,9	
Sn	38 39	11,89	68,7 67,5	68,1	40 42	12,72 12,92	73,5 74,7	74,1	
Pb	43 44	14,39 14,32	83,2 82,8	83,0	45 46	15,45 15,66	89,3 90,5	89,9	
Fe	47 48	10,00 10,2i	57,8 59,0	58,4	49 50	11,76	68,0 67,2	67,6	
NI	51 52	10,79	62,4 61,6	62,0	53 54	11,83	68,4 69,0	68,7	
Pt	55 56	9,53 9,67	55,1 55,9	55,5	58 59	11,82	68,3 67,3	67,8	

друг от друга; при этом выходы, полученные методом диазотирования, всегда на 3,5—4,4°/₀ больше выходов, полученных методом выделения кристаллического о-фенилендиамина, что, очевидно, можно объяснить неизбежностью потерь при извлечении из католита кристаллического о-фенилендиамина.

После электролиза в католите определялись количества только о-нитроанилина и о-фенилендиамина, так как промежуточные продукты восстановления о-нитроанилина—его нитрозо- и гидроксиламиновое производные не были обнаружены. Очевидно, упомянутые промежуточные продукты являются очень сильными деполяризаторами и с большой скоростью восстанавливаются соответственно до более глубоких стадий восстановления.

Скорость и степень восстановления органических соединений зависят в значительной степени от материала катода, влияние которого на процесс электровосстановления сказывается через потенциал катода, перенапряжение водорода и каталитическое действие материала катода.

Предварительные опыты восстановления о-нитроанилина показазали, что восстановление до о-фенилендиамина успешно протекает в Известия X. № 3—2

Таблица З

Влияние материала катода на выходы о-фенилендиамина по току и по веществу (данные получены методом диазотирования)

(данные получены методом диазотпрования)												
		ованно- р ра-	нзраско- Ов нз ра- католит	Выходы <i>о</i> -фенилен- диамина по току			израсходованно- олярного ра- NaNO ₂ A. мл	ч. нараско- NaNO ₃ на весь като-	Выходы <i>о</i> -фени- лендиамина по веществу			
Материял катода	опыта	Колич. израсходованно го 0,2-молярного ра- створа NaNOs A. мл	Общее колич. и дованилованного NaNC счета на весь и у, г	моль/я	я отдельно- опыта в 0/0	среднее значение в º/o	опытв	лнч. 0,2-м	Общее колич. из дованиного NaN расчета на песь лит у, г	моль/л	для отдельно- го опыта в º/o	среднее значение в 0/п
Ma	2	S 5 2	2527	N N	F 5	S H	2	₹ 5 £	ORBE	2	45	2.8
Cu	15 16	17,37 17,43	19,18 19,24	0,313 0,315	78,2 78,8	78,5	19 20	18,51 18,43	20,44 20,35	0,365 0,360	91.3 90,0	90,7
Zn	21 22	16,70 16,59		0,284 0,280	71,0 70,0	70,5	24 25	17,24 17,16		0,307 0,304	76,7 76,0	76,3
Hg	26 27	17,83 17,97	19,68	0,332 0,337	83,0 84,2	83,6	28 29	18,44 18,50	20,42	0,361 0,364	90,3 91,0	90,7
A1	30 31	14,68 14,75	16,21 16,28	0,199 0,202	49,8 50,5	50,2	32 33	15,73 15,81	17,45	0,244 0,247	61,8	61,4
Гра- фит	34 35	16,49 16,39	18,20 18,09	0,275 0,271	68,8 67,8	68,3	36 37	17,07 17,00	18,77	0,300 0,297	75,0 74,2	74,6
Sn	38 39	16,83 16,73	18,58 18,47	0,290 0,286	72,5 71,5	72,0	40 42	17,34 17,39	19,20	0,311 0,314	77,8 78,5	78,2
Pb	43 44	18,21 18,16	20,10 20,05	0,348 0 ,345	87,0 86,3	86,7	45 46	18,64 18,70	20,65	0,374 0,378	93,5 94,5	94,0
Fe	47 48	15,83 15,95	17,48 17,61	0,247 0,253	61,8 63,2	62,5	49 50	16,78 16,68	-18,53 18,41	0,288 0,283	72,0 70,8	71,4
NI	51 52	16,30 16,20	17,99 17,88	0,267 0,263	66,7 65,8	66,3	53 54	16,83 16,90		0,290 0,293	72,5 73,3	72,9
Pt	55 56	15,58 15,63		0,237 0,240	59,3 60,0	59,6	58 59	16,81 16,70	18,56 18,44	0,289 0,284	72,3 71,0	71,7
	~		1		1	7.5			-			

щелочной среде. На основании этих опытов при изучении влияния материала катода были выбраны следующие условия: католит — этиловый спирт (200 мл) $+4^{\circ}/_{\circ}$ -ный раствор едкого натра (200 мл); концентрация о-нитроанилина в католите 0,4 моль/л = 22,1 г; анод — медная спираль; анолит — $2^{\circ}/_{\circ}$ -ный раствор едкого натра; температура 40° С; катодная плотность тока $10 \ a/\partial m^{3}$.

Как видно из таблиц 2 и 3, лучшие результаты по электровосстановлению о-нитроанилина получены на катодах из ртути, свинца и меди, что, вероятно, можно объяснить высоким перенапряжением водорода на ртути и свинце и каталитическим действием меди. Высокие выходы о-фенилендиамина на свинцовом катоде обусловливаются не только наличием высокого перенапряжения, но и тем, что в процессе электрохимического восстановления о-нитроанилина на поверхности катода образуется губка, которая, по-видимому, оказывает электрокаталитическое действие. К такому же выводу о высоких электрокаталитических свойствах свинцовой губки пришли также Изгарышев и Фиошин [7] при исследовании процесса электрохимического восстановления о-, м- и n-нитробензойных кислот в соответствующие аминобензойные кислоты.

На наш взгляд, в начальной стадии электровосстановления преобладающее влияние на эффективность восстановления о-нитроанилина оказывает высокое перенапряжение водорода; в дальнейшем, когда поверхность губки становится значительной и перенапряжение водорода несколько падает [7, 8], преобладающее влияние на эффективность восстановления оказывает электрокаталитическое действие свинцовой губки.

Выводы

- 1. Изучено влияние материала катода на процесс электрохимического восстановления *о*-нитроанилина. Показано, что электровосстановление *о*-нитроанилина в *о*-фенилендиамин с успехом протекает в водно-спиртовых растворах едкого натра на катодах из ртути, меди, цинка, алюминия, графита, олова, свинца, железа, никеля и платины.
- 2. При электровосстановлении o-нитровнилина наибольшие выходы o-фенилендиамина по току и по веществу получены на катодах из ртути (79,8; 86,3 $^{\circ}$ / $_{o}$), свинца (83,0; 89,9 $^{\circ}$ / $_{o}$) и меди (74,5; 86,6 $^{\circ}$ / $_{o}$).
- 3. Эффективность электровосстановления *о*-нитроанилина на катодах из ртути и меди, вероятно, можно объяснить высоким перенапряжением водорода на ртути и каталитическим действием меди. Эффективность электровосстановления *о*-нитроанилина на свинцовом катоде, по-видимому, обусловливается как высоким перенапряжением водорода, так и электрокаталитическим действием образующейся на катоде свинцовой губки.

Институт тонкой органической химии АН АрмССР

Поступило 25 III 1957

L. C. Sbp-Uhamajma

o-ՖեՆԻԼԵՆԴԻԱՄԻՆԻ ԷԼԵԿSՐԱՍԻՆ**₽**ԵԶԸ

Հաղորդում I. Կաթոդի նյութի ազդեցությունն *o*-նիարոանիլինի Էլեկարավերականգնման վրա

տալ գրհամ Վշտիբեսու դատատանավ։

որ գրհամ Վշտիբեսու դատատանավ։

որ գրհամ Վշտիբեսու դատատանավ։

որ գրհամ Վշտիբեսու դատատանավ։

որ գրհամ Վշտիբեսությանը և ընտ աշխատանինչըն անանան անությարը արությարը արությանը արհատատասերության անությարը արությանը արության արությանը արության արությանը արությանը արությանը արությանը արությանը արությանը արության արությանը արության արությանը արության արութ

ընան արդյունջներն o-նիարոանիլինի էլեկտրավերականգնման պրոցեսի

վրա կաթոդի նյութի ազդեցության վերաբերժամբ։

0-Նիտրոանիլինի էլեկտրաքիմիական վերականդնման պրոցեսը յուրաջանչյուր փորձի դեպքում բնութագրվում է o-ֆենիլենդիամինի ելքերով ըստ հոսանքի և ըստ նյութի, հաշված տոկոսներով։ Անհրաժեշտ է նշել, որ o-ֆենիլենդիամինի ելքերը որոշվել են ոչ միայն բյուրեղային o-ֆենիլենդիամինն անջատելու եղանակով, այլ նաև դիազոտացման մեթոդով։ Դիտմար մեր կողմից մշակված է գրաֆիկ մեթոդ, որը նկարագրված է հիննաման տեքստում։

գատարված փորձևրի արդյունըները թույլ են տալիս անել հետևյալ

եղրակացությունները.

1. Ուսուքնասիրված է կաթոդի նյութի ազդեցությունն o-նիտրոանիլինի էլեկտրաքիմիական վերականգնման պրոցեսի վրա։ Ցույց է տրված,
որ o-նիտրոանիլինի վերականգնումը մինչև o-ֆենիլենդիամին հաջողությամբ ընթանում է նատրիումի հիդրօքսիդի ջրա-սպիրտային լուծույթներում սնդիկի, պղնձի, ցինկի, ալյումինիումի դրաֆիտի, անագի, կապարի,
երկաթի, նիկելի և պլատինի վրա։

2. o-Նիտրոանիլինի էլեկտրավերականգնման դեպքում o-ֆենիլենդիամինի ամենամեծ ելջերն ըստ հոսանքի ու ըստ նյութի ստացվել են սնդիկի (79,8, 86,3º/_o), կապարի (83,0, 89,9º/_o) և պղնձի (74,5, 86,6º/_o)

d nui

գեցությամը։

3. օ-Նիտրոանիլինի էֆեկտիվ էլեկտրավերականգնումը անդիկի տարարես էլ կաթոդի վրա առաջացող կապարե սպունգի էլեկտրակատանիտիկ ազդեցությամբ հավանաբար պայմանավոր այնանիլինի էֆեկտիվ էլեկտրավերականգնումը հավանաբար պայմանավորվում է ինչպես ջրածնի բարձր գերլարվածության առկայությամբ, այնվում է ինչպես ջրածնի բարձր գերլարվածության առկայությամբ, այնարս էլ կաթոդի վրա առաջացող կապարե սպունգի էլեկտրակատալիտիկ ազարս էլ կաթոդի վրա առաջացող կապարե սպունգի էլեկտրակատալիտիկ ազ-

ЛИТЕРАТУРА

- 1. А. Л. Миджоян, В. Г. Африкян, А. Н. Оганесян, Н. М. Диванян, ДАН АрмССР, 18, 111 (1954); А. Л. Миджоян, В. Г. Африкян, Г. Л. Папаян, ДАН АрмССР, 20, 133 (1955).
- 2. K. Elbs. O. Kopp, Z. f. Elektrochem., 5, 103 (1898).
- 3. A. Rond?, Z. f. Elektrochem., 7, 338 (1900).
- 4. R. H. Mc-Kee, B. G. Gerapostolou, Trans. Am. Electrochem. Soc., 68, 329 (1935).

5. Л. Е. Тер-Минасян, ЖФХ, 27, 719 (1953).

- Н. Н. Ворожнов, Основы синтеза промежуточных продуктов и красителей, ГОНТИ хим. лит., Москва, 1955, 422.
- 7. Н. А. Изгарышев, М. Я. Фиошин, ЖОХ, 24, 766 (1954).
- 8. F. Tafel, Z. physik. Chem., 50, 712 (1905).