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Marunsu A. C.
OO0 onHoO# 32/1a4€ ONTUMAJIBHOI CTAOMIIM3ALMH N0J1ETa KBAPOKONTEPa
KumroueBble c10Ba: [IHHAMUYECKUE CUCTEMBI, ONITHMAJIBHOE YIIPABJICHUE, ONITUMAJIbHAsK CTaOMIN3aLus,
kBajpokonrep BIIA.

B paGote paccmartpuBaeTcs 3ajada ONTHMAIIBHON CTAaOWIM3alUM OE3NMMIOTHOIO JISTAaTeNBHOTO ammapara
(kBagpokonrTepa) B JIMHEHHOM mnpuOmwKeHuu. IlpuBeneHa cucremMa uddepeHInanbHbIX — ypaBHEHUH,
OIIBICHBAIOIAsl JMHAMHKA BaJPOKONTEpa, IPOBEpPEHa IIOJHAs YIPABISIEMOCTh JHMHEHHOTO HPHOIMKEHUS
MOJIy4E€HHOW YIpaBIsIEMOM CHUCTEMBbI, TIOCTABICHA U PEIleHA 3aJa4a ONTUMAaJbHOW CTAOMIIM3aliK 3TOH CUCTEMBbI
MeronoM JlsmyHoBa-Bemmana. IlomyueHs! ontuManbHas ¢(yHKIus JIAmyHOBa, ONTHUMaJIbHBIE YIIPABILIOLINE

Bo3neicTBus. [TocTpoeHbI TpadMKH ONTUMAIBHBIX YIIPABICHUH U ONTUMAJIBbHBIX JIBHXKCHUI.

Cwhhiywt U.U.
Lwnupl whonuynt prynn uwpph owywnhluy wnwphjuglwh h ptnhp
Zpfbwpuntp’ htwdhy hwdwlupgkp, oyyunhdw) nEjwywpnud, oypunhdw) uinwphjugnid,
pwnwph UEU:

Uohmwwnwipmd  ghunwplynud £ pwpwpl wbonwynt pnsnn  uwpph (UEU) owwhdwy
unwphjugdwt funhpp qdughtt Unnwynpoipjudp: Pipws t URU phuwdhljwb tjwpwugpnn
nhdbpkughw) hwjwuwpnulutph hwdwlwupgp, vnmgus b unwugdws nkjudupynn hudwlwupgh
gdught Unwnwynpnipjut phy phjujupbjhnipniiup, dwlikpydus b msws £ wyn hwdwlupgh
hwudwp oyyinhdw) unnwphjugdwt unhpp Luyniung-Rhjdwih tnuwtwyny: Unwugdws tu Ljuwniunyh
oywhdw) $niijghwtn b owwhdw] nhijwjwpnny wqpkgnipmpibibpp: Ywemguws i owunhdwy
nEjwdupnidubiph b oywnhdwy pupdnudubph gpudhlubpp:

This paper discusses an optimal stabilization problem of a quadcopter unmanned aerial vehicle (UAV). The
dynamics of the UAV is presented and the linear time invariant (LTI) model of it is considered. The controllability
of the LTI model is checked and an optimal stability problem is defined and solved for the LTI system using
Lyapunov-Bellman method. The Lyapunov optimal function and optimal control inputs are gained. The graphs of
optimal control inputs and optimal trajectories are constructed and presented.

1. Introduction: In this paper we are going to discuss a stabilization problem of a
quadcopter (also called a quadrotor) unmanned aerial vehicle (UAV). A quadcopter is a
helicopter equipped with four engines each of which have a propeller attached. Quadcopters
are of high interest among researchers because of their simple structure. Moreover,
quadcopters are agile and maneuverable which makes it easy to experiment complex control
algorithms using them.
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There are several papers which study the stabilization problem of quadcopters while
approaching the problem from different view angles. Some papers use PID controllers, others
do the job using just PD controllers, some researchers solved the problem using LQR
regulator method. A short description of such papers is given in [1].

In [2] an Optimal Control problem is stated and solved for the linearized model. A numerical example
is also given by presenting optimal control inputs calculated analytically and optimal trajectories of the
motion.

Here in this paper we are going to approach the problem using so called Lyapunov-Bellman
method. Using this method for Linear Time Invariant (LTI) systems we can find a Lyapunov
optimal function, optimal control inputs and optimal trajectories.

What follows the introduction are three sections which are modelling of the system, problem
definition and solution and discussion of results. The discussed system is a quadcopter, and
the model is derived theoretically. Then the problem is defined and solved. The results are
discussed by providing some simulations results and comments.

2. Model of the System: To derive the pure theoretical dynamics of a UAV let us fix a
coordinate system Oxyz . Let O be the origin. We will also need another coordinate system

O;%3YpZ; fixed in the center of mass Oy of the UAV (fig.1). The torques and forces
generated by each of the propellers are shown in the Figure 1. The propellers are numbered
1to4[1].

Let E=(x Y z)T be the

coordinates of the center of
mass of the UAV with respect
to the system Oxyz. As
mentioned above, the center of

the mass of the UAV coincides
with the origin of the

coordinate system OgX;YgZ; .

Figure 1. Let us describe the inclined
position of the UAV about the
point O, using yaw, pitch and roll angles. Let @ be the pitch angle, ® be the roll angle

and, finally, let ¥ be the yaw angle. Then we will have two vectors describing the position
of the UAV. Those are the following:

T T
E=(x y z), n=(® © V) )
In the coordinate system the linear velocities V; and the angular velocities V are the

following

Vo=(Va Vi Vi) v=(p q ) @)

In this setup we will have the dynamics of the system as given below [1; 3].
X—TC\I,S@C +TS{,S y—TSySQC TCk,,S 2= g+ch
m o T m > e m e®
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CI): p+sq)s®q+ ‘:Ds®r’ @ZC@q_s®r3 lpzsiq_i_cir’
Co Co © Co
C(1y-ta)ar g T
p= | —IrI—O)F+—, (3)
-1 r
q=( = XX)p —IrimrJr_@,
Iyy |yy "
I —1
r':( = lw)pq—lrlicor+l—‘l’

Where  the  following  notations are used: C_:=cosa, S, =sina,

Ik (-} + ;)
T =T |= Ik(—(olz+co§) and T:ZE:kaf, f:(O 0 T)T
Ty ZTi i [

Let us do the following notations and linearize the system around the origin.

X=X X=X X =Y, X =Y, =2 %X =2 @)
X7:q)9)(8:®9 )g:‘I’,Xlozp, X, =0, X,=Tr
We will have
X=X, % =0%, X=X, X, ==0%, X=X, X =U
. . . ._U2 ._U3 ._U4 ®)
X7_X109 X8_X117 X9_X|2a Xlo_l_a Xll_l_’ XIZ_I_

XX yy z

T
Where U =—-0,U,=1T,, U =Ty, U, =Ty

m
In [2] it is discussed and shown that the system (5) is fully controllable.

3. Stabilization Problem: Let us now define the stabilization problem that we want to
solve.
Problem: Given the system (1.8), the initial position of the system X(O) = X, , find control

0

inputs u’ = (u1 ,

uy uy

uy oup

u, ) such that it drives the system from the given initial position

to asymptotically stable state, while minimizing the given linear quadratic regulator

o0

J[o]zl(: >g2+§ufjdr. ©)

Solution: We will follow Lyapunov-Bellman method to solve this problem. Notice that the
system (5) can be decomposed into 4 systems which are the following.
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8 . u
X=X, X = 0%, X =X, X T O]

W
v, V. . . u
X3:X4’X4:_gxyax7=X10,Xm:|—2 ®)
X5 =Xso X =y ©
v . u
X = X5, X, :|_4 (10)

So, we will have 4 independent systems which are fully controllable. This means we can
solve the problem for each of these systems separately. In this case (6) will be written as

Ie]= 3, [o]+ 3, [o]+ i [o]+ I, [e]

where

J[e]=
J[e]

As we see that system (5) can be divided into four subsystems then it is convenient to search
for a Lyapunov function in the form

V(X X5 ) =V (%% )+ V5 (%, X0, X0, X ) +
+V3(XI’X2’X8’X11)+V4(X9’X12)

We will show the steps for one of the above subsystems (say (7)) and will present the
solutions of other three systems instantly.
So, for (7) Bellman equation will be as follows.

(3¢ + % +u )dr, o] = [ (06 + + +x, +u3 )d,

O'—-S

O ] O'—-S

(x +X+ X+ X+ U )dr, J4[o]:T(x§+x122+uj)dr
0

oV, oV, oV, oV,
Ble]=_ %+ " =AU+ X G X+ X U 11
(o1 = G o B Kt g A R X X an
Where a:L:L. Now differentiating (11) and making it equal to 0 we get that
IS 1%
oV,
w=—jazt (12)
20X,
Then we will have
2
oV, oV, av 1 V.
B . =_3 Z'3 “V3y 221 YV 2 2 2 2 _0 (13)
[o]], ox X, + o, g% + Xs e (6)(”J T R T

We are looking for Lyapunov function in the form shown below.

1
VS(Xl,XZ,XS,X“):E(C“XIZ +022X§ +C88x82 +C1111X121 +2C, %% +2C% % + (14)

+2q}]X]X]l +2C28X2X8 +ZCZIIXZX'II +2C8]]X8XI])
Substituting (14) into (13) leads us to following equation.
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(G X +Cp X, +CigX + Gy X, ) % +(CpX +Cpp X, +Crg X +Cyy X, ) O% +
1
(K X G+ )%, =58 (G X 4Gy Gy X Gy X, ) (15)

X+ +X+X =0
Because the coefficients of polynomials in opposite sides of an equity must be equal, then
from (15) it simply follows that

—lachn+1=0, —la2c2211+c12+1:0,
4 4
1 1
_Zazcszll +0Cy +1=0, _Zazclzm +Gy, +1=0,
1 1
—58.20“102“ +¢, =0, _Eazcmcxu +9¢, =0, (16)

1 1
_Eazcmcml +Cy = 0, _Eazczncsn +Cs+9c, =0,

1, 1,
—Ea GGy Gy G5 =0, —Ea Cy1Cyy; 709G, +C =0
Here the parameters have the values a=205.93, g =9.81. The solution of (16) that makes
V, (x) a positive definite function is the following:

¢, =2912,c, =1.423, ¢, =11.148, ¢, = 0.00997, ¢, =1.121
Cy =2.053, ¢, =0.00971, ¢, =2.979, c,,, =0.0141, ¢, =0.0534

It only remains to substitute values from (17) into (14) and then substitute into (12). Thus,

(17)

we will have uy .

By doing the same steps we will get also V,, V,,V, and u’, u}, u;. For V,, V,,V,,V, we
will have.

V, (%, % ) = 1.732% + 2% % +1.732%

V, (X, X, X5, X0 ) = 14573 +0.712x2 +5.574x3 +0.00499x7 +1.121%,X, —

~2.053%,%, —0.00971% X, — 2.979%,X, —0.0141x,X, +0.0534% X, (18)
V, (X, %, % X ) = 1.457x2 +0.712x2 +5.574x +0.00499x2, +1.121xX, +
+2.053%,X,+0.00971%,%,,+2.979x, X, +0.0141X, X, +0.0534x, X,

V, (%, %, ) = 1.009C +0.0176%,X,, +0.00895,

Hence, optimal control inputs will be:
LY L,V

u’ = =—x, —1.732%,,Uy =——a—= =1.00082x, +1.452X, —5.498x, —1.0276X
ST, X5 ol == o, X 4 X 10 (19)
u = _%a% =-1.00082x, —1.452X, —5.498%, —1.0276X,,,u; = —%bgl =-x,—1.0112x,
1 Xlz

Where b:%:113.62. And Lyapunov function for the system (5) will be the sum of

z

Lyapunov functions of subsystems (7) -(10). That is
V(% X ) =V (06 %)V (6% 0 %0 ) V5 (%%, %, )+ V4 (%%, )
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And the minimal value of (6) is [5]
I ] =V (X g X0
Where X, =% (0), i=1,..,12.

4. Discussion of Results: To visualize the results, we did some simulations. To do this,
we simply substituted the optimal control inputs into the system (5) and get a system of first
order ordinary differential equations. By solving that system, we will get the analytic forms
of optimal trajectories. It is not convenient to show them in the paper because of their
enormous sizes. The initial conditions and values of the parameters are assumed to be the
following:

Xo= 50, X0 = 0, X0 = 30, X0 = 0, Xso = 10, Xs0 = 0, Xi0= 0, X0 = 0,

T 1000 1000
%0 5 X100 X0 Xi20 4 856 3 201

So, for these initial conditions we will have our constraint optimal value equal to
J°[#] =8766.99 . The trajectories of states will have the form given below. The results of

the simulation are presented below by presenting some of the graphs of optimal trajectories
numbered as Fig.2 to Fig.5.

— ol
| L L TTrr— -
1 2 3 4 5

Fig. 2: Trajectory of state X, (t) Fig. 3: Trajectory of state X, (t)

Fig. 4: Trajectory of state X, (1) Fig. 5: Trajectory of state X, (1)
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Conclusion
The problem discussed in this paper is solved using Lyapunov-Bellman method. Lyapunov
Optimal function is acquired, and the optimal control inputs are constructed. Using those
results we also constructed the optimal trajectories of UAV including both geometrical
coordinates and their velocities. Also, the optimal value of the energy constraint is calculated
and given in discussion of results section. The results are then discussed by simulating them
in MATLAB R2018a. Finally, the simulation results are shown in form of graphs.
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