2USUUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

72, №2, 2019

Механика

УДК 539.3

Doi- http://doi.org/10.33018/72.2.5

ДИФРАКЦИЯ ПЛОСКОЙ СДВИГОВОЙ ВОЛНЫ НА КРАЕ ПОЛУБЕСКОНЕЧНОЙ ТРЕЩИНЫ В ПЬЕЗОЭЛЕКТРИЧЕСКОМ СОСТАВНОМ ПРОСТРАНСТВЕ С МЕТАЛЛИЧЕСКИМ СЛОЕМ

Саргсян А.С.

Ключевые слова: пьезоэлектрик, дифракция, сдвиг, полубесконечная трещина, поверхностные волны, электроупругость, металлический слой.

Sargsyan A.S.

Diffraction of plane shear wave at the edge of semi-infinite crack in piezoelectric composite space with a metallic layer

Keywords: piezoelectric, diffraction, shear, surface waves, semi-infinit crack, metallic layer, electro-elasticity. The diffraction of a plane electro-elastic shear wave in the piezoelectric space with a semi-infinite crack between half-spaces is considered, when an electrically conductive metallic thin layer is glued together at the interface of the half-spaces. The problem is reduced to solving a Riemann-type problem on the real axis in the theory of analytic functions. The presence of a semi-infinite crack leads to the propagation of diffracted bulk and surface (localized) electro-elastic waves in piezoelectric half-spaces. We study the distribution of the wave field in half-spaces using the methods of the integral Fourier transform, the theory of functions of complex variable and contour integration.

Սարգսյան Ա.Ս.

Մետաղական շերտով պիեզոէլեկտրական բաղադրյալ տարածությունում սահքի հարթ ալիքի դիֆրակցիան կիսաանվերջ Ճաքի վրա

Հիմնաբառեր․ պիեզոէլեկտրիկ, դիֆրակցիա, էլեկտրաառաձգականություն, մակերնութային ալիք, սահք, կիսաանվերջ ձաք։

Դիտարկվում է սահքի էլեկտրաառաձգական ալիքի դիֆրակցիան պիեզոէլեկտրական տարածությունում՝ կիսատարածությունների միջն կիսաանվերջ ձաքի առկայությամբ, երբ տարբեր բնութագրիչներով օժտված երկու կիսատարածությունների բաժանման մակերևույթը պատված է էլեկտրահաղորդիչ մետաղական բարակ շերտով։ Խնդիրը բերվում է անալիտիկ ֆունկցիաների տեսությունում իրական առանցքի վրա Ռիմանի տիպի խնդրի լուծման. Պիեզոէլեկտրական կիսատարածություններում տարածվում են կիսաանվերջ ձաքով պայմանավորված դիֆրակցված, ծավալային և մակերեվութային (տեղայնացված) էլեկտրաառաձգական ալիքները։ Հետազոտվում է ալիքային դաշտի բաշխումը կիսատարածություններում՝ օգտագործելով Ֆուրյեի ինտեգրալ ձևափոխության, կոմպլեքս փոփոխականի ֆունկցիաների տեսության և կոնտուրային ինտեգրման մեթոդները։

Рассматривается дифракция плоской электроупругой волны сдвига в пьезоэлектрическом пространстве при полубесконечной трещине между полупространствами, когда на границе раздела полупространств склеен электропроводящий металлический тонкий слой. Задача сводится к решению задачи типа Римана на действительной оси в теории аналитических функций. Наличие полубесконечной трещины приводит к распространению дифрагированных объёмных и поверхностных (локализованных) электроупругих волн в пьезоэлектрических полупространствах. Исследуется распределение волнового поля в полупространствах, используя методы интегрального преобразования Фурье, теории функций комплексного переменного и контурного интегрирования.

Введение. Задачи дифракции электроупругих волн на неоднородностях, на крае трещин и металлических слоёв являются актуальными задачами электроупругости, и результаты, полученные в этой области науки, имеют теоретическую значимость для развития методов математической физики. С практической точки зрения эти задачи

тесно связаны с развитием прикладных задач механики сплошных сред, электроакустики, пьезотехники и измерительных приборов. Электроупругие волны в диэлектрических средах, обладающих пьезоэффектом, возникающие при некоторых условиях взаимодействия физических полей и при определённых структурных строениях этих сред, локализованные волны имеют фундаментальные значения при изучении волновых процессов в этих средах [1-6]. В [2,3] рассмотрены задачи дифракции плоской электроупругой волны сдвига падающей из бесконечности на полубесконечный металлический слой или на полубесконечную трещину в пьезоэлектрическом пространстве. Задача дифракции плоской электроупругой сдвиговой волны в среде пьезоэлектрик-диэлектрик на тонком полубесконечном, металлическом слое в диэлектрике без пьезоэффекта рассмотрена в [4]. В пьезоэлектрической среде по причине дифракции возбуждаются поверхностные волны сдвига и проявляются новые волновые явления. Распространение поверхностных сдвиговых волн, локализованных у граничной плоскости раздела двух пьезоэлектрических полупространств, склеенных электропроводящим тонким слоем, исследуется в работе [5]. Получено условие распространения электроупругих поверхностных волн при полном контакте полупространств с разными электроупругими характеристиками, которое использовано и в данной задаче дифракции. В работах [6-9] исследованы задачи распространения электроупругих волн в средах сложной, неоднородной структуры. Изучены процессы дифракции плоских электроупругих волн на полубесконечной трещине между скреплёнными по остальной части контактной плоскости диэлектрическими полупространствами. Исследуется дифракция электроупругой волны сдвига на полубесконечном электроде в пространство из двух одинаковых пьезоэлектрических полупространств, разделённых вакуумным слоем. В этой работе исследуется волновое сдвиговое поле в составном пьезоэлектрическом пространстве при металлическом слое между полупространствами. Выявлены особенности, обусловленные наличием пьезоэффекта и дифракцией распространяющейся сдвиговой плоской волны на полубесконечной трещине между полупространствами.

1. Постановка задачи. Рассматривается задача дифракции падающей из бесконечности сдвиговой электроупругой волны в составной пьезоэлектрической среде. Дифракция обусловлена наличием полубесконечной трещины между пьезоэлектрическими полупространствами с разными электроупругими характеристиками. Рассматриваемая электроупругая среда приведена к декартовой системе координат Oxyz, пьезоэлектрические полупространства – пьезоэлектрики класса 6mm гексагональной симметрии с совпадающей с осью Од главной осью кристалла, занимают полупространства y > 0 и y < 0. Тонкий металлический слой занимает граничную плоскость Охг, из-за малой толщины пренебрегается жёсткость. Электропроводящий слой можно рассматривать как электрод. Пьезоэлектрические полупространства скреплены по плоскости y = 0, x > 0, $-\infty < z < \infty$, т.е. считаем, что между полупространствами осуществляется акустический контакт в плоскости Oxz при x > 0. В плоскости Oxz при x < 0 ($y = 0, x < 0, -\infty < z < \infty$) между пьезоэлектрическими полупространствами взаимодействие происходит без акустического контакта. Принимается, что рассматриваемая составная диэлектрическая среда с пьезоэффектом имеет полубесконечную трещину в плоскости Oxz при x < 0 [12,13]. Таким образом, в пьезоэлектрическом полупространстве из бесконечности под **VГЛОМ** $\theta_0 \left(0 < \theta_0 < \pi / 2 \right)$ к плоскости y = 0 распространяется плоская электроупругая волна сдвига

со следующими значениями амплитудных составляющих перемещения и электрического потенциала, соответственно [2,3]

$$w_{\infty}(x, y) = e^{-ik_{1}x\cos\theta_{0} - ik_{1}y\sin\theta_{0}}, \quad \Phi_{\infty}(x, y) = \frac{e_{1}}{\varepsilon_{1}}e^{-ik_{1}x\cos\theta_{0} - ik_{1}y\sin\theta_{0}}.$$
 (1.1)

Задача заключается в определении волнового поля в пьезоэлектрических полупространствах, учитывая гармоническую зависимость от времени всех составляющих волнового поля – временной множитель $e^{-i\omega t}$. Здесь ω – частота колебаний, t –параметр времени, $k_i = \omega/C_i$, $C_i = \sqrt{c_{44}^{(i)}(1+\chi_i)/\rho_i}$, $\chi_i = e_i^2/c_i\varepsilon_i$ – волновое число, скорость распространения сдвиговой электроупругой волны и коэффициент электромеханической связи в пьезоэлектрических средах y > 0 и y < 0, соответственно. В этих соотношениях $c_i = c_{44}^{(i)}, \varepsilon_i = \varepsilon_{15}^{(i)}$ – упругая, диэлектрическая и пьезоэлектрическая постоянные в пьезоэлектрических полупространствах, ρ_i – плотность, i = 1, 2.

Среда находится в условиях антиплоской деформации. Принимаются дифференциальные уравнения динамической теории упругости и уравнения электродинамики в квазистатическом приближении. Для определения амплитуд перемещения и электрического потенциала в полупространствах имеем следующие уравнения [2–5]:

$$\frac{\partial^2 w_i}{\partial x^2} + \frac{\partial^2 w_i}{\partial y^2} + k_i^2 w_i = 0, \quad \frac{\partial^2 \Phi_i}{\partial x^2} + \frac{\partial^2 \Phi_i}{\partial y^2} + k_i^2 \frac{e_i}{\varepsilon_i} w_i = 0 \qquad i = 1, 2$$
(1.2)

В приведённых уравнениях $w_1(x, y), \Phi_1(x, y) - \phi$ ункции амплитуд перемещения и электрического потенциала пьезоэлектрика $y > 0, -\infty < x < \infty$, а $w_2(x, y), \Phi_2(x, y) -$ пьезоэлектрика $y < 0, -\infty < x < \infty$.

Амплитуды электрического потенциала удовлетворяют следующим контактным условиям из-за наличия металлического слоя в плоскости контакта [2–5]:

$$Φ_1(x, y) = Φ_2(x, y) = 0$$
 при $y = 0.$ (1.3)

На берегах трещины для амплитуд напряжений $\sigma_{yz}^{(1)}, \sigma_{yz}^{(2)}$ имеем условия:

$$\sigma_{yz}^{(1)} = c_1 \frac{\partial w_1}{\partial y} + e_1 \frac{\partial \Phi_1}{\partial y} = 0, \quad \sigma_{yz}^{(2)} = c_2 \frac{\partial w_2}{\partial y} + e_2 \frac{\partial \Phi_2}{\partial y} = 0 \qquad y = 0, x < 0 \tag{1.4}$$

Разница перемещений на берегах трещины – неизвестная пока величина

$$w_1(x,+0) - w_2(x,-0) = w_0(x) \qquad \text{при } x < 0.$$
(1.5)

Решения уравнений (1.3) должны удовлетворять контактным условиям скрепления при y = 0, x > 0 [4–7]

$$\sigma_{yz}^{(1)}(x,+0) = \sigma_{yz}^{(2)}(x,-0) = q_0(x), \quad w_1(x,+0) = w_2(x,-0).$$
(1.6)

Функции $q_+(x) = q_0(x) \vartheta(x)$ и $\psi_-(x) = w_0(x) \vartheta(-x)$, $\vartheta(x) - функция Хевисайда, представляют касательное напряжение при <math>y = 0$ и разницу перемещений на $y = \pm 0$, соответственно. Контактные условия на граничной плоскости раздела полупространств (1.4)–(1.6) принимают вид [6,7]:

$$c_1 \frac{\partial w_1}{\partial y} + e_1 \frac{\partial \Phi_1}{\partial y} = c_2 \frac{\partial w_2}{\partial y} + e_2 \frac{\partial \Phi_2}{\partial y} = q_+(x) \qquad \text{при} \qquad y = 0$$
(1.7)

$$w_1(x,+0) - w_2(x,-0) = \psi_{-}(x).$$
(1.8)

Задача определения дифрагированного электроупругого волнового поля в составном пьезоэлектрическом пространстве при дифракции падающей из бесконечности плоской электроупругой волны сдвига (1.1) сведена к решению дифференциальных уравнений (1.2) при контактных условиях (1.3), (1.7), (1.8).

2. Решение задачи. Применяется интегральное преобразование Фурье по переменной *x*, и выражения для искомых функций амплитуд перемещения и электрического потенциала в полупространствах получим после обратного преобразования Фурье в виде

$$w_{i}(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{w}_{i}(\sigma, y) e^{-i\sigma x} d\sigma$$

$$\Phi_{i}(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\Phi}_{i}(\sigma, y) e^{-i\sigma x} d\sigma$$
(2.1)

где трансформанты Фурье искомых функций представляются в виде

$$\overline{w}_{1}(\sigma, y) = A_{1}(\sigma)e^{-\sqrt{\sigma^{2}-k_{1}^{2}y}} + 2\pi e^{-ik_{1}y\sin\theta_{0}}\delta(\sigma - k_{1}\cos\theta_{0})$$

$$\overline{\Phi}_{1}(\sigma, y) = B_{1}(\sigma)e^{-|\sigma|y} + \frac{e_{1}}{\varepsilon_{1}}\overline{w}_{1}$$

$$y > 0$$
(2.2)

$$\overline{w}_2(\sigma, y) = A_2(\sigma)e^{\sqrt{\sigma^2 - k_2^2}y}, \ \overline{\Phi}_2(\sigma, y) = B_2(\sigma)e^{|\sigma|y} + \frac{e_2}{\varepsilon_2}\overline{w}_2 \qquad y < 0, \qquad (2.3)$$

здесь

60

$$A_{1}(\sigma) = -\frac{\overline{q}_{+}(\sigma)}{c_{1}|\sigma|K_{1}(\sigma)} + 2\pi \left(1 + \frac{2\chi_{1}}{K_{1}(k_{1}\cos\theta_{0})}\right)\delta(\sigma - k_{1}\cos\theta_{0})$$
(2.4)

$$B_{1}(\sigma) = -\frac{e_{1}}{\varepsilon_{1}}A_{1} - 2\pi\frac{e_{1}}{\varepsilon_{1}}\delta(\sigma - k_{1}\cos\theta_{0}), A_{2}(\sigma) = \frac{\overline{q}_{+}(\sigma)}{c_{2}|\sigma|K_{2}(\sigma)}, B_{2}(\sigma) = -\frac{e_{2}}{\varepsilon_{2}}A_{2},$$

$$\delta(\sigma) = \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-i\sigma x}dx - \phi$$
ункция Дирака.

Трансформанты функций амплитуд перемещения и потенциала электрического поля для пьезоэлектрических полупространств удовлетворяют как соответствующим уравнениям, так и следующим контактным условиям на плоскости раздела двух сред $\overline{w}(\sigma + 0) - \overline{w}(\sigma - 0) = \overline{w}(\sigma)$

$$w_{1}(\sigma+\sigma) - w_{2}(\sigma,-\sigma) = \psi_{-}(\sigma)$$

$$c_{1}\frac{d\overline{w}_{1}}{dy} + e_{1}\frac{d\overline{\Phi}_{1}}{dy} = c_{2}\frac{d\overline{w}_{2}}{dy} + e_{2}\frac{d\overline{\Phi}_{2}}{dy} = \overline{q}_{+}(\sigma) \qquad \text{при } y = 0 \qquad (2.5)$$

$$\overline{\Phi}_{1}(\sigma,+\sigma) = \overline{\Phi}_{2}(\sigma,-\sigma) = 0$$

 $\overline{\psi}_{_-}(\sigma), \overline{q}_{_+}(\sigma)$ – трансформанты Фурье функций $\psi_{_-}(x)$ и $q_{_+}(x)$.

Характеристические функции $K_1(\sigma)$, $K_2(\sigma)$, как известно [1–3], представляются в виде

$$K_{1}(\sigma) = (1+\chi_{1})\frac{\sqrt{\sigma^{2}-k_{1}^{2}}}{|\sigma|} - \chi_{1}; \quad K_{2}(\sigma) = (1+\chi_{2})\frac{\sqrt{\sigma^{2}-k_{2}^{2}}}{|\sigma|} - \chi_{2}$$
(2.6)

Выполняя условия уходящей волны, принимается, что $\gamma_1(\sigma) \rightarrow |\sigma|$, $\gamma_2(\sigma) \rightarrow |\sigma|$ при $|\sigma| \rightarrow \infty$, действительная ось обходит точки ветвления $\sigma = -k_1$, $\sigma = -k_2$ сверху, а $\sigma = k_1$, $\sigma = k_2$ - снизу, $\gamma_1(\sigma) = \sqrt{\sigma^2 - k_1^2} = -i\sqrt{k_1^2 - \sigma^2}$, $\gamma_2(\sigma) = \sqrt{\sigma^2 - k_2^2} = -i\sqrt{k_2^2 - \sigma^2}$ [10].

Относительно функций $\overline{\psi}_{-}(\sigma), \overline{q}_{+}(\sigma)$ получим из (2.5) следующее уравнение:

$$c_{1}c_{2}\left|\sigma\right|K_{1}\left(\sigma\right)K_{2}\left(\sigma\right)\overline{\psi}_{-}\left(\sigma\right)+\left(c_{1}+c_{2}\right)K\left(\sigma\right)\overline{q}_{+}\left(\sigma\right)++4\pi ik_{1}c_{1}c_{2}\sin\theta_{0}\left(1+\chi_{1}\right)K_{2}\left(k_{1}\cos\theta_{0}\right)\delta\left(\sigma-k_{1}\cos\theta_{0}\right)=0$$
(2.7)

здесь характеристическая функция данной задачи со смешанным условием на контактной плоскости имеет вид [5,7]:

$$K(\sigma) = \frac{c_1 K_1(\sigma) + c_2 K_2(\sigma)}{c_1 + c_2}$$

Функциональное уравнение (2.7) рассматривается как краевая задача типа Римана в теории аналитических функций на действительной оси. Функции $K_1(\sigma), K_2(\sigma)$ имеют нули только в точках $\pm \sigma_1$ и $\pm \sigma_2$, соответствено, при этом [1–3],

61

$$\sigma_i = k_i \frac{1 + \chi_i}{\sqrt{1 + 2\chi_i}} > k_i > 0$$
 $i = 1, 2$

Функция $K(\sigma)$ имеет нули только в точках $\pm \sigma_0$ [5,7], σ_0 – единственный положительный корень уравнения $K(\sigma) = 0$ при $\sigma = \sigma_0 > k_2 > k_1 > 0$, если

$$\sqrt{1 - \frac{k_1^2}{k_2^2}} < \frac{\chi_1}{1 + \chi_1} \left(1 + \frac{c_2 \chi_2}{c_1 \chi_1} \right), \tag{2.8}$$

при $k_1 > k_2$, $\sigma_0 > k_1$ условие имеет вид $\sqrt{1 - \frac{k_2^2}{k_1^2}} < \frac{\chi_2}{1 + \chi_2} \left(1 + \frac{c_1 \chi_1}{c_2 \chi_2}\right)$.

Рассматривая области монотонности функций $K(\sigma), K_1(\sigma), K_2(\sigma)$, доказывается, что $\sigma_1 < \sigma_0 < \sigma_2$ или $\sigma_2 < \sigma_0 < \sigma_1$.

Для определения искомых функций $\overline{q}_{+}(\sigma), \overline{\psi}_{-}(\sigma)$ функциональное уравнение (2.7) решается, используя методику, развитую в [2–4,9], решения строятся, факторизуя функцию $L(\sigma)$, представляя её в виде

$$L(\sigma) = L^{+}(\sigma)L^{-}(\sigma), \quad L(\sigma) = \frac{K_{1}(\sigma)K_{2}(\sigma)}{K(\sigma)}.$$
(2.9)

Функции $K(\sigma) \to 1$, $K_1(\sigma) \to 1$, $K_2(\sigma) \to 1$ при $|\sigma| \to \infty$, $K_i^{\pm}(\alpha) \to 1$, $K(\alpha) \to 1$ при $|\alpha| \to \infty$,

где функции $L^{\pm}(\alpha)$, $\alpha = \sigma + i\tau$ регулярны и не имеют нулей при $\operatorname{Im} \alpha > 0$ и $\operatorname{Im} \alpha < 0$, соответственно. $L^{\pm}(\sigma)$ – граничные значения этих функций.

$$L^{+}(\sigma) = \exp(F^{+}(\sigma)), \ L^{-}(\sigma) = \exp(F^{-}(\sigma)),$$

$$F^{+}(\sigma) = \int_{0}^{\infty} F(x)e^{ix(\sigma+i0)}dx, F^{-}(\sigma) = F^{+}(-\sigma),$$

$$F(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \ln L(\sigma)e^{-i\sigma x}d\sigma, \ L^{-}(-\sigma) = L^{+}(\sigma).$$

При решении функционального уравнения (2.7) и факторизации функции $L(\sigma)$ принимается, что действительная ось обходит, как точки ветвления $\pm k_1, \pm k_2$ функций $\gamma_1(\alpha), \gamma_2(\alpha)$, так и нули функций $K(\sigma), K_1(\sigma), K_2(\sigma) \pm \sigma_0, \pm \sigma_1$ и $\pm \sigma_2$, т.е. действительная ось обходит точки $\sigma = -\sigma_0, \sigma = -\sigma_1, \sigma = -\sigma_1$ сверху, а точки $\sigma = \sigma_0, \sigma = \sigma_1, \sigma = \sigma_1 -$ снизу, обеспечивая условия уходящей волны [2, 3, 10]. Аналитическое продолжение функции | σ | в комплексной плоскости представляется $|\alpha| = \alpha$ при $\operatorname{Re} \alpha > 0$, $|\alpha| = -\alpha$ – при $\operatorname{Re} \alpha < 0$. При контурном интегрировании имеется в виду, что

$$\frac{1}{s-(\sigma-i0)} = \frac{1}{s-\sigma} - i\pi\delta(s-\sigma),$$

используется формула

$$2\pi i \delta(\sigma - k \cos \theta_0) = \frac{1}{\sigma - k \cos \theta_0 - i0} - \frac{1}{\sigma - k \cos \theta_0 + i0}.$$

Имея в виду (2.9) и представление

ду (2.9) и предси

$$\left|\sigma\right| = \left(\sigma - i0\right)^{\frac{1}{2}} \left(\sigma + i0\right)^{\frac{1}{2}}$$

выражения искомых функций принимают вид (c + c)b

$$\overline{\Psi}_{-}(\sigma) = \frac{(c_{1}+c_{2})b}{c_{1}c_{2}(\sigma-i0)^{1/2}L^{-}(\sigma)(\sigma-k_{1}\cos\theta_{0}-i0)}$$

$$\overline{q}_{+}(\sigma) = -\frac{b(\sigma+i0)^{1/2}L^{+}(\sigma)}{\sigma-k_{1}\cos\theta_{0}+i0},$$
(2.10)

где

$$b = -\frac{2c_{1}c_{2}k_{1}\sin\theta_{0}(1+\chi_{1})K_{2}(k_{1}\cos\theta_{0})}{(c_{1}+c_{2})\sqrt{k_{1}\cos\theta_{0}}K(k_{1}\cos\theta_{0})L^{+}(k_{1}\cos\theta_{0})}$$

Функции амплитуд перемещения в пьезоэлектрических полупространствах при *x* < 0 принимают вид: $-ik_1 x \cos \theta_0 - ik_1 y \sin \theta_0$ (1) $-ik_1 x \cos \theta_0 + ik_1 y \sin \theta_0$

$$w_{1}(x, y) = e^{-ik_{1}x\cos\theta_{0} - ik_{1}y\sin\theta_{0}} + A^{(1)}e^{-ik_{1}x\cos\theta_{0} + ik_{1}y\sin\theta_{0}} - \frac{b}{2\pi c_{1}}\int_{-\infty}^{\infty} \frac{\left(\sigma + i0\right)^{1/2}L^{+}(\sigma)e^{-i\sigma x}e^{-\sqrt{\sigma^{2} - k_{1}^{2}}y}d\sigma}{\left|\sigma\right|K_{1}(\sigma)(\sigma - k_{1}\cos\theta_{0} + i0)}$$
(2.11)

63

$$w_{2}(x, y) = \frac{b}{2\pi c_{2}} \int_{-\infty}^{\infty} \frac{\left(\sigma + i0\right)^{1/2} L^{+}(\sigma) e^{-i\sigma x} e^{\sqrt{\sigma^{2} - k_{2}^{2} y}} d\sigma}{|\sigma| K_{2}(\sigma)(\sigma - k_{1} \cos \theta_{0} + i0)}$$
$$A^{(1)} = 1 + \frac{2\chi_{1}}{K_{1}(k_{1} \cos \theta_{0})} = \frac{i(1 + \chi_{1}) \sin \theta_{0} - \chi_{1} \cos \theta_{0}}{i(1 + \chi_{1}) \sin \theta_{0} + \chi_{1} \cos \theta_{0}}$$

а при x > 0 $w(x, y) = e^{-ik_1 x \cos \theta_0 - ik_1 y \sin \theta_0} + A^{(2)} e^{-ik_1 x \cos \theta_0 + ik_1 y \sin \theta_0} +$

Отметим, что в частном случае, при контакте пьезоэлектрического полупространства y > 0 с диэлектрическим полупространством y < 0 без пьезоэффекта, следует в вышеприведённых формулах принять $e_2 = 0$ [4,6]. Интегралы преобразуются методом контурного интегрирования в комплексной плоскости $\alpha = \sigma + i\tau$. Показаны разрезы в комплексной плоскости и путь интегрирования. Путь интегрирования при x < 0 замыкается в верхней полуплоскости и действительная ось обходит точки $\mp \sigma_1$, $\mp \sigma_2$ сверху и снизу, соответственно, для полупространств y > 0 и y < 0. Аналитические продолжения функций $K_1(\sigma)$, $K_2(\sigma)$, т.е. функции $K_1(\alpha)$, $K_2(\alpha)$, при таких разрезах в

комплексной плоскости, не имеют чисто мнимых, а также комплексных нулей, это следует из постановки задачи (принцип уходящей волны). Особые точки являются простыми полюсами $\sigma = \sigma_1$ и $\sigma = \sigma_2$. Интеграл представляется в виде суммы регулярных интегралов [3,4,8]. Волновое поле состоит из падающей и отражённой волн, дифрагированных затухающих объёмных волн, а также дифрагированной поверхностной волны Гуляева–Блюстейна, локализованной у контактной плоскости

$$w_{1*}(x, y) = A_{*}^{(1)} e^{-\sqrt{\sigma_{1}^{2} - k_{1}^{2} y}} e^{-i\sigma_{1} x} \qquad y > 0$$

$$w_{2*}(x, y) = A_{*}^{(2)} e^{\sqrt{\sigma_{2}^{2} - k_{2}^{2} y}} e^{-i\sigma_{2} x} \qquad y < 0$$
(2.13)

$$A_{*}^{(1)} = -\frac{ibL^{+}(\sigma_{1})}{c_{1}\sqrt{\sigma_{1}}K_{1}'(\sigma_{1})(\sigma_{1}-k_{1}\cos\theta_{0})}, A_{*}^{(2)} = \frac{ibL^{+}(\sigma_{2})}{c_{2}\sqrt{\sigma_{2}}K_{2}'(\sigma_{2})(\sigma_{2}-k_{1}\cos\theta_{0})}$$

Эта волна распространяется по оси x с волновым числом σ_1 и σ_2 , со скоростью ω/σ_1 и ω/σ_2 в полупространствах y > 0 и y < 0, соответственно, и затухает при $|y| \rightarrow \infty$. Дифрагированные волны обусловлены наличием полубесконечной трещины, а появление поверхностной волны обусловлено также пьезоэффектом. Асимптотическое представление перемещений на граничной плоскости y = +0 при $x \rightarrow -\infty$ имеет вид [2–4,11]

$$w_{1}(x,0) = (1+A^{(1)})e^{-ik_{1}x\cos\theta_{0}} + A_{*}^{(1)}e^{i\sigma_{1}|x|} + e^{i(kx-\frac{\pi}{4})}O(|kx|^{-\frac{3}{2}}) + O(|kx|^{-\frac{3}{2}}),$$

а на граничной плоскости y = -0 при $x \to -\infty$

Функция перемещений точек полупространства x > 0 представляется в виде суммы регулярных интегралов, падающей, отражённой и проходящей волн, и дифрагированной поверхостной волны, локализованной у контактной плоскости

$$w_{10}(x, y) = A_0 e^{-\sqrt{\sigma_0^2 - k_1^2 y}} e^{i\sigma_0 x}, \qquad w_{20}(x, y) = A_0 e^{\sqrt{\sigma_0^2 - k_2^2 y}} e^{i\sigma_0 x}$$

$$A_0 = -\frac{ibK_2(-\sigma_0)}{c_1\sqrt{\sigma_0}K'(-\sigma_0)L^-(-\sigma_0)(\sigma_0 - k_1\cos\theta_0)}.$$
(2.14)

Действительная ось обходит точки $\mp \sigma_0$ сверху и снизу, соответственно. При некоторых значениях электроупругих характеристик составного пространства – условия (2.8), $-\sigma_0$ является корнем уравнения $K(\sigma) = 0$. Путь интегрирования замыкается в нижней полуплоскости [6,7]. Аналитическое продолжение подынтегральной функции при таких разрезах в комплексной плоскости имеет только

единственную особую точку – простой полюс $\sigma = -\sigma_0$. Асимптотическое представление на контактной плоскости y = 0 при $x \to \infty$

$$w_{1}(x,0) = (1+A^{(2)})e^{-ik_{1}x\cos\theta_{0}} + A_{0}^{(1)}e^{i\sigma_{0}x} + e^{i(kx+\frac{\pi}{4})}O((kx)^{-\frac{3}{2}}) + O((kx)^{-\frac{3}{2}}).$$

Волновое поле перемещений состоит из падающей волны, отражённой и проходящей волны, дифрагированных затухающих объёмных волн распространяющаяся по направлению x к $+\infty$ со скоростю ω/σ_0 (σ_0 – волновое число) локализованной волны. Следует отметить, что $\omega / \sigma_1 < \omega / \sigma_0 < \omega / \sigma_2$, если $\sigma_1 > \sigma_2$ и $\omega / \sigma_2 < \omega / \sigma_0 < \omega / \sigma_1$, если $\sigma_2 > \sigma_1$, т.е. если локализованная сдвиговая волна существует, электромеханические характеристики удовлетворяют условию (2.8), то значение её скорости распространения находится между значениями скоростей поверхностной волны Гуляева–Блюстейна $W_{1*}(x, y)$ и $W_{2*}(x, y)$, распространяющаяся по $x \in -\infty$, когда между полупространствами отсутствует акустический контакт. Как видно из (2.11), (2.12) и асимптотических представлений, вместе с цилиндрической волной появляется и волна, распространяющаяся от контактной плоскости и имеющая неволновой характер на этой плоскости.

Заключение. Результаты работы могут быть использованы при рассмотрении других задач механики сплошных сред и объяснения физико-технических и экспериментальных результатов при проектировании и создании новых инженерных приборов и устройств. Пьезоэффект в твёрдой диэлектрической составной среде и дифракция падающей сдвиговой волны на полубесконечной трещине приводят к появлению сдвиговых поверхностных – локализованных у контактной плоскости, электроупругих волн с разными скоростями распространения.

ЛИТЕРАТУРА

- Балакирев М.К., Гилинский И.А. Волны в пьезокристаллах. Новосибирск: Наука, 1982. 240с. Balakirev M.K., Gilinskiy I.A. Waves in piezocrystals. Novosibirsk: Nauka, 1982. 240p. (in Russian)
- Григорян Э.Х., Мелкумян А.С. Дифракция сдвиговой плоской волны в пьезоэлектрическом пространстве на краю полубесконечного металлического слоя. //Изв. НАН Армении. Механика. 2004. Т.57. №4. С.43–52. Grigoryan E.Kh., Melkumyan A.S. Diffraction of shear plane wave in piezoelectric media on the edge of semi-infinite metallic strip. //Proceedings of NAS of Armenia. Mechanics. 2004. Vol. 57. Issue 4. Pp.43–52. (in Russian)
- Григорян Э.Х., Джилавян С.А. Дифракция плоской сдвиговой волны на полубесконечной трещине в пьезоэлектрическом пространстве. //Изв. НАН Армении. Механика. 2005. Т.58. №1. С.38–50. Grigoryan E.Kh., Jilavyan S.H. Diffraction of a plane shear wave on semi infinite crack in a piezoelectric space. //Proceedings of NAS of Armenia. Mechanics. 2005. Vol. 58. Issue 1. Pp.38–50. (in Russian)
- Джилавян С.А., Казарян А.А. Дифракция плоской сдвиговой волны в пьезоэлектрическом полупространстве при полубесконечном металлическом слое в диэлектрике. //Известия НАН Армении. Механика. Mechanics. 2015. Т.68. №1. С.45–56. Jilavyan S.H., Ghazaryan H.A. Diffraction of plane shear wave in piezoelectric semi-space at a semi-infinite metallic layer in the dielectric medium.

//Proceedings of NAS of Armenia. Mechanics. 2015. Vol. 68. Issue 1. Pp.45–56. (in Russian)

- Аветисян А.С., Маргарян Дж.М. Электроупругие поверхностные волны сдвига на границе раздела двух пьезоэлектрических полупространств. //Изв. НАН Армении. Механика. 1994. Т.47. №3–4. С.31–36. Avetisyan A.S., Margaryan J.M. Electro-elastic surface shear waves on an division surface of two piezoelectric halfspace. //Proceedings of NAS of Armenia. Mechanics. 1994. V.47. Iss. 3–4. P. 31–36. (in Russian)
- 6. Григорян Э.Х., Джилавян С.А., Казарян А.А. Дифракция сдвиговой плоской волны на полубесконечной трещине в пространстве пьезоэлектрик–диэлектрик. //Тр. 7–ой межд.конф. «Проблемы динамики взаимодействия деформируемых сред». Ереван: 2011. С.137–143. Grigoryan E.Kh., Jilayvan S.H., Ghazaryan H.A. Diffraction of a plane shear wave on semi–infinite crack in a piezoelectric–dielectric space. //Proc. of the VII int. conf. «Problems of interaction dynamics of deformable media». Yerevan: 2011. Р.137–143. (in Russian)
- 7. Джилавян С.А., Саргсян А.С. Дифракция поверхностной волны сдвига на полубесконечной трещине в составном пьезоэлектрическом пространстве. // Материалы 5-ой межд.конф. «Актуальные проблемы механики сплошной среды». Ереван: 2017. С.79-80. Jilayvan S.H., Sargsyan A.S. Diffraction of a plane shear wave on semi-infinite crack in piezoelectric composite space. //The proc. of the V int. conf. «Topical problems of continuum mechanics». Yerevan: 2017. P.79-80. (in Russian).
- Belubekyan M.V., Belubekyan V.M. Surface waves in piezoactive elastic system of a layer on a semi-space. //Proc. of the Yerevan State University. Phys. & Math. Sei. 2013.
 P. 45-48.
- 9. Агаян К.Л., Григорян Э.Х. Дифракция сдвиговой плоской электроупругой волны на полубесконечном электроде в пьезоэлектрическом пространстве с щелью. //Известия НАН Армении. Механика. 2010. Т.63. №1. С.50–69. Aghayan K.L., Grigoryan E.Kh. Diffraction of shear plane electroelastic wave on the semi-infinite electrode in the piezoelectric space with crack. //Proceedings of NAS of Armenia. Mechanics. 2010. Vol. 63. Issue 1. Pp.50–69. (in Russian)
- 10. Нобль Б. Метод Винера–Хопфа. М.: Мир, 1962. 294c. Noble. B. Methods Based on the Wiener-Hopf Technique. M.: Mir, 1962. 294p. (in Russian)
- Агаян К.Л., Григорян Э.Х. О новом методе определения асимптотических формул в задачах дифракции волн. // Доклады НАН Армении. 2010. Т.110. №3. С.261– 271. Aghayan K.L., Grigoryan E.Kh. On New Methods of Asymptotic Formulas Determination in Waves Diffraction Problems. //Reposts of NAS RA. 2010. Vol. 110. Issue 3. Pp. 261–271 (in Russian).
- Jiao F.Y., Wei P.J., Li L. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces. Ultrasonics 73, 22– 33 (2017).
- 13. Zhang P., Wei P.J., Li Y.Q. In-plane wave propagation through a microstretch slab sandwiched by two half-spaces. Eur. J. Mech. A Solid 63, 136–148 (2017)

Сведения об авторе:

Саргсян Арсен Сурикович – аспирант кафедры механики, Ереванский Гоуниверситет. Тел.: (+374 77) 124310. E-mail: <u>arsensargsyan777@gmail.com</u>

Поступила в редакцию 12. 03. 2019 г.