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TYpPbI OCHOBAHHS.

A fairly wide class of mixed and contact problems of mechanics of deformable solids is described by
Fredholm integral equations of the second kind with symmetric kernels. For solving such equations, a well-known
method of degenerate kernels is developed in the paper. The stated methodology is illustrated on the example of an
integral equation of the E.Ja. Shtaerman generalized contact problem on indentation of a punch into an elastic half-
plane taking into account the surface structure of the base.

Introduction. The method of integral equations being one of the effective methods of
solution of mixed and contact problems of mechanics of deformable solids was widely
applied in numerous investigations [1-9]. By the method of Green function, such problems
are directly reduced to Fredholm integral equations (IE) of the first kind as well, but most
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of them can be transformed into Fredholm equations of the second kind. The Ilatter
equations can also directly arise in contact problems. This is the case in the problem of
contact interaction between the elastic bodies taking into account the factor of the surface
structure of the bodies contacting between each other, usually the factor of roughness by
Shtaerman model of contact [1]. According to this model, because of the local
deformations, the arising local displacements in each point of the contact zone are
proportional to the contact stress at the very point. In such formulation in [10] an axially
symmetric contact problem on indentation of a punch, circular in the plan, into a rough
elastic half-space, also described by Fredholm IE of the second kind, is considered.

Numerous effective methods of solving the Fredholm IE of the second kind [11-13] are
developed and among them the Fredholm method of reducing the original IE to the system
of linear algebraic equations (SLAE) holds a special place. The procedure of reducing to
SLAE is greatly simplified in case of degenerate kernels of IE. That is why the method of
the degenerate kernels of IE solution, when the original kernel is approximated by the
degenerate kernel with great exactness, has got an intensive development [11-13].

In the present paper, the method of degenerate kernels is applied to solving the
Fredholm IE of the second kind with symmetrical kernels, by which integral operators with
discrete spectra are generated and for these operators corresponding spectral relationship
are well-known. The idea of the paper lies in the fact that based on the spectral relationship
bilinear expansions of the kernels in the form of infinite series are written, then these
infinite series are replaced by the finite series and, by that, the original kernels are
approximated by degenerate kernels.

There is a list of symmetric kernels, for which the spectral relationship [7, 8, 14, 15] of
Fredholm IE of the second kind are well known; with such kernels in the framework of the
above mentioned E.Ja. Shtaerman contact model a wide class of contact problems is
described. The method of degenerated kernels is concretely illustrated here on the example
of E.Ja. Shtaerman  generalized problem [1] on indentation of a punch of the general
configuration into an elastic half-plane. It is proved that the approximate solution by the
method of degenerate kernels, as the number of summands of the finite series increases
infinitely, tends to the exact solution of the problem. For this purpose the issue of regularity
of the corresponding infinite SLAE is investigated. In particular cases the numerical
analysis of the problem is conducted.

1. General preconditions of the method of degenerate kernels.

Let us have Fredholm IE of the second kind

(p(x)+ij(x,s)(p(s)ds:f(x) (xel) (1.1

with symmetrical quadratically summarized on LxL by kernel K(x,s), where L is a

finite or infinite interval of the numerical axis. The integral operator K , originated by
kernel K (x,s)(x,s€LxL), has discrete specter and for it let spectral relationships take

place
J.K(x,s)q),1 (s)w(s)ds=n,9,(x) (n=0,1,2,...). (1.2)

Here A, are eigen values, @, (x) are eigen functions, composing full orthogonal
systems in space L,(L), and w(x) is non-negative weight function by which functions

0, (x) are orthogonal:
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[o.(x)0, (x)w(x)dxz{}z EZiZ; (13)

L

As kernels K (x,s) with above properties the following kernels can be taken
X+s

l)ln; L:(—a,a); 2) In

P L=(ba) (b>0);

e
1

_ L:—oc,(x;4# O<u<l/2); L=(-a,a);
2sin(|x—s|/2) ( )i (0<n<12) (~a.a)

n
r=sf

3) Ku(|x_s|)/|x_s|H (W <12); L=(-a,a); L=(0,»);

3) In

6) TJH (kx)JH (Xs)kzﬂ’dk(xzo; |y|<1/2); L=(0,a);

cos(mn)du (x,>0, m=0,1,2,..); L=(0,a).

T ) Va2 +52 ~2xs cosu
e
7) ZJ. 2 2
0 VX +s” —2xscosu
Here K, (x)—Macdonald’s function of index w and J, (x)— Bessel’s function of first kind

of index .

Fredholm IEs of the first kind with these kernels describe numerous mixed and contact
problems of mechanics of deformable solids. In [7, 8, 14, 15], as well as in papers cited in
[14, 15] for such kernels spectral relationships of type (1.2) and related to them integral
relationships are established.

Now for the function f(x) from L,(L) we write the formulas of Fourier generalized

transformations in the system of functions @, (x):
f(x)=2a,0,(x) (xeL)
n=0

a, =%£f(x)(pn (x)w(x)dx (n=0,1,2,..).

Using formulas (1.4) for kernel K (x,s) at fixed x, the following bilinear expansion of

(1.4)

the kernel in the system of functions ¢, (x) will be obtained:

K(x,s):;%wnz(x)@m (s) ((xs)eLxL). (1.5)

If in expansion (1.5) we replace the infinite sum with the finite sum restricting the
number of terms by n, then thereby kernel K (x,s) will be approximated by the

degenerate kernel K, (x,s):

A
K(x,s)an (x’s):Zh_M(p”’ (x)(pm (s) (1.6)

Further, in IE (1.1) kernel K (x,s) is replaced by K, (x,s) from (1.6). After the simple

transformations we shall have
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(p(x)+X§%X”7(pm (x)=f(x) (xel)

" . (1.7)
X’" :J.(P(S)(Pm (S)ds (m:()’n)~
L
From here the approximate solution of the original IE (1.1) will be in the form of
n }\’
o(x)= f(x)-1), 7" X,0,(x) (xeL), (1.8)

m=0 hm

of course, if the coefficients X, are already determined. For the determination of these
coefficients we multiply both parts of (1.7) by o, (x) (k = O,_n) and integrate the obtained

equality over the interval L. As a result, we come to the following SLAE:

X, +an:2—mkaXm =/ (k=0.n) (1.9)

R, = {@m(x)@k(x)dx (kom=0.n); £, = .Lff(x)(pk(x)dx.

Thus, the method of degenerate kernels in the above described form reduces the solution of
the original IE to the solution of SLAE (1.9).

Note, that in paper [10] with the help of bilinear expansion (1.5) for a symmetric kernel
in the form of Veber-Sonin integral the solution of corresponding Fredholm IE of the
second kind is reduced to the solution of the regular infinite SLAE. In paper [16] the
method of reduction of the general class of integral equations with the symmetric
quadratically summable difference or summation or difference-summation kernels to
regular infinite SLAE is suggested. Moreover, by means of expanding the kernel function
in Fourier cosine-series or in the series of other complete orthogonal systems of functions
bilinear expansion of (1.5) type is applied. However, for the noted above class of kernels
the application of expansions (1.5) in eigenvalue functions of kernels is more convenient
and the use of degenerate kernels technique based on above expansions turns to be more
simple.

This method is applicable to the solution of IE of I.Ja. Shtaerman generalized contact
problem [1].

2. The formulation of the contact problem and derivation of basic equations.
Generalizing the 1.Ja. Shtaerman contact problem [1], we assume that the absolutely rigid
punch, the base of which in the cross-section cut by the plane Oxy is described by the

equation y=f (x), is indented under the influence of the central vertical force P and

overturning moment M into the elastic half-plane with Young module E and Poisson
coefficients v (Fig.1).
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Here, instead of the Hertz smooth contact model we take the I.Ja. Shtaerman contact model
[1] which takes into account the factor of the surface structure of deformable bodies
contacting between themselves. According to this model the vertical displacements of the
boundary points of the elastic half-plane are consisted of two summands. The first
summand [1]

2(1-v%)

V(x)z—SJlnL (s)ds+C —o<x<w, 9= —

p
o]

arises in consequence of global deformation of the elastic body caused by the applied in

the contact area —a < x < a pressure p(x) of the punch on the foundation in accordance

with the differential equations of linear elasticity theory. The second summand v, (x)
arises in consequence of local deformations, conditioned by roughness (non-smoothness) of
the contact surface, and it is considered, that at each point of the contact area it is
proportional to the pressure p(x) at the same point: v, (x)=—x p(x), where x is some

coefficient, depending on the surface structure of the elastic body. Eventually, for the
vertical displacements v, (x) of the boundary points of the elastic half-plane we shall have

v, (x)=v(x)+v,(x)= —xp(x)—\‘)j. 1nﬁp(s)ds+€ (~a<x<a). 2.1)

On the other hand, the vertical displacements v, (x) of the punch, as an absolutely rigid
body, have the form of
vi(x)=A+ox (-a<x<a), 2.2)
where a is the angle of the rigid rotation of the punch, and A is its settling.

Now, substituting (2.1) and (2.2) into the contact condition [1]
v (x)=v,(x)=8-f(x) (-a<x<a),
for the determination of the unknown contact pressure, we obtain the following Fredholm
IE of the second kind:
Xp(x)+Sjlnla—|p(s)ds=8—(xx—f(x) (—a<x<a). (2.3)

2o |x—s

Here, §—A+C is denoted by d .

The governing IE (GIE) (2.3) should be considered under the conditions of the punch
equilibrium
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jp(x)dx:P; j.xp(x)dx:M. 2.4

Equations (2.3)—(2.4) will be the basic equations of the considered contact problem. In
them we pass to dimensionless coordinates and values, assuming

E_,:x/a, n :s/a; 9, = aS/X; a, = aa/xE; 8, = B/XE;
p(&)=p(at)/E: f,(§)=r(at)/Ex (-1<&n<l).
As aresult, GIE (2.3) is transformed into the following GIE:
1
1
g)+9, [ lnmpo(n)dnﬁo—aoa—ﬁ(a) (-1<g<1), 2.5)
-1
and the conditions (2.4) — into the following conditions:

jpo (EME=F, (B, = P/aE):; japo eMe =M, (M, =M/a’E). (2.6)

3. The solution of GIE (2.5)- (2.6) by the method of degenerate kernels. The method
described in section 1 will be applied to the equations (2.5)-(2.6). In the given case

L= (—1, 1) and the spectral relationships (1.2) have the form of [7, 8, 14]

1
I L(mdn_ |1 7(6) (n=12..)
el “| \/1 "2 (n=0); (-l<E<l);
where T, (&) are Chebishev polynomials of the first kind, the conditions of orthogonality

(1.3) has the form
' 0 (m # n);
d
JTm (€)7,(¢) =l (m=n=0); (w(a) —1/\i-¢? )
B - /2 (m=n#0)
and the formulas of Fourier generalized transformation (1.4) have the form of

=§;fmfm(a) (-1<g<1)
7 =%j—f(§)Tm(§)d‘i (m=1,2,.).

el

As a result, the bilinear expansion of the kernel (1.5) in the given case for the
symmetrical logarithmic kernel is written in the form of

In2 (m=0);
-1 R 1 =
L A
m

Later in accordance with (1.6), (1.8) and (1.9) in the given case the degenerate kernel is
represented by the formula

1nﬁ= K,(&n)= iame (&), (n) (-l<&m<l),

m=0

the approximate solution of GIE (2.5) is represented by the formula
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po(8) =8~ &= £, (8) =8 2 a,X,T,(8) (-1<E<1), (3.
m=0
and the unknown coefficients X, are determined from SLAE

X, +9,Ya R, X, =g (k=0n)
=0

B =ka(é)Tm(é)d‘§ (kom =0.n): g, =jg(é)Tk(é)d§; (3.2)
g(&)=8,—a,t—£, (&)  (-1=g<1).

By the substitution & =cost integrals R,, and g, are transformed into the integrals

km

R =]£cosktcosmtsintdt (k,m:(),_n);
0

. (3.3)
g, =8,R,, — R, — [ (k :O,_n); fi :jﬁ)(cost)cosktsintdt
0
and are easily calculated. Upon that
1 _1 m+k
(=) 12 + 12 (m#k-1 m#k+1);
R, = 2 (m+k) -1 (m-k) -1 (3.4)
0 (m:k—l; m:k+1).
From here, particularly,
(1)’ (-1) -
——— (k#1); — k#2); —
Ry=2 R, = ooy KF) g e (k22 (k=0.n).
0 (k=1); 0 (k=2);

Now, taking into account the expression of the coefficients g, from (3.3), SLAE (3.2)
is represented in the form of
X, +802Lkam =8,R,y — 0 R, — f; (k:ﬂ)
=0 (3.5)
L, =a,R, (k,m = O,_n)
Let us the solution of SLAE (3.5) for the right - hand side equal to R,, denote by
XU, for the right - hand side R,, —by X\”, and for the right —hand part f, —by X" .
Then solution (3.5) is represented in the form of
X, =8,x" —a, X = XY (k=0,n). (3.6)

Then, referring to the conditions of punch equilibrium (2.6), with the help of (3.1) and
(3.6) for the determination of parameters 8, and o, we obtain the following SLAE:

{auSo +a,a, =b,

(3.7)
a8, + a0, =b,
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m=0

By equations (3.7) the dependence between the geometrlcal parameters of the problem
d, and 0, corresponding to the reduced settlement of the punch and its reduced angle of

rotation, respectively, with power parameters F, and M, is established.
Note, that taking into account (3.6) the solution (3.1) may be written in the form of

po(g):{l_soiamXS)Tm( i| {& OLOZa Xr(nz T, :|ao+

m=0

(3.8)
+9, > a, X1, (&) (-1<g<1).
m=0
In order to investigate the convergence of the approximate solution (3.8) to the exact
solution of GIE (2.5)—(2.6), it is necessary to pass from the final SLAE (3.5) to the infinite
SLAE:

X +9,0 L, X, =8 Ry —a,R, —f, (k=12..). (3.9)

m=0
Coming out from (3.4), it is easy to observe that at different parities of £ and m we
have R, =0. That is why in (3.4) and (3.9) k& and m should be considered
simultaneously even or odd numbers. Then the infinite system (3.9) splits up into the

following two separate infinite SLAE, corresponding to the symmetric and skew-symmetric
parts of the considered contact problem

X, +9,> Ly, 0, Xy, =8R, 0~ fo, (P=0,12,...)
q=0

1n2(q=0) (k=2p, m=2q); (3.10)
L2p,24 = a2qR2p~2q; an = l ((] =12 )
q 2 b 2
X2p—1 + SOZLprl,qulXqul = _GORZp—l,l _f2p4 (p = 1,2,...)
q=1
(k:2p—1,m=2q—1) 3.1
2
L2p—1,2q—1 = a2q71R2p71,2q71; Ay = ﬁ (p,q =1, 2’~~)~

Here, according to (3.4)
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1 1
R =— + p,9=0,1,2,...);
2p.2q [4(p+q)2—1 4(p—q)2—1:| ( )

1 1
RZp—l,Zq—l :_|: 3 + 3 ] (p,q =1,2,...).

4(p+q—l) -1 4(p—q) -1
4. The investigation of the infinite systems (3.10)—(3.11). These infinite systems will

be investigated on regularity. With this aim referring to the infinite system (3.10) we
estimate the sums [12]

S,y =8 a0, Ry, | (P=0,1,2..).
q=0

Taking into account the expression R,

(3.12)

s from (3.12), it may be written

Lo 22
4(p+a) 1| [4(p=ay -1 | |42~

+9,[ 84 +58 ] (p=0,1,2..);

S,, <9, a,, 9, +
-

> ] 1 1 1 (4.1)
S(l) — — —’ (2) = —_——.
CE G [4(p=a) -1
It is evident, that
1 1
< =0,1,2,...).
Therefore
> 1 > > 1 1. 2
SSp) :z Z Z =—1In

q:1q|:4(p+q)2—l} =19 (‘I _1) qlq(Zq—l)(Zq-i-l) 2 ﬁ.

Here the well-known formula from [17] (p. 22, form. 0.238.1) was applied. Thus,

2p

1. 2
SW< n— =0,1,2,...). 42
2 e (r ) 4-2)

The sums S§1p) will also be estimated with the help of Cauchy - Buniakovsky inequality:

0 « mi m%gl N
Szp—\/;qz ;[4(p+q)2_1}2 %\;(4(] —1)

Calculate the sum

2
=1 1 1 1
;(4(12—1)2_4;[261—1 2q+1j B

8

1le 1 ! 1 v 8
:ZLZ—I:(Zq—I)Z_2q-1(zq—l)(2q+l)+2(2q+l)z}: o

Y
I



Here the expressions of these sums from [17] (p.53. form.1.444.6 and 1.444.7 for
x =0) were applied. As a result,

sO< ™ 28 (p=0,1,2,..). 43
Based on the estimations (4.2)—(4.3), we shall have
1 2
st < mln{ T 8} In—= =0.0965736(p =0,1,2,...). (4.4)
Je 46 Ve ( )

We pass to the estimation of the sums Sé? . At first note, that as above

oy 1 1.2 45
’ ;q(4q2—1) 2o 42

Then, again using Cauchy-Buniakovsky inequality, we can write (p =1,2,...):

< 1 N R R 1 = 1
D e R ) vt
q= q= —qg) - =

q=1 Q‘4(p—q) —1‘

Separately, estimate the sums,

(p-gq=r) (g-p=r)

L 1423
= + <142y ——-

= (4 -1) (a2 1) = (42 1)

Again using the obtained above value for the sum of the last series, we find

-8 n

s i+ P2 T (p=o12,). 4.6
i 8 J6 443 (v ) )

As

1 1, 2
— <1 (p=0,1,2,.), —ln——=<——,
[4p> -1 (v ) 2 Je 43

then from (4.1) with the help of the estimations (4. 4) (4.6) we shall have

S, (21n2+11n} T\‘}) (2ln2+ np+ \/,jo(pzo,lﬂ,...).

We require that the following condition will be fulfilled

[2ln2+ <q, <L

"% fj
Whence we obtain the following condition of complete regularity [12] of the infinite
system (3.10):

9, < %o (0<g, <1). (4.7)

21n2+%1n(2/\/;)+n2/4\/§
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Now we shall show that for those 3,, for which the condition of complete regularity

(4.7) is not fulfilled, the infinite system (3.10) is quasi-completely regular, i.e. a complete
regularity in (3.10) begins with some number. For this it is sufficient to show, that

lirn S2 , =0. Turning to the estimation of sums S§2 , consider the function

1/ [ x+p 1} (le, p:0,1,2,...).

It is evident, that the function f (x) at x >1 monotonously decreases and its value at
. . . . . . 1
the point x=¢ (¢=1,2,...) coincides with the corresponding member of the series ng

Herewith the sum of the series Sz, , beginning from the second member, is equal to the

area of the figure, consisted of the elementary rectangles with the bases of unique lengths.
Therefore,

1 1 r dx
g[z 2 +j 2
4(p+1) -1 1x[4(x+p) —1}

For the calculation of this integral we use the well-known expression of the
corresponding indefinite integral from [17] (p. 84, form. 2.18.4 at m =n=1). As a result,

sW < ! + ! X
T 4p* +8p+3 2(4p2 —1)

(p = 0,1,2,...).

(4.8)
2p+1 )
x| 2pln —2In2+1In(4p” +8p+3 =12,..).
{ p (2p+3j (4p° +8p )} (p )
From (4.8) it follows that
S§2 = O(I/pz) at p —>oo.
We pass to the estimation of the sum ngp) , representing them in the form of
)4
S =U,+V,; U, = Zl; ! +W
Hala(p-q)y -1 P
(4.9

w=SL vyl L o5

" 94(p-q ) -1 STa4(p-q) -1

For the estimation of the sum Wp we introduce to consideration the function

_1/[ - 1] (I<x<p-1; p=3.4.).

It is easy to show, that this function decreases on the line segment 1<x<p, and

increases on the line segment p, <x < p—1, wherein

». :%(4p—w/4p2+3) (1<p. <p-1; p=3).

Let the number p, be between two consecutive natural numbers p, and p,+1. Then
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1 1 Fl Y 1

< dx=—w———
P 4p 8pt3 3(p-1) 4 =t
o (4.10)
—L I dx ( ).
3(p=1) 1 x[4(p-x) 1]
Passing to the estimation of the sum V , represent them in the form of
=1 1
V =
P S prr4rt -1
and introduce to consideration the decreasing function
1
h = (x21).
2()6) (p+x)(4x2—l) (x )
It is evident that
1 o] o0
V <——+|h + . 4.11
" 3(p+1) -!‘ 2 () p+1 '!‘ p+x 4x —1) @1

Further, by the above-mentioned formula from [17] we calculate the integrals from
(4.10)-(4.11). After the simple transformations we find

1 1 1
U < n[(2p-3
AT —8p+3+3( 1)+2(4p2—1){n[(p )

2p-3
2p-1)(p-1) |-n3}-—Z—1n =2 > 4);
<(@p=D)(p-1) -3}t (2 )
1 1 [4p+1

V < In3-In2-In(1+p)|. 4.12
’ 3(p+1)+4p2_1[ y “(”’)} *12

Now from (4.1), (4.8), (4.9) and (4.12) it follows that
S,,=0(1/p) as p >0
and, therefore quasi-complete regularity of the infinite system (3.10) is proved. By the
pretty analogous way it is possible to conduct the investigation on regularity of the infinite
system (3.11).

On the base of the foregoing, the method of reduction [11] is applicable to the infinite
systems (3.10)—(3.11), i.e. the solutions of the corresponding (3.10)—(3.11) of the finite
SLAE as n — oo tends to the solutions of the infinite systems.

5. Numerical results. For Poisson numerical coefficients of an elastic half-plane
material we take v =0,25. Then the dimensionless parameter v = 0,25 may be represented
in the form of

9, :aS/le—S
8

Now for the particular configurations of the punch base, when fo(f‘,)=1 or

Xo; Ay =a/Ey.

fo (?;) =&” we solve SLAE (3.5) at various values of the parameter A,. As a result, the

coefficients X ,E’f ) ( j=1L23k= O,_n) are determined and by formula (3.6) the coefficients
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X, are obtained. Later on from system (3.7) the parameters O, and O, are determined,

and besides it was accepted here that Ry = 0,001, M, =0,00001. Then using the results of
these calculations, the values of the dimensionless contact pressure under the

punch, p, (3';) , as well as the values p, (il) are calculated by the formula (3.8).

In case of fo (&) =1 the graphs of Do (3';) are practically rectilinear segments, parallel to

the axis of the abscissa, which in the process of increase of 4, are removing from the axis

of the abscissa. And in the case of f, (cﬁ) =&’ the graphs of p, (&) at small A,

corresponding to the big values of the local displacements in the contact zone, practically
represent rectilinear segments near the axis of the abscissa. But with the increase of the

parameter 7»0 , when the local displacements become small values, the graphs of p, (&)

gradually take the form of the parabola with branches going to infinity (Fig. 2).

—e—A,=0.1

P& DR

——A,=3

I, . g

R

PO00000 000 S AAAARAANIASAARAEEEE 00000000

-1 -05 0 05 1 5

Fig. 2

Such parabolas are characteristic for the classical contact problems, when the contact
pressure at the ends of the contact zone becomes infinite.

Values 50 , 0y and p, (il) when fo (&) =1 are given in Table 1 for different 7\,0.
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Table 1

Ao () 24 po(=1) po(1)
0.001 | 0.000834 | -0.00015 | 0.000684 | 0.000984
0.005 | 0.002171 | -0.00015 | 0.002022 | 0.002324
0.1 ] 0.034514 | -0.00016 | 0.035603 | 0.03593
0.3 | 0.105856 | -0.00019 | 0.116166 | 0.116546
0.5 ] 0.180771 | -0.00022 | 0.207713 | 0.208146
0.8 | 0.298264 | -0.00026 | 0.361064 | 0.361576
1| 0.379268 | -0.00028 | 0.471833 | 0.472396
5| 2.17879 | -0.00079 | 3.30652 | 3.30809
10 | 4.57025 | -0.0014 7.4174 7.4202
20 | 9.45821 | -0.00261 16.1845 | 16.1898
50 | 24.3141 | -0.00623 | 43.8278 | 43.8403
100 | 49.2167 | -0.01222 | 91.3401 | 91.3645

In Table 2 the same parameters when f, (EJ) = &7 are represented.

Table 2
A [ 24} po(=1) po(1)

0.001 0.0015 | -0.0015 | 0.00135 | 0.00165
0.005 | 0.005502 | -0.00015 | 0.005351 | 0.005652
0.1 | 0.100548 | -0.00016 | 0.100366 | 0.100693
0.3 | 0.300642 | -0.00019 | 0.300393 | 0.300773
0.5 | 0.500736 | -0.00022 | 0.500417 | 0.50085
0.8 | 0.800874 | -0.00026 | 0.800446 | 0.800958

1 1.00096 | -0.00028 | 1.00046 | 1.00103

5] 5.00271 | -0.00079 | 5.00055 | 5.00212

10 | 10.0048 | -0.0014 | 10.0004 | 10.0032

20 20.009 | -0.00261 | 19.9999 | 20.0051

50 | 50.0215 | -0.00623 | 49.9976 | 50.0101
100 | 100.042 | -0.01222 | 99.9931 | 100.018

With the increase of the parameter 7\,0 , which corresponds to the gradual transition into the

smooth contact model, quantities 80 and po(il) greatly increase, while values of 80 all

the time remain very small.
Now we shall find out the conditions of the absence of the punch rotation when a given

system of forces acts on the punch. Setting O, = 0 into system (3.7), we obtain the

following necessary values of M, and 50, providing the absence of the punch rotation:

71



My=—{[ -9,2" ][ 2-9,1 |+9,20 (Bt £,-9,1)] [(2-9,1");

(5.1)
8o = [Po +fo _Son(3)}/(2 _San(l) );
=S 0, X0 20N ar, X0 (i-123).
m=0 m=0

The calculated by the formulas (5.1) values of 8, and M, for different A, when
fo (E_,) =1+¢€ or f, (EJ) =E&+E for the same value of P, are given in Table 3.

Table 3
N fo(©)=1+8 fo(®)=&+¢
0 60 M() 80 MO

0.001 0.0015 | 0.000666 | 0.000834 | 0.000666
0.005 | 0.005502 | 0.003318 | 0.002171 | 0.003318
0.1 | 0.100548 | 0.061202 | 0.034514 | 0.061202
0.3 | 0.300642 | 0.157898 | 0.105856 | 0.157898
0.5 | 0.500736 | 0.231072 | 0.180772 | 0.231072
0.8 | 0.800874 | 0.312955 | 0.298264 | 0.312956

1| 1.00096 | 0.35511 | 0.379268 | 0.355111

51 5.00271 | 0.636414 | 2.17881 | 0.636418

10 | 10.0048 | 0.714155 | 4.57033 | 0.714167

20 20.009 | 0.764888 | 9.45859 | 0.764915

50 | 50.0215 | 0.802989 | 24.3169 | 0.803067
100 | 100.042 | 0.818321 | 49.2273 | 0.818474

From this table it is seen that at small 7\,0, when the local displacements are significant,

8, and M,, are enough small. However, they also increase with the increase of A,.

Conclusion. Rather a wide class of contact and mixed problems of mechanics of
deformable solids is described by Fredholm integral equations of the second kind with
symmetric kernels, for which the corresponding integral spectral relationships are well-
known. In the paper for solving such equations, the well-known method of degenerate
kernels is developed which reduces their solution to the solution of SLAE. The described
method is illustrated on the example of the I.Ja. Shtacrman generalized contact problem on
the punch indentation into an elastic half-plane taking into account the surface structure of
the foundation.
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