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Putiwh puntp. &Ynit vwbp, quqh gipdwjuwght hnup, wdwhnniy-hwdwjunipnit juw:

Carosin P.O.
O BJIMSIHMM FPAHUYHBIX YCJIOBHI HA aMILIMTYIHO-4ACTOTHYIO 3aBHCUMOCTH HeJIMHEHHBIX uIaTTepHBIX
KOJIe0aHMIT MPSIMOYT0JIbHOI NUIACTHHKY NPU KPUTHYECKUX CKOPOCTSIX

PaccmarpuBaercsl 3aj1aua HENMHEHHEIX KOJeGaHMIl M30TPOIHON NpsAMOYTOIbHON IUIACTHHKH, 00TeKaeMOH
CBEPX3BYKOBBIM IIOTOKOM Trasa. MccienoBaHHE MPOBELCHO C y4ETOM OOOMX THIIOB HEIMHEHHOCTH: adpOIUHA-
MMYECKO#i (KBaIpaTHUHOI M KyOHUeCKoil) 1 reoMeTpuyeckoii (KyOudeckoit). I3BecTHO, 4TO 3aBUCHMOCTb YaCTOTHI
HEJIMHEHHBIX KONIeGaH il IIACTHHKI OT AMILIHTYIEI B OTCYTCTBUM OOTEKAOLIETO II0TOKA HOCHT KECTKHIT XapakTep,
T.e. C YBEIMYCHHEM aMILUIMTYIbl YacTOTHI KoleOaHWi Bo3pacTaroT. B HacTosmeif paGoTe YCTaHOBICHO, YTO
IPHUCYTCTBUE OOTEKAIOIIEr0 IOTOKA MOXET CTaTh HCTOYHHKOM KaK KOIMYECTBEHHOTO, TAK M KAaYCCTBEHHOTO
M3MEHEHHs XapaKTepa yKa3aHHOH MOHOTOHHO BO3pAcTaoLIeil 3aBUCHMOCTH. B paGoTe uccieayeTcs BIMsHIE THIIA
3aKPEIUICHHS TPAHMUIB! UIACTHHKY B TAHICHIWAIBHBIX HAIPABICHISIX HA aMIUIUTYJHO-4aCTOTHYIO 3aBHCHMOCTb
HEeNMHEHHBIX (IaTTepHBIX KONeGaHuil MApHUPHO ONEPTON [0 BCEMY KOHTYPY IPSMOYTOIBHOW IUIACTHHKH LU
KPHUTHYECKOH CKOpocTH 1oToKa. IToka3aHo, UTo IepexoJl U3 OJIHOTO THIIA aMIUIHTYIHO-aCTOTHOMH 3aBUCHMOCTH K
IPYTOMy MOXKHO PEry/IHpPOBATh COOTBETCTBYIOLIMM BBIOOPOM KakK I€OMETPHYCCKHX H (PH3HYCCKHX MapaMeTpOB
a9pOYIPYroil CHCTEMBI, TaK M 33 CYET U3MEHEHUS KPACBbIX YCIIOBHIA.

Uwnnjui 0+.0.
Bqpunht wwyplwutkph wqnkgmpnitip Kymb vwih ny gduyhit puntpugh nunwtmdubph
wdyjhumn-hwdwhnipnit juwh Jpu Yphunhjuluwd wpugnipiniaubkph ghypocd

TYhuwplyws £ qugh ghpdwyuwght hnuwpny opghnuynn hqnuupny ninnuilynit uwih ny gduhtt
nwnwinidubph  juunhpp  hp  hwppnipjut dke wwppbp  Eqpuyhtt  wwydwbubph  phuypnud:
ZEnmwgnuinipiniup junwpdws k Eplnt mhyh ny gdwjunipynittiph hwyqundwdp. whpnwrwdquljut
(puwrnwlniuughtt b unpwbwpnuyht) b Epjpuswihwut (unpuwtwpguyhy): Zupnth E np opghnunn
quqh pugwluynpjut nhypnid uwh ny gduyhtt wnwinudutph hwdwpmipjut wdyhwnninhg
Ywpnuip nmbh Ynow  punyp, wjuhtph  wwwnwbnidbiph  wdwyhunmugh dksugdwt hln
hwdwhmipmnitt wdnd E: Ukplujugynn wphiwwnwipnid gnyg t wpdws, np opghnunn quqh
wnluynipjudp gpuhtt wuydwbbph thothnjumpeniip phpnud £ upgws juuh hywhu pubwlulwb,
wjbiybiu b npuwlwljwt  thnpnpumpuip:  Upjwnwipnid  ntunudtwuppdmud £ wnwbighighury
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hnnuljuwynpbt wlpugyus ninuilynit uvwh ny gduyhtt huwnbtpuyhtt wwnwinidubph wdyhnny-
hwdwpmipmnit jwwh Jpw hnuph Yphnhljulwt wpugnipyuit dudwbwl: 8nyg b wpdws, np
wdyhnniyp-hwdwhinipinit juyh dh wkuwlhg dnwoht wiagnidp Jupkih juewywpl) husybu
Epypuswthwlui b phqhfuut wupuwdbnptph hwdwywnwuw ptnpnipjudp, wybiybu b Eqpuyght
wuydwbttph thnihnpunipjut hwpyht:
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The problem of nonlinear oscillations of an isotropic rectangular plate in a supersonic gas flow is examined. The
study was conducted taking into account both types of nonlinearities: wind (quadratic and cubic) and geometric
(cubic). It is known that nonlinear dependence of the frequency on the amplitude of the oscillations of the plate in
absence of flowing stream has a hard character, i.e. with increasing amplitude the frequency increases. In this paper
it is established that the presence of flowing stream may cause both quantitative and qualitative changes of the
character of noted monotonically increasing dependence. The influence of boundary conditions along the tangential
directions of simply supported plate on the dependence amplitude-frequency of non-linear flutter type oscillations
at critical speeds is investigated in this paper. It is shown that transmission from one type of examined dependence
to another can be controlled as via the appropriate choice of both geometrical and physical parameters of aeroelastic
system, as well as via the change of boundary conditions.

Introduction
There are many investigations devoted to the study of stability of plates and shells in
supersonic gas flow [1-5]. A short review of up-to-date known results is brought in the work
[6]. Let us note here the results devoted to the present work only. In the work [5] the
dependence «amplitude-frequency» of non-linear flutter type oscillations is studied in the
case of critical value of flowing speed. It was shown, that a) due to the aerodynamic non-
linearity (especially its non-symmetrical quadratic part) character of the dependence
«amplitude-frequency» of non-linear flutter type oscillations of the plate in a supersonic gas
flow is similar to the character of noted dependency of non-linear natural oscillations of
shells; b) the range of variation of allowable frequencies at which it is possible to excite
flutter type oscillations can be as finite, as well as semi-infinite; c) transition from one type
of «amplitude-speed» dependency into another (up to the impossibility of excitation of such
oscillations) can be controlled with an appropriate choice of the geometrical and physical
parameters of the considered aeroelastic system, depending on the flow speed.
The influence of boundary conditions along the tangential directions of simply supported
plate on the dependence amplitude-frequency of non-linear flutter type oscillations at critical
speeds is investigated in this paper. It is shown that
e The choice of the type of boundary conditions in the presence of flowing stream
may bring to the both quantitative and qualitative change the character of the noted
monotone increasing dependence;
e Transmission from one type of examined dependence to another can be controlled
as via the appropriate choice of both geometrical and physical parameters of
aeroelastic system, as well as via the change of boundary conditions.

1. Stability Problem formulation

The problem is formulated by considering a thin isotropic rectangular plate of constant
thickness N . It is referred to the Cartesian coordinate plane o, 3,y and the coordinate plane

o, coincides with the middle plane of the plate, and the coordinate lines o0 and 3 are
directed along the edges of the considered plate. A supersonic gas flow with freestream
velocity magnitude U, is aligned with the axis Oat, on one side of the panel only. A
supersonic gas flow with freestream velocity magnitude U , is aligned with the axis Oct, on
one side of the panel only.

The initial assumptions for mathematical modeling and investigation of the examined
problem are brought in the work [6]. Here, in addition to the brought in the noted work
stability equations, let’s formulate the boundary conditions only:

fora=0, a=a
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w=0, Ma:—D[S;VZV+HZ;\2V]=O, )
T, =cA,, Ty =0 @
for f=0, B=Db

w=0, Mﬁz—D£Z;\iv+p%2Vj=0, )
Ty =Gy, Ty, =0. )

where TO? , TBO, T;B are the average values of the force at the edges of the plate, A, A,
are average relative declinations of edges, and C_, G- stiffness coefficients of elastic ties.
IfC,, C; are equal to zero, then we deal with a boundary value problem when the edge of

the plate can freely move in own plane, and when C_, C; — are non-zero, then we have a

problem when the edges of the plate are fixed.
2. Solution of stability problem.

An approximate solution of the formulated problem let’s present using Galerkin method.
Substituting it into the stability equations one can obtain a linear non-homogeneous

differential equation with respect to the function F . By satisfying the boundary conditions
one can obtain the following expression for F :

Eh 2 2 2
F(a,Bit)= T[_% f, f, cos(A,a) +8“Tl12 f? cos(7u20c)+9HT112 f, f, cos(A o)+
2 2 2
a ) cos(1,0)+ Oy f, f, cos(A,a)cos(p,B) -
1 Mty
2.2 2 2
_ M f f, cos(k3a)cos(uzﬁ)+(;—12 f? +}\—12 flz]cos(uzﬁ) —~
Aty K K
+%(T£[32 +To’),
where
2
0 n"Ehs, 2 2 2 2 2
= f-+4f S, (- +17)),
a 88.2(1—u28182)( e P 2( s 2))
0 n EhS, B

oo

_ 2( g2 2 2 2
= 8a2(1—u28182)((p (17 +41)+p5,(17+412)), o
Here the following notations are done:
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—1 -1
8, :[1+E_hJ 5, :[1+E_h] . The values 0,=0, 0,=0 -correspond to the
c, )’ be,

conditions of free in the plane edges, non-zero values correspond to the fixed edges, and
values 81 =1, 82 =1 correspond to the conditions of fixed in the plane edges.

o

To determine the unknown functions fik (1) let’s substitute the solution of Galerkin’s form
into the stability equations and using the Bubnov-Galerkin method, with respect to the to

dimensionless functions X, = f,(t)/h, X, = f,(t)/h the following nonlinear system of
ordinary differential equations is obtained [3]:

d’x,  dx 2 5 ) 5
dtzl +Xd_1:+ X, —Ek\/x2 +kv [ocllx1 +a,X +
2 2 2 2\ _
VX, (Bllxl +B12X2)]+QX1 (Yllxl +Y12X2)_0 )
5
d’x, dx, , 2
— 2 by —2+y % +—kvx + kv’ [o,, X X, +
e XdT VX23X1 [211X2
2 2 2 2\ _
VX (B 4B ) [+ Q% (12 +720% ) =0.
Herein, along with the dimensionless time T = ®,1, the following notations are done:
D 2 4zp, h
of =—(A+pf) (i=12), k=—2%5, Q=——7,
poh Po; N 16p,0;
h ® 2 & ©
v=M~—, y=—2, X=—[s+iJ
a @, O, poha,
2 56 16 2
o, =g (e +]), @y = (=+1), (xZI:E(anrl),BH:Bz]:%(anrl), )
1172 o’ 8, + 21’85, + '
B,y = 7’; (z+1), Blz:—7—75(ae+1),y“=Ehkf[1+(p4+2( ! l_u%lz&z ) ’
4 4 48, +5u¢°8,8, + 98
i = Yo = EA{ 4(1+(P4)+ Slo 7t 2 2+2( : H(pzl A 2) )
(1+49%)" (9+4¢7) 1-pu78,8,
163, +8up’s,5, +¢*d
vy, = EM} 16+(p4+2( : M<P21 +9') ,
1-p°5,0,

where ®, and ®, — are first and second natural frequencies of the plate, while Vv is the
reduced speed parameter.

The solution of the nonlinear problem is usually preceded by analysis of the corresponding
linear problem, which is done in detail in the work [6] and accordingly, the critical flutter
speed in the case of the selected buckling form of the plate is obtained. After the nonlinear
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problem is solved using harmonic balace method. As a result the system of non-linear
algebraic equations are obtained [6].

3. Character of the dependence «amplitude-frequency» at critical speeds, when the
edges of the plate have identical fixing conditions

Brought in [4,5] numerical investigations show that the relation N/ @ has essential influence
(both qualitative and quantitative) on the character of the dependence «amplitude-
frequency». That is why the cases of both relatively thick and sufficiently thin plates will be
investigated here separately.

Case 1. Thick plates (h/a>102). The results of numerical solution of the system (15) from

the work [6] for V=V and several boundary conditions are brought in the Table 1.

Calculated values of the amplitude of oscillations are brought here for @ = 70h and for
several fixed b/ a.

Table 1. Dependence “amplitude-frequency, A(G) for h/a=1/70, several b/a

and fixing conditions

b/a=3
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b/a=1.5
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b/a=0.6
e on \O o~
o (@)
[\ O — <
\O O <t O
5, o Q A = RAlc : 2 ao =
— — v—: — —
6=0 S 0 N — o~ < <t [l Q\l — N
\ N X[ e — o0 O v o— O
, S| i~ n N O o S — n S : '
5. = Aad|l = | a=| = = | aq
2 o O o o o O S o O o o
8:1 < A — > [ D N o0 — [ e\l
1 N O A 0 Vel S <+ N 0 S N
1 1 [ O O v o vy — < — O 1
5.=1 Na | 9= | o NS | a3 | ==
2 o O o O (e o O o O o O

In Table 1 the symbol "-" means that the amplitude of oscillation for the specific parameter
set is equals to zero and there are no periodic solutions of the system (15) of the work [6].
Figure 1 is plotted on the basis if the Table 1.

A b=33 B
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a)
Tabe 1 and Fig.1 show, that:

o for b/a>1if § =0(i =1,2) there is a range [6*,6*] of frequency O , where
the function A(e) is a two-value, and out of which the steady nonlinear flutter type
oscillations cannot be obtained (for great values of the relation b/ a one can obtain
0. =~ 0). Uniform increase of values 6i (i =1,2) brings to the increase of the
values O,.. If 8i = l(i =1, 2) , then the interval [9* , oo) exists, where the function

A(e) is a two-valued;
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for 0.5< g <1 regardless of the character of boundary conditions there exists a

finite interval 6, <0 <0 at which nonlinear oscillations are possible. Moreover,

change of boundary conditions causes the change of location and length of the noted
interval;

for sufficiently small values of the parameter b/ a the length of the interval of

frequency change O decreases and tents to zero independently of boundary
conditions (there is impossible to generate nonlinear flutter type oscillations);

with the increase of the parameter 8i (i =1, 2) from zero to unit the tightening of

the amplitude (for b/ a>1) switches from the high-frequency in the direction of
lower frequencies.

b)

Fig.1 Dependence «amplitude-frequency», for & = 70h and several fixing conditions.

Case 2. Sufficiently thin plates (h/a<102). In this case, also, numerical calculations are
done for several values of the parameter b/ a and for several boundary conditions when

h/a is fixed. In particular, in the Table 2 the values of the amplitude are brought, when
a=120h.
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and fixing conditions
b/a=3

Table 2. Dependence «amplitude-frequency», A(G) for h/a=1/120, several b/a
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On the basis of the Table 2 the Fig.2 is plotted.
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Fig.2. Dependence “amplitude-frequency”, for 8=120N and several fixing conditions

Table 2 and Fig. 2 show, that for the examined case when b/a > 0.78, then independently

of boundary conditions the following character of the function A(O) takes place: there is a
such certain value 0, (0, < Gcr ) exists, that it is possible to generate flutter type oscillations

only in the interval [6* , oo) . The value 0. increases with both increase of b/a, and decrease

of h/a. The influence of boundary condition on the character of the function A(e) is

quantitative only. During the transition from the free edges to the case of fixed edges the
amplitude decreases.
Let’s note, also, that if b/a<0.78, then the qualitative change of the character of the

dependence «amplitude-frequency» is possible during the transition from one type boundary
conditions to another (for a fairly thin plates).
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Thus, in the case of the problem with the fixed in the plane edges only two cases of the
dependence “amplitude-frequency” are possible (the dotted lines in the Figures 1 and 2).
Moreover, the transition from one type to another happens only due to the change of the

relation b/ a . In the case of the problem with free in the plane edges the three cases of the

dependence «amplitude-frequency» are possible (solid lines in the Figures 1 and 2).

4. Character of the dependence “amplitude-frequency” for the mixed boundary
conditions

So far we examined the cases when the edges of the plate were similarly fixed. Let’s study
now the cases, when at the adjacent edges of simply supported plate the different boundary

conditions in plane direction are addressed. The condition 81 =0, 82 =1 means, that the

edges of the plate are free in the plane along the axis Oat , and are fixed in own plane along

the axis O . Similarly, the condition 8, =1,0, =0 means, edges of the plate are fixed in
own plane along the axis Oat , and are free in the plane along the axis O . The results of
numerical simulations are brought in the Table 3 for thick (h/a > 10~ ) and in the Table

4 for thin (h/a< 10_2) plates for several values of the relation b/ a and several mixed

boundary conditions.

Table 3. Influence of mixed boundary conditions on the dependence A(G) for h/a=1/70
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b/a=0.9
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Table 4. Influence of mixed boundary conditions on the dependence A(G) for h/a=1/120
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b/a=0.8
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Tables 3 and 4 show, that:

if the plate is thick enough, and the ratio b/ a is greater than unit, then the solution of
the problem with the boundary conditions 81 =0, 52 =1 as qualitatively, as well as
quantitatively no different from the solution of the problem with the free edges in the
plane, and the solution of the problem with the boundary conditions 81 =1, 62 =0 is
similar to the solution of the problem with fixed in the plane edges. This fact also

follows from the expressions for y i When the condition — <1 is true, then the
a

second case takes place independently of the boundary conditions (Fig.1(b)).

If the plate is thin enough, this influence has only quantitative character. Moreover the
value of the amplitudes obtained from the mixed boundary conditions is less than the
corresponding values, obtained in the case of the free in the plane edges and is greater
than the corresponding values in the case of fixed in own plane edges.

Mainly, if the ratio b/ a is greater than unit, the change of boundary conditions along the

edges parallel to the direction of flowing stream have not essential influence on the
dependence «amplitude-frequency» of plates. But the change of boundary conditions along
the edges perpendicular to the direction of flowing stream may have essential (both

qualitative and quantitative) influence. For the rest of values of the ratio b/ a the mixed

boundary conditions in the plane have only quantitative influence on the dependence
«amplitude-frequency».
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At the end, let’s present some in our opinion most important new results obtained in this
study. They are the result of the influence of boundary conditions on the dependence
«amplitude-frequency» of nonlinear flutter of rectangular plates. For clarity and visibility,
let’s note once again that the dependence of the frequency of non-linear oscillations of the
plate on the amplitude in absence of flowing stream has hard character, i.e. with the
increasing amplitude of oscillation the frequency increases. In the present study we found
that:

e The character of the dependence «amplitude-frequency» A(6) is a two-valued at the

certain intervals (closed or semi-infinite) of frequency variation, in particular it is
identical to the nature of this dependency in the case of non-linear own oscillations of
the shells;

e The kind of fixing of plate’s edges in its plane may significantly change the character of
the dependence A(0), when the plate is elongated in the direction perpendicular to the

flow speed. If the plate is elongated in the direction of flow, the influence of the kind of
fixing of plate’s edges in its plane is only quantitative.

e Transition from one type of the dependence «amplitude-frequency» to another can be
adjusted (up to the impossibility of excitation of such oscillations) setting the magnitude
of the speed of flowing stream and changing the boundary conditions, and by the
appropriate selection of the geometrical and physical parameters of the aeroelastic
system.
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