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1.  We consider a thin anisotropic shell of constant thickness N . Assume that the
material of the shell obeys the generalized Hooke’s law and that at each point there is only
one plane of elastic symmetry, parallel to the middle surface of the shell. The latter surface
will be used as surface of coordinates, and the shell will be referred to curvy-liner orthogonal

coordinate’s o and [3, which coincide with the principle curvature lines of that surface. Let

Y represent the distance, measured along the normal, between the point (a,B,y) (OL, B)

of the middle surface and the point of the shell. We assume that
a) the line elements of the shell, normal to the middle surface, do not change their lengths
after deformation,;



b) the normal stresses G, are small as compared with the stresses G, o and Fop>

¢) the shear stresses Moy

and g, vary in the direction of the thickness of the shell in

accordance with the law of the quadratic parabola [13]
Being more rigorous in the formulation of the hypotheses [2,5], we can state here the

assumptions (a) and (b) in the following form:

(a) e, =0 approximately;

(b) the stresses G, do not exert any essential influence on the strain components €,
and € and they can be neglected in the corresponding equations of the generalized Hooke’s

law.

2. By virtue of the assumption (C) concerning the shear stresses Foy and g, we have

X =X~ PN | h?
Tw/ :T-’_%(X +X )+E[’Y2—TJ([)((X,,B)
Y'-Y"~ N | h?
TB‘/ :T-I-%(Y +Y )+5('Y2 —TJ\II((X,B)
Where X* (OL,B), Y* (OL,B) and X~ (OL,B), Y™ (OL,B) are the components along the

axes of the moving trihedron (in the direction of the positive tangents to the lines
B = const, a=const, respectively) of the intensity vectors of the surface loads, applied to

@.1)

the boundary surfaces Y= % h and y=—}h, respectively, while (I)(OL,B), W(OL,B)
are unknown functions. Substituting the value of the tangential stresses Moy and e, from

(2.1) into the corresponding equations of the generalized Hooke’s law [6], we obtain for the
shear strain components L and &, the formulas

AV h’
ew/ = X+EX +5£’Y2—7j®1(a,ﬁ)

i 2.2)
e, :Y+%Y’+%(y2 —%jd)z (o B)

Here we have introduced the following notations:

X =4 a, (X =X )+a, (Y -Y)]

Y =4a, (Y -Y)+a, (X -x7)] .
X'=ay (X" + X )+a,(Y +Y7) o

Y'=a, (Y +Y )+a, (X +X)
O =a,0+a,y, ©,=a,y+a,0 2.5)

where the quantities @, are elastic constants [6].

From the equations of the three-dimensional theory of elasticity, we have for the strain
components [1]
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1ou, 1 8H, 1 4H,

oL

g,=——%+ Uy +——U,
H, coo HH, OB H, oy

2.6)
1 du, 1 6H, 1 oH,
€y =———+——=U + u,
H, o8 H, & ' HH, oa
au,
H o1 H, o[ 1
€p=——| —U, |[+—F—| U, (2.8)
H, B\ H, H, oo | H,
RN L SR I Y
L TR M
2.9)

ea:Hliu +H1i Lua
! oa, ! oy H,

H =A(l+ky), H,=B(1+ky) (2.10)
In these formulas, A= A(OL,B) and B= B(Q,B) are the coefficients of the first
quadratic form of the middle surface k] = k1 (OL, B) and |<2 = k2 (OL, B) are the principal
curvatures of the middle surface; U, =U, (()L,B,'y), Ug = U, ((X,B,y) and

u =u, (OL,B,Y ) are the displacement components of arbitrary points of the shell in the
directions of the tangents to the coordinate lines, respectively.
On the basis of the assumption (a) we find from (2.7)

%:0, 0, =, (o,B) = w(a,p) e

Thus, like in all existing theories of thin shells, the displacement u, of any points of the shell

is independent of the coordinates 7y .

This displacement component has for all points of line elements of a normal to the shell a
constant value, equal to the normal displacement components ® = 0)((1, [3) of the
corresponding point of the middle surface of the shell.

Substituting the expressions for €, , €, , H,,H, and u, from (2.2), (2.10), and (2.11) into

QU
equations (2.9), we obtain differential equations for the displacement components U, and
Us - Integrating these equations and taking into consideration that U, = U(OL,B) and

Uy =V(0c,[3) when ¥ =0 we find

11



2
L =(1+ky u—la—w— (1+y%)%®1 +

)

k)1 K, k)1

l+y—L |—D, +7y| 1+ X+y | 1+y=+ |—X'

( e, y[ S xar i)
k, \h?

= vt W _ ke

p=(rker)V-g 7 y( yzjs :

+y’ (1+y%)%®2 +y(l+y%jY+yz (1+y%j%Y'

Where U= U(OL,B), V= V(OL,B) are the tangential displacement components of the

corresponding point of the middle surface.
In the process of deriving the formulas (2.12) the accuracy was being confined to

(2.12)

consideration of quantities up to those of the order of magnitude of yki , i.e. whenever a

2
sufficiently precise estimation was possible, terms of the order of magnitude of (ykl) s

were being neglected in comparison with unity.
Our formulas (2.12) show that, in the contract to known theories of thin shells [1,2,5,7], the

tangential displacement components U, and Uy of any point of the shell at a distance Y

from the middle surface are, in the case considered here, as in the publication [8,9], non-
linear functions of the distance 7y .

By virtue of (2.12) the strain components €, , €5, €, can be expressed by polynomials in
powers of Y, namely

2 3 4 2 3 4
€, =& +tYK +y M +v 6 +77§, Ep =& TVK, +Y M, +Y 0, +7°E,
€.
Substituting the values of U_, Ug, U, from (2.12) and (2.11), respectively, into the relations

(2.13)
=W+yT+yV+y A+

(2 6) and (2.8), and comparing the resulting expressions for the strain components
,8.,e with the corresponding expressions (2.13), we obtain the following formulas
ococ B p g p g

for the coefﬁcients of the expansions:

._lou 1 0A

€ =¢ —+——V+kw (2.14)
" Ada AB op
, lov 1 0B
g, =g, =——+——U+kWw (2.15)
Bop ABda
. AD (u) B 0 (vj
o= =2 2|, 22X (2.16)
BoBLA) Ada\B
. h(100, 1 0A 10X 1 0A
K=K -——| ——4+——®, [+——+— (2.17)
8 LA da ABOP A da ABa[B
h®(100, 1 0B 1Y 1 3B
=K 24— — O, |[+——+— (2.18)
B op ABoda B B AB da.
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“TB%(@'J el 2 Mam (3 a(e)

1 ok, 1 o(1ow
=-k ——u+k ——| —— |+
" A da Ado \ Ada
2
1 oAdW h(klﬁcbl 15kq>j

AB? oB OB 16 "Ada  Ada

2
P
2 ABoB * 2\ "Ado Ada
_( __kzj LoA, 112X 1 10A,

ABOB ' T2h A dw 2n AB B
B _% 1 ow
kZBaB kZBaﬁ[BﬁﬁjJr
| oBow hz(kzléq)z 1%@]

K, ——
BA’ 6o.6o. 16\ B 6p B o
2

+h—(kz__ jLaB(Dl 1 k_g_lakz
3 AB do. Bop B

"2 )ABd0” 2hBop  2h ABda

3R
BoplAda) ' AdalBop

1 @a\_/\/_ 1 8_A8_W+
> AB? 6o 0B ' A’B P da.

2
el F (k) | T 2 o |+
16| B

o Blop AP

HT oD ok, 10B
LR 2 —24—_ "k |D, |+
+16{A( 1 kZ) oo A(aa—i_BaOC Zj 2}
p i LX) -2k, 2 LBy ]y

2B| op op AR

1T o oY 108

—| —(k)Y)-2k —+——
+2A{8a(k2) e kz}

1[1(ex" 10A_, 1(5\(' 1 0B j
4—| = == ——=X"|+ ==Y
oh| Bl B Aop do. B oo

(2.19)

(2.20)

.21)

(2.22)
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1180, 11 0A W 10k

1 2+ 1 1
"6Ad0 6ABOB ° 16 ' Ada
1akXL(klax llakxj_

27 Ad0 . 3hlUTAdo 2Ada
1 L oA,
Ll Ly
2h AB 0B
_1too, 1 1B, by 10k, 1, 13K,

6B 9B 6 AB da ‘E Ba_B > 2B B

1oY' 110k 1B,
3h B OB 286[3 2h 35 ) AB au
_11o®, 11 0A, 1109,

6B OB 6 ABB oA G

1 1 0B 1111 0 aX'
- 2+_ ___( )__k —
6 ABoa ’ h|6Baop 2B

l ILE}_AX' +1[llﬁ(k2y)_

3 ABOB hl A6 oo
Lol L, }

2 'Ad AB oo

- LL%QQL%(&_KJ@Z_QK o0,
24 A oo 6 AB op 8 A  Oa

e, ZLL%%LL@(&_&)Q 11, oo,
24 B op 6 AB da.\ 4 8B ° 0
1[1 0 0P, 110A

L=— ——(k@l) Lo,

B| 24 op P 8AaB
1[1 0 0P, 1108
LR PR LY
A{246a(kz 2) 6" 20, 8B oa }

(2.23)

(2.24)

(2.25)

(2.26)

2.27)

(2.28)

In the formulas (2.17) to (2.19) we have, in conformity the usual definition of curvature

changes and torsion of the middle surface of the shell [2,5]

oL O0|low u) 1 oAllow v
' Ado|\Ada R ) ABOBIBB R

co_lOoflow v 106Bf1ow_u
* BB\ BB R ) ABdal Ado R

14
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AB| 600 Aop do. B oo O

1 éu 1aA 2(18v 158)
+ - U |+—| —————V
R (BB AB&B R (Ada ABda

Where R =R ((X,B) and R =R (OL,B) are the principal radii of curvature of the

middle surface.
Considering the expansions (2.13) we note that they have some similarity with the analogous
expansions used in ref. [1]; the similarity is, however, only a superficial one. In the

o 2(62w 1 oA dw 1aBawj

2.31)

determination of the strain components €G> €, ref. [1] actually uses expressions in

terms of powers of ¥  keeping at the same time the hypothesis of non-deformable normal

[1,2] while in the present paper , as in the publications [8,9], the relations (2.13) are being
obtained on the basis of the basic assumptions of the theory offered here.

On the basis of (2.13) and of the original assumption (b) we derive from the generalized

Hooke’s law the following expressions for the stress components G, Gpps Top -

0, = B& +B,g, + Byo+y(Bx, + B, + B1)+

+y*(B,n, +B,n, +Bv)+7° (B0, +B,6, + B L)+ (2.32)
+1* (B, &, +B,&, + B, C)

s = Bpg, + Bg, + By +7(B,x, + Bk, + By1) +

+y% (B,ym, + B,n, + B,v)+ 7' (B0, + B,6, + B,L )+ (2.33)

+V4 ( B,&, +B,& + Bzec)

Ty = Bl + By, + 36603+Y(Bm‘<1 + Bk, + 8661:)+
+7% (BN, + By, + BygV) + 77 (B6, + By6, + Bd )+ (2.34)
V4 ( B& + By&, + BG6C)

In these formulas the constants B|k are given by the following expressions in terms of the

elastic constants &, [10,11]

B, = 885 — Ay , B, = 81686 — &8 B, = 88 — 8

Q Q Q
2
B, = aﬂaﬁgs)_ & , B, = allazz2 a12 B, = a12a16£_)a11a26 , (2.35)

= (allazz - a'122>a66 +28,,8,,8 — a‘lla'226 - a228126
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The stresses G, ,Gpg> Ty Tyys T, Produce internal forces (TpTz’ S.S.N,, Nz) and

moments (|\/| »M,,H ), which must satisfy the following statistical conditions [1,2,5]

0 B 0 oA
Z(BT)-T,.=+=Z(A 2L ABKN, =—ABX®
aa( 1) zaa_'_aﬁ( SZ)+S 8B+ 1 1
0 oA 0 oB .
Z(AT)-TZE4+ 2 (B = 4+ ABK. N, =—ABY
8[3( 2) 18[3+60c( SZ)JFSZaBaJF N,
(kT kT ) | BN+ 2 (AN = -2
! " AB|oa: 7 opt (2.36)
O BH)+H B % am,)-M, 22 BN, =0
oo do. 0P op
i(AH)+H‘3—A+i(|3|v|1)—MZ@—ABNI:o
B B oa oL
S-S +kH-kH=0

In these formulas the symbols

X" =X"(o,B), Y =Y (,B), 2" =Z"(at,B)

represent the components of the intensity vector of the applied surface load, referred to the
middle surface of the shell [7], namely

P =pP" (1+LJ(1+LJ+ P (I—L][I—L] (2.37)
2R ) 2R 2R 2R

where P stands generally for X,Y,Z.

The stress resultants appearing in (2.36) are determined in the usual manner [1,2,10]. Without
going into details, we give here the simplest elasticity formulas, which identically satisfy the
sixth equation of statics:

h? h* h? h*
T1 :Cn(gl +En1 +%§IJ+CIZ [82 +En2 +%§2]+

(2.38)
h* N h*
+C| O+ —A+—
‘6( 127 80 Cj
h? h* h? h*
T,=C, (82 +Enz +%§ZJ+C12 {81 +En1 +%§1j+
(2.39)

h*. h'
+C +—A+—
26[@ 127780 QJ

16



h? h h? h
S:Cm( 12“1 80§j+c%(82+5112+%§2j+

h’ h* h’ h'
+C66(co+ak+%gj+kz[cm(axl+%el]+ (2.40)
2 4 2 4
+C26[h K, h—62]+C (h r+h—kﬂ
12 80 12 80

h? h h? h
S =Cy [82 +En2 80§2J+C6(8 + 12111 +%&1]+

h? h*
+C66((0+ X+— )+kl[C26(EK2+%92]+ (2.41)
2 4
+C16 +Cy h—r+h—7»
12 80
3h’ 3h’ 3h’
M1=DII(K1+2—061)+ DIZ(K2 +EO J‘f‘ D16(T+2—0}\,j (242)
3h’ 3h’ 3h’
M2:D22[K2 +2—062]+ DIZ(K1+2_061J+ D26(T+2—0}\,j (243)

3h’ 3h’
Hl = H2 =H = D16 [Kl +EGIJ+ D26 (KZ +EGZ]+

" (2.44)
+D66(T+E}\.j
h h’
N =—(X"=-X")—— 24
1 2( ) —0(a.B) (245)
hoo. .\ I
N2=E(Y -Y )—E\u(a B) (2.46)

In these relations, we have the following formulas for the rigidity constants Cik of

compression and D, of bending:

Cx=hB,, Dy = E Bi (2.47)

We state here that, in the process of substitution of the value of 81,...,(; all terms

containing X and Y can be omitted, still maintaining a sufficiently high degree of accuracy
[7], in all elasticity relations.
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Using the formulas (2.29), (2.30), we can eliminate the displacement components U,V,® of
the middle surface from the relations (2.14) to (2.16) this lead to

. . 1 01| 0e, 0B Adw OA
Kk, +K K +——1— B—+—(82—81)—————0) +
ABOa | Al Jda oo 20B Op

1 o [1] 0, oA Bow 0B
I A D g -6 - | =0
ABOB|B| o op 2 60 da

The equation (2.48) is the third continuity relation for the deformation of the middle surface
of the shell. As it should be expected, the relation does not differ in any way from the
corresponding relation of the classical theory of thin shells [2,5]. The remaining two
conditions of continuity for the deformation of the middle surface will not be needed in the
present paper.

The equations (2.48) is the third continuity relation for the deformation of the middle surface
of the shell. As it should be expected, the relation does not differ in any way from the
corresponding relation of the classical theory of thin shells [2,5]. The remaining two
conditions of continuity for the deformation of the middle surface will not be needed in the
present paper.

The equations (2.14) to (2.31), (2.36), (2.38) to (2.46) taken together represent a complete
system of equations of the theory of shells.

It is known [1,2,5] that such a complete system can be established in various ways. In view
of its extreme complexity in the general case of a shell of arbitrary form, the complete system
of equations will be considered here for one practically important type of shell only.

(2.48)

In the process of solving actual boundary value problems the differential equations of the
shell have to be completed in the usual manner by statement of the boundary conditions
[1.2,3]

3. Avoiding discussions of details, we mention here some possible special type of
boundary conditions.

Free edge: This designation will characterize such an edge (OL = Const) of the shell, for
which

M, =0, H=0, §=0, T,=0, N,=0 (3.1
Simply supported edge. This designation will be used for such an edge (Oc = const) of the
shell, for which

M, =0, T,=0, w=0, v=0, B6,+B,0,+BA=0 (3.2)
Fixed edge with a hinge. This designation characterizes such an edge (OL = const) of the
shell, for which

M, =0, u=0, v=0, w=0, y=0 (3.3)
Clamped edge: This designation refers to such an edge (OL = const) of the shell, for which

u=0, v=0, w=0, y=0

2 34
ia\—N—klu+h—CI)1:0 G4
A oo 8

Of course, other boundary conditions are still possible. The boundary conditions for an edge
[3 = const can be stated in an analogous manner.
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Concluding this Section, we note that the subject of the boundary conditions requires special
investigations.
A detailed study of the results presented in the first three Sections of this paper reveals the

following fact: the special case, characterized by o, =0, o =0, o5 =0, leads to the
basic relations and equations of the theory of anisotropic shells based upon the hypotheses of
non-deformable normals.

4. Consider a shell in the form of a circular cylinder of radius R. We take the o and 3

coordinate lines to be directed along the generators and the parallel circles of the middle
surface, respectively. Assume that the shell is being acted upon by normally applied loading
only. For such a shell

A=const, B=const, k =0, Kk, :lR @.1)

The coefficients of the expansions (2.13) are

1 ou lov 1 1 ou 1 8v
g =——, & =——+—=W, O=——+— (4.2)
A oo Bop R B@B Aaa

1 o’w h* 1 oD,

K=" 22" e A
A" 0o~ 8 A oo
(4.3)
e Ldw 11ov p10o,
* B*0p® RBOB 8 B P
__ 2 dw Elﬂ_h_z la‘D L 100,
AB codf R Ada B o A oda
o 1 16W+h2118<D wa
=0 = RB’0p° I6RB 0B '
AL Sw 1100 10,
RABdoop 16 Rl B o A da
o L0 o100, , 100 100, ws)
6A Oa 6B Op 6B 03 6A oa
1 100, l1{l1od, 1 o®
& = S e . (4.6)
SBR OB 6R\ B B  4A da
The equations of equilibrium assume the form
1o 108 ToH 1My
Ado B O Ada B 0B
lﬂ+l§+_N2=O’ 1 oH _— 1 aM Nl =0 4.7
B Ada R Bop A oo

L1oN, 10N, 1
Ado Bop R’

=7
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Substituting the expressions for 81,...C from (4.2) to (4.6) into the formulas (2.38) to

(2.46), we obtain the stress resultants in term of the unknown functions U,V, W, .

Substituting the obtained expressions of the stress resultants into the equations of equilibrium
(4.7), we find a final system of the five differential equations for the five unknown functions

U,V, W, ¢,y , namely

1 0 10
Vl(Cik)u+V6(C,k)v+{CnK£+C2()Ea—ﬁ+
h? 1 0’ 1 o 1 & ||w
+—(C,,+C +C +tC,, —— | —+ 4.8
12{( 2 "6)AB2 doop® ' A’Boo’op B 6[33}}R *9

+Q4( Ik’a1k)W+Q5( Ik’aik)(P=0

16 10
Vi (C)u+V,(C)v+<C), =——+C,y ———+
(v, (Cvr{es t B e, 10
3 3 3 3
c. 138 c. 13 a3}C26 12 d _c, 1 52 1"": ws)
B’ 6B’ A o AB? 0.0p A'B 00’0B |[ R

( |k’a1k)\|l+R5( |k7a1k)(P 0

C12 A C26 1i + szli‘*'cmli X"’
A&oc B oB B oB Ada )R

2 2 2
de,+ e, Lo e, LO)wW, (4.10)
12| 2B op? AB B ) |R
+Rt( |kaa1'k)‘|’+P5( ik’aik)q)zz
1 0 1 82 v
D, ——+2D, ——— A
( 2B gt A da P ABa ]R @4.11)

_Ez( lk)W S( |k=a1k)\V Ss( |k9a1k)

1 o 1 0 1 0 v
(D@a—az”DW@“zD%*Dlz)ﬁaaaBJ—‘

_El(Dik)W_ K4(Dik9ak)W_K5(Dik9aik)(P_

(4.12)

where
1 & 1@ 1o
Vl(qk):CHEW_FC%E&_BZ—'—zCIGEaaaB
1@ 1o 1 &
V2(Gi) = Cor g 357+ oo 7 307 2% 2B Bt
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1 o 1 & 1 &
Vs (Clk)zcm Ew+(clz+066)ﬁﬁ+cm EG_BZ
1 & 1 0’
———+3D————+
11 A3 aa?: 16 AZB aa26B
1 0’ 1 &
——+D,, ——
66) AB2 8&882 26 B3 al33
3 3
1 0 iD 1 0

E (D,)=D

+(D,, +2D

% (Bw) = D g+ 3P g ™
1 o 1 o
#(Da+2D ) s dadp PN o

L 3h* 10
H(C'k’ak){("4)E‘C26ma4‘}za+

h* (7 N
—C,a, +C a. |-(I-5)— |——
J{120R2(16 it 268‘5) ( )12}88[3

. h3 I‘]4 7 182
R (Curt)=(1-9) i o Gt o -

2R 120R|\16

9 1 & 25 1 &°
--C,a, — -|=C a, +C.a. |———
8 26 740 AB aoc@B (16 66 " 4i l6a15] Az 80(2:|

h* 7 9 0°
Qi(Cik’aik):—|:( C,a _C66a4i +C16ai5j

120R| (16 ™ 16 000p
9 1 o° 7 1 &2
_Ecmaﬂ FW_'—(EC%&“ +C66315J§8_Bz:|
h? 1 &
SI (Dik9aik) :E (Dl68g5 + D66a4i )?W"‘(z D26a4i + D6Ga1'5 +
1 o 1 & . _.h
+Dnais)ﬁw+(|3na4i + Dzsais)ga—Bz}(' —5)5

2 2

h 1 0
Ki (Dik’aik) :B[( Dn% + D16a4i )F@"’(z D]6a1'5 + D66a4i +

D8y )= =Tt (Dya, + Dyt ) |+ (i)
2% ) AR 0aop 26 %H4i 66%s) g2 8B2 12

Thus, the problem of the anisotropic cylindrical shell is reduced to a system of five

differential equations (4.8) to (4.12) for the five unknown functions. Having obtained the

latter, we will find without difficulty the stress resultants, as well as the stresses, by means

of the formulas (2.32) to (2.34), to (2.46) and (4.2) to (4.6)
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The system of equations (4.8) to (4.12) undergoes substantial simplification in the case of a
transversely isotropic shell [10]. It is known that for a transversely isotropic solid we have

1
a'16:0’ a26:O’ a-45:“3‘54:0a ay = a5 =

G’

E E
= B =—, = , B =
B, %) 1_H2 B, =B, By 2(“‘“)

where E is the modulus of elasticity in the plane of isotropy L is Poisson’s ratio, G is the

(4.13)

shear modulus for planes normal to the plane of isotropy.
We assume the plane of isotropy of the material to be parallel, at each points of the shell, to
the middle surface of the latter.

The coordinates O, 3 are to be chosen in such a manner that the coefficients of the first
quadratic form assume the following value [1,2]

A=1, B=R (4.14)
By virtue of (4.13) and (4.14) the final system of equations becomes simpler and assumes the
following form:

62u+1—p82u+1+u o’v +£8_W+(1+u)h2 o°w
0o’ 2R OB’ 2R 0udp  Roo  24R  oadp’

2u-9h* Py 1-pht & @
Buop Sy luit P,
3840 R “0adp 240 R *“op
l+p 0°u 1-pd’v 1 0v 1 ow h ow
+ Tt e T o 4 An3
2R dadp 2 oo’ RIOP? REAB 12RO
1_ h2 3 4 2 51_ h4 2
( u)3 62W+ 7h 3a44a\|2;+( p) aff- wlo
24R° Oo"0f 1920R B 768R o
1-p)h?
_&\Vzo
12ER
pou 1ov w h* o°w 7h' oy
bt et e T P a2 T TR P
Roe R R 12R op> 1920R° *“ op
(4.17)
2 2 2 2
-0y (1) 21y
12ER 0B 12E  Jda Eh
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R da> R 0p® Rowp R of° E
(4.18)
h? 1-po*y 1 0%y l+p 0%
-—a,, st —— =0
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R 600p R 0adp> op
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As an example, we shall treat here the problem of a horizontal tube, of transversely isotropic
material, simply supported at its ends. The tube is entirely filled with a liquid of specific
weight 7. The weight of the tube material shall be neglected [7,12].

Measuring the angle 3 from the lowest point of the cross section of the tube, we use the
expansions
mra

I b

UZZZAmcosnB cos

V= Z z B,,, sin NP sin m:roc , @= Z z D,,, cosnB cos mlfcoc (4.20)

mrao mno

W:ZZCmncosnBsin T w=ZZEmsinnBsin |

The chosen functions fulfil the boundary conditions of simple support along the edges
o =0, =1, as well as the conditions of periodicity with the period 27 for the argument

[ . The acting load, the radial pressure of the fluid, is

q=Rr(1+cosP) 4.21)
It can be represented by the double series
. Mmra
Z= Z Z J.y,, €Os NP sin I (4.22)
m n
Where the coefficients (,,, are given [7,12] by
4vR 4vR

_0, q. =R o IR (4.23)

qrm qmo mn qml mn

In view of the good convergence of the expansions with respect to the subscript
m=1,3,5,... we will confine ourselves in the following to the first term
Substituting the functions U,V, W, d,\y from (4.20), and the function Z from (4.22) into the

corresponding equations of the system (4.15) to (4.19), we obtain, for each pair of values of
M and N a system of a five equations for the five unknown coefficients

AsBins Cins Dins Ery- - In the special case, when N'=0 , these system undergo

essential simplifications.
Let us consider the numerical example treated in [7,12]; take

a=>50cm, | =25cm, h="7cm , while i = 0.3 . For the dimensions just given we shall
examine three cases, for which the ratio E/ G’ equals 2.6; 5.0; 10.0, respectively.

In the case E/ G'=2.6 we have evidently to deal with an isotropic shell, while in the second
and in the third case we have transversely isotropic shells.
The value of the coefficients Crm of the normal displacement component of the shell are

given in Table 1 in the form of the ratio Cmn / N where N = 24yR3| 2 / Enth. In the last

column of table 1 are given the values of
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10.
11.

12.
13.

Table 1.

E | 10° 10* 10*

G N NN
0.7022 0.6708 1.3730
2.6 | 0.8103 0.8004 1.6107
5.0 | 0.9000 0.9138 1.8138

10.0 | 1.0616 1.0275 2.0891

The coefficient of the maximum normal displacement, i.e. the value of the coefficient of W
at the point =0, B= 4.
For comparison, we give in the first line of Table 1 the value of the same coefficients

Co/N, where N =24yR’I? /Enh . calculated by means of the theory based upon the

hypothesis of non-deformable normal [7.12]

The comparison shows that the results obtained on the basis of the latter theory essentially
differ from those derived from the theory offered in the present paper. We see that even in
the case of an isotropic shell the error incurred in the classical theory (based upon the
hypothesis of non-deformable normals) can amount to 15%. In the case of transversely
isotropic shells the error can become quite substantial for the case of the example considered

here, depending on the ratio E/ G'. For instance, in the case of ratio E/ G'=10 the error
just mentioned rises to 35%.
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