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1. We consider a thin anisotropic shell of constant thickness h . Assume that the 

material of the shell obeys the generalized Hooke’s law and that at each point there is only 
one plane of elastic symmetry, parallel to the middle surface of the shell. The latter surface 
will be used as surface of coordinates, and the shell will be referred to curvy-liner orthogonal 
coordinate’s   and  , which coincide with the principle curvature lines of that surface. Let 

  represent the distance, measured along the normal, between the point  , ,    ,   
of the middle surface and the point  of the shell. We assume that 

a) the line elements of the shell, normal to the middle surface, do not change their lengths 
after deformation; 
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b) the normal stresses   are small as compared with the stresses ,    and ;r  

c) the shear stresses r   and r  vary in the direction of the thickness of the shell in 
accordance with the law of the quadratic parabola [13] 

Being more rigorous in the formulation of the hypotheses [2,5], we can state here the 
assumptions  a  and  b  in the following form: 

 a  0e   approximately;   

 b  the stresses   do not exert any essential influence on the strain components e  

and e  and they can be neglected in the corresponding equations of the generalized Hooke’s 
law. 

2. By virtue of the assumption  c  concerning the shear stresses r  and r  we have 
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      (2.1) 

Where    , , ,X Y      and    , , ,X Y      are the components along the 
axes of the moving trihedron (in the direction of the positive tangents to the lines 

const, =const,   respectively) of the intensity vectors of the surface loads, applied to 

the boundary surfaces 1
2 h   and 1

2 h   , respectively, while    , , ,        

are unknown functions. Substituting the value of the tangential stresses r  and r  from 
(2.1) into the corresponding equations of the generalized Hooke’s law [6], we obtain for the 
shear strain components r  and e  the formulas 
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  (2.2) 

Here we have introduced the following notations: 

   
   

1
55 452

1
44 452

X a X X a Y Y

Y a Y Y a X X

   

   

     
     

  (2.3) 

   
   

55 45

44 45

X a X X a Y Y

Y a Y Y a X X

   

   

    

    
 (2.4) 

1 55 45 2 44 45,a a a a         (2.5) 

where the quantities ika  are elastic constants [6]. 
From the equations of the three-dimensional theory of elasticity, we have for the strain 
components [1] 
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1 1 1
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H H H H

u H He u u
H H H H


  


  

  
  

  
  

  
  

  (2.6) 

u
e 






  (2.7) 

1 2

2 1 1 2

1 1H He u u
H H H H  

    
        

  (2.8) 

2
2 2

1 1
1

1 1

1

e H u u
H H

e H u H u
H

  

  

  
    

  
      

  (2.9) 

   1 1 2 21 , 1H A k H B k        (2.10) 

In these formulas,  ,A A    and  ,B B    are the coefficients of the first 

quadratic form of the middle surface  1 1 ,k k    and  2 2 ,k k    are the principal 

curvatures of the middle surface;    , , , , ,u u u u            and 

 , ,u u      are the displacement components of arbitrary points of the shell in the 
directions of the tangents to the coordinate lines, respectively. 
On the basis of the assumption  a  we find from (2.7) 

   0, , ,
u

u u w
 


      


  (2.11) 

Thus, like in all existing theories of thin shells, the displacement u  of any points of the shell 
is independent of the coordinates  . 
This displacement component has for all points of line elements of a normal to the shell a 
constant value, equal to the normal displacement components  ,      of the 
corresponding point of the middle surface of the shell. 
Substituting the expressions for 1 2, , ,e e H H   and u  from (2.2), (2.10), and (2.11) into 

equations (2.9), we obtain differential equations for the displacement components u  and 

u . Integrating these equations and taking into consideration that  ,u u     and 

 ,u v     when 0   we find 
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   (2.12) 

Where    , , ,u u v v       are the tangential displacement components of the 
corresponding point   of the middle surface. 
In the process of deriving the formulas (2.12) the accuracy was being confined to 
consideration of quantities up to those of the order of magnitude of ik , i.e. whenever a 

sufficiently precise estimation was possible, terms of the order of magnitude of  2
ik ,  

were being neglected in comparison with unity. 
Our formulas (2.12) show that, in the contract to known theories of thin shells [1,2,5,7], the 
tangential displacement components u  and u  of any point of the shell at a distance   
from the middle surface are, in the case considered here, as in the publication [8,9], non-
linear functions of the distance  . 
By virtue of (2.12) the strain components , ,e e e    can be expressed by polynomials in 
powers of ,   namely  

2 3 4 2 3 4
1 1 1 1 1 2 2 2 2 2

2 3 4

,e e

e w v
 



                         

         
  (2.13) 

Substituting the values of , ,u u u    from (2.12) and (2.11), respectively, into the relations 
(2.6) and (2.8), and comparing the resulting expressions for the strain components 

, ,e e e    with the corresponding expressions (2.13), we obtain the following formulas 
for the coefficients of the expansions: 

1 1 1
1 1u A v k w
A AB
 

     
 

   (2.14) 

2 2 2
1 1v B u k w
B AB
 

     
 

   (2.15) 

A u B v
B A A B

               
   (2.16) 

2
1

1 1 2
1 1 1 1

8
h A X AY

A AB A AB
    

            
   (2.17) 

2
2

2 2 1
1 1 1 1

8
h B Y B X

B AB B AB
    

            
   (2.18) 
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2
1 2

8
h A B A X B Y

B A A B B A A B
                                       

    (2.19) 

1
1 1 1

2
1 1

1 1 12

2
1

1 2 2 1

1 2

1 1 1

1 1 1
16

1 1 1 1 1
8 2 2

1 1 1 1 1 1
2 2 2

k wk u k
A A A

kA w hk k
AB A A

kh A Xk k k X
AB A A

A X Ak k Y Y
AB h A h AB

           
             

                
            

  (2.20) 
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2 2 2

k wk v k
B B B
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  (2.21) 
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  (2.23) 
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  (2.25) 

1 2 1
1 1 1 2 1

1 1 1 1 1 1
24 6 4 8

k kA k k
A AB A
             

  (2.26) 

 

2 1 2
2 2 2 1 2

1 1 1 1 1 1
24 6 4 8

k kB k k
B AB B
             

  (2.27) 
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2
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24 6 8

1 1 1 1 1
24 6 8

Ak k k
B A

Bk k k
A B

  
          

          

  (2.28) 

In the formulas (2.17) to (2.19) we have, in conformity the usual definition of curvature 
changes and torsion of the middle surface of the shell [2,5] 

1
1 2

1 1 1 1w u A w v
A A R AB B R

      
              
   (2.29) 

2
2 1

1 1 1 1w v B w u
B B R AB A R

      
              
   (2.30) 
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2

1 2

2 1 1

2 1 1 2 1 1

w A w B w
AB A B

u A v Bu v
R B AB R A AB

     
           

               



 (2.31) 

 
Where  1 1 ,R R    and  2 2 ,R R    are the principal radii of curvature of the 
middle surface. 
Considering the expansions (2.13) we note that they have some similarity with the analogous 
expansions used in ref. [1]; the similarity is, however, only a superficial one. In the 
determination of the strain components , ,e e e   ref. [1] actually uses expressions in 
terms of powers of         keeping at the same time the hypothesis of non-deformable normal 
[1,2] while in the present paper , as in the publications [8,9], the relations (2.13) are being 
obtained on the basis of the basic assumptions of the theory offered here. 
On the basis of (2.13) and of the original assumption  b  we derive from the generalized 

Hooke’s law the following expressions for the stress components  , , :      

 
   
 

11 1 12 2 16 11 1 12 2 16

2 3
11 1 12 2 16 11 1 12 2 16

4
11 1 12 2 16

B B B B B B

B B B v B B B

B B B

             

            

     

  (2.32) 
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22 2 12 1 26

B B B B B B

B B B v B B B

B B B

             

            

     

  (2.33) 

 
 

   
 

16 1 26 2 66 16 1 26 2 66

2 3
16 1 26 2 66 16 1 26 2 66

4
16 1 26 2 66

B B B B B B

B B B v B B B

B B B

             

            

     

  (2.34) 

In these formulas the constants ikB  are given by the following expressions in terms of the 

elastic constants  ika [10,11] 
 

 

2
22 66 26 16 26 12 66 12 26 22 16

11 12 16

2 2
11 66 16 12 16 11 2611 22 12

22 66 26

2 2 2
11 22 12 66 12 16 26 11 26 22 16

, ,

, , ,

2

a a a a a a a a a a aB B B

a a a a a a aa a aB B B

a a a a a a a a a a a

  
  

  
 

  
  

     

 (2.35) 
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The stresses , , , ,          produce internal forces  1 2 1 2 1 2, , , , ,T T S S N N  and 

moments   1 2, ,M M H , which must satisfy the following statistical conditions [1,2,5] 
 

   

   

     

   

   

1 2 2 1 1 1

2 1 2 2 2 2

1 1 2 2 1 2

2 1 2

1 2 1

1 2 1 2

1

0

0

0

B ABT T AS S ABk N ABX

A BAT T BS S ABk N ABY

k T k T BN AN Z
AB

B ABH H AM M ABN

AAH H BM M ABN

S S k H k H







   
     

   
   

     
   

  
        
   

    
   
   

    
   
   

  (2.36) 

 
In these formulas the symbols 

     , , , , ,X X Y Y Z Z               
represent the components of the intensity vector of the applied surface load, referred to the 
middle surface of the shell [7], namely 

1 2 1 2

1 1 1 1
2 2 2 2
h h h hP P P
R R R R

       
          

     
  (2.37) 

where P  stands generally for , , .X Y Z  
The stress resultants appearing in (2.36) are determined in the usual manner [1,2,10]. Without 
going into details, we give here the simplest elasticity formulas, which identically satisfy the 
sixth equation of statics: 
 

2 4 2 4

1 11 1 1 1 12 2 2 2

2 4

16

12 80 12 80

12 80

h h h hT C C

h hC

   
               

   
 

     
 

 (2.38) 

2 4 2 4

2 22 2 2 2 12 1 1 1

2 4

26

12 80 12 80

12 80

h h h hT C C

h hC

   
               

   
 

     
 

  (2.39) 
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2 4 2 4

66 2 16 1 1
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12 80 12 80

12 80 12 80
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h h h hS C C

h h h hC k C

h h h hC C

   
               

   
   

            
   

   
           

   

            (2.40) 

 



2 4 2 4

2 26 2 2 2 16 1 1 1

2 4 2 4

66 1 26 2 2

2 4 2 4

16 1 1 66

12 80 12 80

12 80 12 80

12 80 12 80

h h h hS C C

h h h hC k C

h h h hC C

   
               

   
   

            
   

   
          

   

  (2.41) 

 
2 2 2

1 11 1 1 12 2 2 16
3 3 3
20 20 20
h h hM D D D

     
               

     
  (2.42) 

2 2 2

2 22 2 2 12 1 1 26
3 3 3
20 20 20
h h hM D D D

     
               

     
  (2.43) 

2 2

1 2 16 1 1 26 2 2

2

66

3 3
20 20

3
20

h hH H H D D

hD

   
             

   
 

    
 

  (2.44) 

   
3

1 ,
2 12
h hN X X         (2.45) 

   
3

2 ,
2 12
h hN Y Y         (2.46) 

In these relations, we have the following formulas for the rigidity constants ikC  of 

compression and ikD  of bending: 
 

3

,
12ik ik ik ik
hC hB D B     (2.47) 

We  state here that, in the process of substitution of the value of  1,...,    all terms 
containing X  and Y  can be omitted, still maintaining a sufficiently high degree of accuracy 
[7], in all elasticity  relations. 
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Using the formulas (2.29), (2.30), we can eliminate the displacement components , ,u v   of 
the middle surface from the relations (2.14) to (2.16) this lead to 

 

 

2
2 1 1 2 2 1

1
1 2

1 1
2

1 1 0
2

B A Ak k B
AB A

A B BA
AB B

     
                  

     
                

 

  (2.48) 

The equation (2.48) is the third continuity relation for the deformation of the middle surface 
of the shell. As it should be expected, the relation does not differ in any way from the 
corresponding relation of the classical theory of thin shells [2,5]. The remaining two 
conditions of continuity for the deformation of the middle surface will not be needed in the 
present paper. 
The equations (2.48) is the third continuity relation for the deformation of the middle surface 
of the shell. As it should be expected, the relation does not differ in any way from the 
corresponding relation of the classical theory of thin shells [2,5]. The remaining two 
conditions of continuity for the deformation of the middle surface will not be needed in the 
present paper. 
The equations (2.14) to (2.31), (2.36), (2.38) to (2.46) taken together represent a complete 
system of equations of the theory of shells. 
It is known [1,2,5] that such a complete system can be established in various ways. In view 
of its extreme complexity in the general case of a shell of arbitrary form, the complete system 
of equations will be considered here for one practically important type of shell only. 
 
In the process of solving actual boundary value problems the differential equations of the 
shell have to be completed in the usual manner by statement of the boundary conditions 
[1,2,3] 

3. Avoiding discussions of details, we mention here some possible special type of 
boundary conditions. 
Free edge: This designation will characterize such an edge  const   of the shell, for 
which 

1 1 1 10, 0, 0, 0, 0M H S T N       (3.1) 

Simply supported edge. This designation will be used for such an edge  const   of the 
shell, for which 

1 1 11 1 12 2 160, 0, 0, 0, 0M T w v B B B           (3.2) 

Fixed edge with a hinge. This designation characterizes such an edge  const   of the 
shell, for which 

1 0, 0, 0, 0, 0M u v w        (3.3) 

Clamped edge: This designation refers to such an edge  const   of the shell, for which 
 

2

1 1

0, 0, 0, 0
1 0

8

u v w
w hk u

A

    


   



  (3.4) 

 Of course, other boundary conditions are still possible. The boundary conditions for an edge 
const   can be stated in an analogous manner. 
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Concluding this Section, we note that the subject of the boundary conditions requires special 
investigations. 
A detailed study of the results presented in the first three Sections of this paper reveals the 
following fact: the special case, characterized by 44 55 450, 0, 0,       leads to the 
basic relations and equations of the theory of anisotropic shells based upon the hypotheses of 
non-deformable normals. 

4. Consider a shell in the form of a circular cylinder of radius R . We take the   and   
coordinate lines to be directed along the generators and the parallel circles of the middle 
surface, respectively. Assume that the shell is being acted upon by normally applied loading 
only. For such a shell 

1 2
1const, const, 0,A B k k
R

      (4.1) 

The coefficients of the expansions (2.13) are 

1 2
1 1 1 1 1, ,u v u vw
A B R B A
   

       
   

  (4.2) 

2 2
1

1 2 2

2 2
2

2 2 2

1 1
8

1 1 1 1
8

w h
A A

w v h
B R B B


   

 
 

    
  

  (4.3) 

2 2
1 2

2 2
2

1 2 2 2

2 2
1 2

2 2 1 1 1
8

1 1 1 10,
16

1 1 1 1 12
16

w v h
AB R A B A

w h
R B R B
w hv

R AB R B A

   
          


    

 

  
      

 (4.4) 

 
1 2 1 2

1 2
1 1 1 1, ,

6 6 6 6A B B A
   

      
   

  (4.5) 

2 1 2
1

1 1 1 1 1,
8 6 4B R R B A

   
          

  (4.6) 

The equations of equilibrium assume the form 
 

1 2 2
2

2 1 1
2 1

1 2
2

1 1 1 10, 0

1 1 1 1 10, 0

1 1 1

T S MH N
A B A B

T S MHN N
B A R B A

N N T Z
A B R

  
    

   
  

     
   
 

   
 

  (4.7) 
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Substituting the expressions for  1,...    from (4.2) to (4.6) into the formulas (2.38) to 

(2.46), we obtain the stress resultants in term of the unknown functions , , , ,u v w   .  
Substituting the obtained expressions of the stress resultants into the equations of equilibrium 
(4.7), we find a final system of the five differential equations for the five unknown functions  

, , , ,u v w   , namely 
 

   

 

   

1 6 12 26

2 3 3 3

12 66 16 262 2 2 2 3 3

4 5

1 1

1 1 1
12

, , 0

ik ik

ik ik ik ik

C u C v C C
A B

h wC C C C
AB A B B R

Q C a Q C a

       
              

    

  (4.8) 

 

   

   

6 2 22 26

2 3 3 3 3

22 16 26 663 3 3 3 2 2 2 2

4 5

1 1

1 1 1 1
12

, , 0

ik ik

ik ik ik ik

C u C v C C
B A

h wC C C C
B A AB A B R

R C a R C a

  
      

                
    

  (4.9) 

   

12 26 22 26

2 2 2

22 22 262 2 2

4 5

1 1 1 1

1 1
12

, ,ik ik ik ik

u vC C C C
A B R B A R

h wC C C
B AB R

P C a P C a Z

      
            

   
        
    

  (4.10) 

     

2 2 2

22 66 262 2 2 2

2 4 5

1 1 12 3

, , 0ik ik ik ik ik

vD D D
B A AB R

E D w S D a S D a

   
      

     

  (4.11) 

 

 

     

2 2 2

26 16 66 122 2 2 2

1 4 5

1 1 12 2

, , 0ik ik ik ik ik

vD D D D
B A AB R

E D w K D a K D a

   
       

     

  (4.12) 

where 

 
2 2 2

1 11 66 162 2 2 2
1 1 12ikC C C C
A B AB

  
   

  
 

  
2 2 2

2 22 66 262 2 2 2
1 1 12ikC C C C

B A AB
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2 2 2

6 16 12 66 262 2 2 2
1 1 1

ikC C C C C
A AB B
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ikE D D D
A A B

D D D
AB B

 
  

  

 
  

 

 

 

 

3 3

2 22 263 3 2 2

3 3

12 66 162 2 3 3

1 13

1 12

ikE D D D
B AB

D D D
AB A

 
  

  

 
  

 

 

   

 

3 4

1 26 42
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3 1, 4
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7 15
120 16 12
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i i
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h hC a C a i
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3 4 2

22 4 26 5 2 2

2 2

26 4 66 4 16 5 2 2

7 1, 5
12 120 16

9 1 25 1
8 16

i ik ik i i

i i i

h hR C a i C a C a
R R B

C a C a C a
AB A
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12 4 66 4 16 5

2 2

16 4 26 4 66 52 2 2 2

7 9,
120 16 16

9 1 7 1
16 16

i ik ik i i i

i i i

hQ C a C a C a C a
R

C a C a C a
A B

        
         

 

    

    

2 2

16 5 66 4 26 4 66 52 2

2 2 2

12 5 22 4 26 5 2 2

1, 2
10

1 1 5
12

i ik ik i i i i

i i i

hS D a D a D a D a D a
A

hD a D a D a i
AB B

     
 

      

 

    

    

2 2

11 5 16 4 16 5 66 42 2

2 2 3

12 4 26 4 66 5 2 2

1, 2
10

1 1 4
12

i ik ik i i i i

i i i

hK D a D a D a D a D a
A

hD a D a D a i
AB B

     
 

      

 

Thus, the problem of the anisotropic cylindrical shell is reduced to a system of five 
differential equations (4.8) to (4.12) for the five unknown functions. Having obtained the 
latter, we will find without difficulty the stress resultants, as well as the stresses, by means 
of the formulas (2.32) to (2.34), to (2.46) and (4.2) to (4.6) 
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The system of equations (4.8) to (4.12) undergoes substantial simplification in the case of a 
transversely isotropic shell [10]. It is known that for a transversely isotropic solid we have 

 

16 26 45 54 44 55

11 22 12 11 662

10, 0, 0,

, ,
1 2 1

a a a a a a
G

E EB B B B B

     


    
 

  (4.13) 

where E  is the modulus of elasticity in the plane of isotropy   is Poisson’s ratio, G  is the 
shear modulus for planes normal to the plane of isotropy. 
We assume the plane of isotropy of the material to be parallel, at each points of the shell, to 
the middle surface of the latter. 
The coordinates ,   are to be chosen in such a manner that the coefficients of the first 
quadratic form assume the following value [1,2] 

1,A B R     (4.14) 
By virtue of (4.13) and (4.14) the final system of equations becomes simpler and assumes the 
following form: 
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  (4.16) 
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  (4.17) 
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  (4.18) 
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As an example, we shall treat here the problem of a horizontal tube, of transversely isotropic 
material, simply supported at its ends. The tube is entirely filled with a liquid of specific 
weight   . The weight of the tube material shall be neglected [7,12]. 
Measuring the angle   from the lowest point of the cross section of the tube, we use the 
expansions 

cos cos ,

sin sin , cos cos

cos sin , sin sin

mn
m n

mn mn
m n m n

mn mn
m n m n

mu A n
l

m mv B n D n
l l

m mw C n E n
l l


 

 
    

 
    



 

 

  (4.20) 

The chosen functions fulfil the boundary conditions of simple support along the edges 
0, l     , as well as the conditions of periodicity with the period 2  for the argument 

 . The acting load, the radial pressure of the fluid, is 

 1 cosq R       (4.21) 
It can be represented by the double series 

cos sinmn
m n

mZ q n
l


    (4.22) 

Where the coefficients mnq  are given [7,12] by 

1
4 40, ,mn mo m

R Rq q q
mn mn
 

     (4.23) 

In view of the good convergence of the expansions with respect to the subscript 
1,3,5,...m   we will confine ourselves in the following to the first term 

Substituting the functions , , , ,u v w    from (4.20), and the function z  from (4.22) into the 
corresponding equations of the system (4.15) to (4.19), we obtain, for each pair of values of 
m  and n  a system of a five equations for the five unknown coefficients 

, , , , .mn mn mn mn mnA B C D E . In the special case, when 0n  , these system undergo 
essential simplifications. 
Let us consider the numerical example treated in [7,12]; take 

50cm, 25cm, 7cma l h   , while 0.3  . For the dimensions just given we shall 

examine three cases, for which the ratio E G  equals 2.6;  5.0;  10.0, respectively. 

In the case E G=2.6  we have evidently to deal with an isotropic shell, while in the second 
and in the third case we have transversely isotropic shells. 
The value of the coefficients mnC  of the normal displacement component of the shell are 

given in Table 1 in the form of the ratio mnC N  where 3 224N R l E h   .  In the last 
column of table 1 are given the values of  
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Table 1. 
 

E
G

 
4

01
10 C
N

 
4

11
10 C
N

 
410 C

N
 

 0.7022 0.6708 1.3730 
2.6 0.8103 0.8004 1.6107 
5.0 0.9000 0.9138 1.8138 

10.0 1.0616 1.0275 2.0891 
 
The coefficient of the maximum normal displacement, i.e. the value of the coefficient of w  
at the point 1

20, .l     
For comparison, we give in the first line of Table 1 the value of the same coefficients 

mnC N ,   where 3 224N R l E h   . calculated by means of the theory based upon the 
hypothesis of non-deformable normal [7.12] 
The comparison shows that the results obtained on the basis of the latter theory essentially 
differ from those derived from the theory offered in the present paper. We see that even in 
the case of an isotropic shell the error incurred in the classical theory (based upon the 
hypothesis of non-deformable normals) can amount to 15%. In the case of transversely 
isotropic shells the error can become quite substantial for the case of the example considered 
here, depending on the ratio E G . For instance, in the case of ratio E G=10  the error 
just mentioned rises to 35%. 
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