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Ստատիկական ե դինամիկական եզրային խնդիրների լուծման ասիմպաոտիկ մեթոդի մասին
Շարադրված է առաձգականության տեսության եզրային խնդիրների լուծման ասիմպտոէոիկ մեթոդը 

րարակ մարմինների հեծաններ, սալեր, թաղանթներ, րսրվածա-դեֆորմացիոն վիճակները որո/երււ 
համար: Դիտարկված են ինչպես դասական, այնպես Լլ սչ դասական եզրային խնդիրներ՜ Ցույց Հ տրված 
մերոյլի էֆեկտիվությունը ե՜ ստատիկական և՜ դինամիկական խնդիրների լուծումները որոշելու հարցում 
ներված են իլյոատրացիոս րնույրի անհրաժեշտ օրինակներ՜

Агаловян Л.А.

Об асимптотическом методе решения статических и 
динамических краевых задач

Изложена суть асимптотического методи решения краевых задач теории упругости для 
тонких тел — Салки, пластины, оболочки. Рассмотрены как классические. так и 
кеклассические краевые задачи. Показана эффективность асимптотического метода дм։ 
определения решений и статических, и динамических задач. Приведены необходимые 
иллюстрационные примеры.

Abstract

The equations of elasticity theory for thin bodies (bars, beams, plates, shells) are singularly 
perturbed by small geometric parameter. For the solution of such systems an asymptotic 
method is suggested to be used. The solution of the corresponding boundary problem of 
elasticity theory consists of two qualitatively different types of solutions - inner problem 
and boundary layer. Die ways of constructing these solutions and their conjunctions are 
described. We consider as classic boundary' problems as well as nonclassic boundary 
problems from the point of view of the plates and shells theory on the facial surfaces the 
displacement vector components or mixed conditions arc given. Asymptotics of the inner 
problem solution is established, it is proved that it sensitively reacts on the type of the 
boundary problems conditions of elasticity theory laid on the facial surfaces. Solutions of 
the boundary layers are constructed. The relation of the boundary layer with Saint-Venant 
principle is displaced. In case of the first boundary problem for a rectangle it is proved that 
Saint-Venant principle is mathematically exact. Iteration processes for the determination of 
the inner problem solution are built, the connection with the solutions on classical 
Bernoulli-Coulomb theory of beams, Kirchhoff-Love theory of plates and shells with 
precise theories on the base of softened hypothesis is established. The formula of 
calculation of the bed coefficient for a layered foundation is reduced. The asymptotic 
method is especially effective for the solution of nonclassical dynamic boundary problems. 
Free and forced vibrations of thin bodies arc considered. The connections between the 
frequencies values of free vibrations and the velocities of propagation of elastic shear and 
longitudinal waves arc established.
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Introduction

For the calculation of thin bodies of beam type, plates and shells methods of 
hypotheses, decompositions of sought values according to the cross coordinate or special 
functions were originally used. Yet, the specific character of this kind of bodies is so, that 
one of its sizes sharply differs from the others and if in the equations of elasticity theory we 
pass to dimensionless coordinates and components of lite displacement vector, these 
equations turn to be penurbed by small geometrical parameter. That is why it will be 
natural to use asymptotic methods. It was found out that the perturbance by small 
parameter is singular. Mathematical theory of such equations and systems began to develop 
from the middles of the 20th century, that is why the application of the asymptotic methods 
has a considerably new history. The first papers where the asymptotic method for lite 
solution of boundary value problems of elasticity theory for plates and shells are [1-3]. The 
first boundary value problem of elasticity theory for isotropic rectangle is solved in [4] by 
an asymptotic method. The asymptotic theory of isotropic shells is built in [5], and the 
anisotropic theory of beams, plates and shells is in [6].

The asymptotic method turned to be especially effective for the solution of nonclassical 
static and dynamic boundary value problems of thin bodies - on the facial surfaces the 
values of die displacement vector component or mixed conditions are given [6-14].

Let's stop at some key results, obtained by the asymptotic method.

1. The first boundary value problem for a rectangle. The connection of the 
asymptotic solution with classical theory of beams and with Saint-Venant principle

The solution of this considerably simple problem reveals the basic principles and 
advantages of the asymptotic method application. It is required to find the solution of the 
equations at a plane problem of elasticity theory in the region of 
D = {(*,>՛) : .v € [0,/],| J՛' !< h.h « . if on the longitudinal edges y = ±h of the 

rectangle the values of the stresses are given

qv(±A) = ±X*(x), a>y(±A) = ±yJ(x) (1.1)

and when A = 0, £ are the values of stresses, displacements or mixed conditions. Passing 

to dimensionless coordinates £ = x/Z, C. = y!h and displacements 

U - u / Jz> V / /' the equations system of a plane problem for an isotropic rectangle is 
written in the following form

+₽-i 
ôç &

+ eFx№,hQ = 0

, ckr..
—s֊- + S —+ IF (IS,, hQ = 0

du 1 . . ar i .
oc a E oL E

(1-2)
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dU dV £ ---- +----- — cr , s = h f (: 
G *

where <J։i are the stresses tensor components, Fx, Fy are volume forces. The solution of 

system (1.2), as singularly perturbed by small parameter £ system, is combined from the 
solution of inner problem and from the solutions of boundary layers built close to 
x = 0,£:

z=e+/t‘i>+/?<i) (1.3)
The solution of inner problem Q, which exactly reacts die types of the stated when 

y - ±h conditions, is sought in the form of

s = 0JV (1.4)
where qa characterizes the asymptotic order of the given magnitude, their values must be 
so that substituting (1.4) into (1.2) and coefficients under die same degrees £ to get a 

noncontradictory system for sequential determination of values Q' ', i.e. the stresses 
tensor components and displacement vector. This is most responsible moment when 
applying die asymptotic method as not all die components have the same orders. In this 
case

q = -2 for <3^,11; q = -1 for cyr/ q = 0 for a.. ; q = -3 for V (1.5)

From die system for Q'!՛ all die values are expressed through functions 

u' ’(s)>v֊ '(4) • which satisfy the equations

e‘-L!L- = ^, -E=^— = P՝։' (1.6)
dl2 ‘ 3 rf£"

where Pj» are expressed through X ~ ,Y՜, FX.FV consequently are known 

functions. The first of die equations (1.6) when 5 = 0 coincides with the classic equation 
of the bars extension-pressure, and the second one coincides with the classical equation of 
beam bend. Approximations S > 1 make the results on Bemoulli-Coulomb-Euler classical 
theory of bars and beams precise. Derivatives of die first order from u ՛', die third and ihe 
fourth orders from v1՝ ' enter the formulae for stresses, that is why, corresponding to (1.6) 
the formulae of stresses will involve three arbitrary constants which should be determined 
from the boundary value conditions when X = 0,(?. Naturally, restricted only by die 
solution of the inner problem, it is impossible to satisfy these conditions at every point, 
which also indirectly proves singular perturbation of the original problem In order to 
remove the arising residual it is necessary to build a qualitatively new solution.

That is the solution of the boundary layer which exponentially decreases when 
removing from end sections of the rectangle. In order to find the denoted solution near the 
end - wall X = 0, a new change of variables is introduced t = g/£ into system (1.2) and 
the solution of the transformed system is sought in the form of functions of boundary layer 
type:

P4=ex’֊’P''։(Qexp(֊?.f). i = 0,N, ReX>0 (1.7)
As inhomogeneous conditions (1.1) are satisfied by the solution of the inner problem, 

the boundary layer problem must satisfy the conditions
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%& = ^yyb = 0 whcn ? = ±1 (1 -8)

For deriving noncontradictor}' system relative to R^1 (Q. it is necessary' to have

X<>, =X, Xa,=X + l (I-*)
where the full number £ will be determined during the conjunction of the inner problem 
solution with the boundary layer solution. After having substituting (1.7) into transformed 
system (1.2) all the magnitudes may be expressed through ■

1 d°»i>
X ): d^

it
d^

(1.10)

ct'J’i, is determined from the equations

z/W0 r/2a(t>
=0 (1.11)

d^ de2
Having solved ordinary differential equation (1.11) and satisfying conditions (1.8). we 

find the final solution of the boundary’ layer:

^ = ^.(Q 0-12)
where

Fn (Q = s sin XX - tg\r COS XX (symmetric problem-extension)

F„(Q = sinXX-£'A. cos XX (tend) (1.13)

Xn is the root of the equation sin 2XW + 2/.։i = 0 in the symmetrical problem and the 

equations sin 2X„ — 2XW =0 is the bend problem. In (1.12) A'J' are constant 

integrations by " n" summing takes place corresponding to all the roots Xn . every /.n is 

corresponded by X,., totally will be real.

The solution of boundary layer (1.7), (1.10), (1.12) has a number of very important 
properties. It is exact for every' "s"; in the arbitrary cross-section I — tk the stresses c'.' J,,

<T,j, arc self-balanced:

pM=0> Mx = o, jq^ = O ' (1.14)

-I -1 -I
It is easy to be convinced in justification of (1.14) using formulae (1.10) and conditions 

(1.8). This solution when removing from the end-wall into the inside the rectangle fades as 
exp(- ReXjO, where ReX, « 2,106 in symmetric. RcX, «3,75 in skew-symmetric 
(bend) problems [6]f: ՛

Tire denoted solution in not possible to obtain on the base of any known hypothesis, 
particularly, accepting the hypothesis of plane sections, this exact solution is lost.
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Using formulae (l.3)-(1.5), (1.7), (1.9) and property (1.14), it is easy to satisfy the 
boundary' value conditions when x = 0. 2. Let the values of stresses be given when 
x = 0:

when x = 0 (1.15)

When satisfying conditions with X - 0 it is usually ignored by the affect of the 
boundary՛ layer 7^2:, which is equivalent to fulfillment of the conditions

l + exp(-ReX| Uh) & 1, which is practically fulfilled even for a square Ihen we shall 
have:

=<p

s'"’a'’> + 6x,'c^=V
when x = 0 (f = 0) (1.16)

From (1.16) noncontradictory conditions only with X = follow. We have

aS(r = 0) = <p(,-2,-^K = 0)

<i(/=o)=M/(,-2)֊a(;-|)(?=o) (Li?)

<p ” = <p, (p'x l = 0 when k * 0, (<p, q/)
The right pans of (1.17) must satisfy the conditions of self-balance (1 14). From these 

three conditions all the three unknown constants in the solution of inner problem are 
determined. From this fact it follows, that the self-balanced pan of the end-wall loading 
doesn’t affect on the solution of the inner problem. This pure mathematical result expresses 
the validity' of Saint-Venant principle. Returning again to (1.17) tire right parts of which 
will already be known functions, constants A^' of the boundary layer solution are 
determined. Let

q>(Q = 2P(l-KI), V(Q = 0 (1.18)
the above said may be illustrated in fig. 1 

fig-1

where in the right part the first summand corresponds to the solution of the inner problem, 
the second one corresponds to the boundary layer.

From (1.8), (1.10) follows that the boundary layer displacements don’t have the 
characteristics of self-balance (1.14), i.e. Saint-Venant principle for displacements is not 
correct and under other boundary value conditions when x = 0, £, conjunction of the inner 
problems and the boundary layer solutions is fulfilled by other ways - by the method of 
boundary collocation, by less squares and so on.

The advantage of an asymptotic method appears under the solution of more complicated 
problems for thin bodies. With the help of this method solutions of plane problems for an 
anisotropic strip-rectangle, for layered rectangle-strips are found. In all cases when 
loadings affecting on facial surfaces are polynomials, iteration precess for inner problem 
terminates on certain approximation and mathematically precise solutions are obtained

From these solutions as private cases, all the solutions obtained by Menage- 
Timoshenko method, follow. As an illustration the solution of inner problem for orthotropic
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rectangle reinforced by stringer, which stretches by the load of permanent intensively will 
be brought (fig 2)

fig.2

= p^{B2-AQ-r, 0<c<ç 
«11

<=0, a>0,

vz = BL*2 
2K

a!! a}
d - Ç. )(4B2 + (1 - Ç, )£, ) 4- 4Ç(2 B2 -B&-±

«II «11 J

o" =/’Ç,(fiî-B1Q-4-! a".=0, a"=0, -l<<0 (1.19)
«11

u։1 =Pt^(B2-B,Q, c, = x/f, Q = y/h2,

v" = Z),Ç, V + (1 ֊ Ç, + 2Ç)[4B1 + (1 - Ç, - 2Q5, ]4

lj _ 2^2 ~Ç|Q g _ 2fi ~Ç|P2

' 2(D,O, ֊£>;)’ 2 2(0,0,- O2)

O=^ + ± 0=4^—Q 0=4^ + ±l
1 «h < : 2k «,v ’ îk, «d

Solution (1.19) is precise in the sense of Saint-Venant, all the equations of plane 
problem of an orthotropic body, conditions of full contact between the layers, boundary 
value problems of the free edge when V = >’ = -h2 (an. = 0, a.. =0) are satisfied.

The stresses of the boundary layer cr^, (5x>i> in spite of Jayerity in any cross-section are 

also self-balanced, which permined us to satisfy՛ the conditions when x = 0k integrally. 

From solution (1.19) it follows that on the line of contact cr'n = = 0 Meanwhile, in

some applied models, for example, in Mclan's models it is admitted the stringer behaves as 
a bar. on the surface of which tangential stresses arise.

The obtained precise solution (1.19) disproves such an assumption and advises to be 
careful when using applied models. Tangential stresses arise in the zone of boundary layer, 
but the stress strain state there, is not uniaxial but plane.

The established here qualitative picture is preserved for three-layered rectangular packet 
as well. i.e. in case of the presence of thin inclusion [15].
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The described scheme of the asymptotic solution determination preserves the force for 
the spatial problems of plates and shells as well. It was found out that the iriitinal 
approximation for the inner problem is adequate to the classical theory of Kirchhoff-Love’s 
plates and shells. By admitting die hypotheses of classical theory, the boundary’ layers, 
which can be of two types-boundary torsion (antiplanc boundary layer), plane boundary 
layer are eliminated. The first of these boundary layers takes into account Reissner, 
Hambartsumyan’s theory by Timoshenko type. If we build the second approximation for 
the inner problem it wall correspond to S.A. Hambartsumyan’s iteration theory. For 
bending of the transversal isotropic plate the following equations relative to die plate 
deflection are offered:

DAAw = z - 2------0,7} — v ֊— -----
G' E' J 10(1-v) (asymptotic theory')

( G F
DAAw=z- 2----- — v'

l G՝ E'
(2h)2te
10(l-v)

(Hambartsumyan's theory՛՛)
(1.20)

For anisotropic plates and shells on the magnitude of die contribution of the following 
approximations are essentially influenced by the relations of die constants of elasticity, and 
the changeability of acting loads as well.

2 . The second and the mixed boundary value problems

The asymptotic method turned out to be especially effective for die second and mixed 
boundary value problems solution of elasticity dieory for thin bodies (nonclassical 
boundary value problems of beams, plates and shells). In the first case it is considered on 
the facial surfaces of the thin body displacements values are given. The punch problem for 
example refers to this.

In the second case on one of die facial surfaces the displacements values are given and 
on the other one the values corresponding to the stresses tensor components are given 
These problems are basic in die calculation of foundations and bases of constructions by 
the model of a compressible layer, and during the calculation of seismic actions on the 
constructions as well. Mixed conditions on each of the facial surfaces may be given.

It is established that the asymptotics (1.4), (1.5) for diis class of problems is not 
admittable, j.e. it is not possible to solve these problems on die base of plane sections and 
Kirchhoff-Love hypotheses.

A principally new asymptotics is found [7]:
</ = -l for t/ = 0 for w,v (2.1)

from where it follows that unlike the classical theory of beams and plates, here in general 
case all the stresses are equivalent, and the displacements arc equivalent too.
In this case what was said above takes place in the case of general anisotropy. Another 
characterisrics has appeared too - it was found out dial the inner problem solution is fully 
determined after having satisfied the boundary value conditions on the facial surfaces, i.e. 
the boundary’ layers only correspond to the conditions under torsion sections .r = 0,^ If 
exterior actions are polynomial closed solutions in the inner problem are obtained. We 
bring these solutions for two cases, corresponding to when the lower bound of the 
orthotropic rectangle-strip is rigidly fastened, and die upper bound is informed constant 
displacements or it is loaded by a load of constant intensivity. The conditions

u(-h) - v(-A) = 0, u(h) = w+, v(/t) = v' ; u՝ ,v* = const (2.2)
correspond to the solution
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ai2 v u flu v= % = g-.2T7‘ %
A 2h 2h A 2h (2.3)

and the conditions

"--(y + h), v = —(y+h), û = a„a,2-a,; 
2h 2h

u(-h) = v(-h) = 0, ^„(h) = r, %.(A) = _<J2 J = c°nst (2-4) 
correspond to the solution

«p -
^xx = —<^2, Vn=' > % = "a2 

°։ 1

u = —- (>’ + h), v =------- a, (y + //)
GJ2 atl

(2.5)

brom the solution (2.5) the value of the bed coefficient for an clastic foundation of
power (width) 2/j is directly followed. Taking into account T =0, we calculate the 
displacement under normal loading. With >' = h we have

O A Z

»(/;)-0, v(A) = —(֊qJ) 
«11

(2.6)

from where it follows

g2(A)=-ct; = x-v(A), k=^-=
2/iA

___ £:____ 
2A(l-v12v2l) (2.7)

For isotropic foundations coefficient K coincides with well-known bed coefficient 
K = E .-(2Zr(l ~ V՜)). Note that in case of foundations with general anisotropy from the 

asymptotic solution nonapplicability of Vinkler’s model follows, i.e. the sense of bed 
coefficient is lost.

Asymptotics (2.1) is right for layered and for inhomogeneous beams as well [6]. If 
Young’s module changes by the depth of the layer of power h linearly, using the values 
[/: for bed coefficient we have

K = K,
c-1
Inc ’

c=^,
E, ° A(l֊v)

(2.8)

U =

Asymptotics (1.4), (2.1) permits generalizing on anisotropic layered plates and shells, it 
is possible to get closed solutions [8-10].

Using the solution of the mixed boundary value problem for n-layered packet from 
orthotropic plates, in particular, it is possible to get the following formula of bed coefficient 
calculation 

■֊Y^-vM-v^-v^-vMvS?
(2.9)

where is Young’s module in the direction, perpendicularly to the plate of the layers 

contact. v'V is Poisson's coefficient.
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3. Free and forced vibrations

The investigations of seismic waves actions of thin and massive bodies and so on bring 
to the solution of specific problems on free and forced vibrations of thin bodies. 
Asymptotic method shows off here too from the best side. We illustrate the above said on 
die example of free vibrations of an orthotropic plate 
D - {(x,yyz) :x,y e DK). z >< h}. It is required to determine the frequencies of free 
vibrations of the plate, corresponding to boundary conditions

• = a)2 = g3 = 0 when z = h
(3.1)

u - v = w = 0 when z - -h

u = v = w = 0 when z = ±h (3.2)
Looking for the solution of the equations system of special dynamic problem of 

elasticity theory in the form of
(x, y, z, t) = <j 4 (x, y, z) expO’co/)

(3.3)
(u,v>w) = (wx,t^.,Mjexp(/(oz), a.(3 = x,>-,z; j,k = 1,2,3

where (0 is the sought frequency of free vibrations and passing to dimensionless 
coordinates and components of displacement vector c, = x ' £, T] - v / t, •֊, = / h . 
U = ux / £, V = u. ! £ , IF = u_ / £ t £ is the characteristic size of die middle surface 

D, of the plate, we have the following singularly perturbed by small parameter 8 hi £
system:

an a;
^+^+e-'^l+s-^F=0

a>i a;
tXT.- CXj,, CXJ.,1 ? 2«// n
—- +——+ E —-4-8 CiXhz =0

<fr| ci

dU
~ flliatl +ai2a22 +a]3a33

S (3.4)

dV
, + a22G22 + a2yG3i 

tfr|

.. dlV
E " = "13^.1 + <*23°22

_,dF dW ,du dW
8 — +-------= a..o„, 8 --------+--------= a„c.,

aq M di 55 13

2 ,2 2֊ + — = fl66ol2, co. =p/j-O)
(7T| di

The solution of the singularly perturbed system (3.4) is sought in the form of
o , sE;Mn1’’, C0.?=F?C)L 5=0,.¥

)k 3 (3.5)
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where notation S = 0,Af means that by repeated index .S' summing in the limits [0, N] 
takes place. Substituting (3.5) into (3.4), using Cauchy’s rule of multiplying the rows, we get 
a new system, from where it will be possible to express die stresses tensor components 
through L՛' ’'. V ՝. which, m their turn, arc determined from the equations system

+ a„a£tU,։-ty =R^, k=0^
DC,2

^^ + aiAa;tVl’-t' = Rr (3.6)

4, = ^>

where 4, =1/4,. R‘‘>, R?\ Rf‘< are well-known functions, in particular, 

R՝ = R՛ ՛ = 7?';''' = 0 . With 5 = 0 the equations of system (3.6) become independent. 

Having solved these equations and satisfied conditions (3.1) or (3.2), we get dispersing 

equations from where arc determined. Conditions (3.1) correspond the following 

three groups of main values of frequencies:

< =^lP-<2n + l) = 77K”<2'։+l)> K° =,P֊> "e'v
47? \l p 47i y p

< = £ + »> yr = ,p֊ = N (3.7)

4/i VPfl« V p
to"' =—K (2n +1), V = pT = HZ, n e N

°՞ 4/> p ” } p Vp4/
where is shear module, AJ3 is calculated by formula (2.9) without ascribing uidex /, 

K c . T/՜ aie well-known in seismology and physics velocities of propagation of shear 

waves. Formulae (3.7) show tliat tn the orthotropic plate free vibrations of three types - two 
shear and a longitudinal may arise. Their interinfluence will be perceived taking into 
account the approximations 5 > 1. The calculation of the next approximations brings to the 

correction of the frequency value of the order (9(e՜), that is why in practical applications 

it is possible to be restricted by the values (3.7), which we call main values, of frequencies.
Conditions (3.2) correspond to the following main values of frequencies:

<= ——<=—(3.8) 
°՞ 2h ' °՞ 2h ' On 4A p

The forced vibrations are considered m the analogues way. For example, if 
harmonically changing in time displacements are informed to the facial surface z - -h of 
the plate •’*
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u(-h) = u (£,r|)exp(O), v(-A) = v (£,r])exp(/Q/)
, , (3.9)

w(-h) = w (£,i))exp(O)
which take place under seismic actions on plate-like bases of constructions, the solution of 

the problems is sought in the form of (3.3), then (3.5) with substitution CO into Q. co: 

into Q;=p7։*Q*. As a result the solution is expressed through the functions 

each of which is determined from the ordinary differential equations of 

the second order. Subjecting the solutions of these equations to die conditions (3.1), (3.9) or 
conditions (3.9) and u(h) = \r(h) = vv(A) = 0 the amplitudes of forced vibrations are 

uniquely determined. It the value of frequency Q of the exterior action coincides with any 
value from (3.7) or (3.8) a resonance takes place. Note, that it is always possible to choose 
physical-mechanical and geometrical parameters of the plate so, that in the presence of the 
given interval of possible values Q the resonance didn’t arise.
Note, that the described scheme of the frequencies determination of free vibrations and 
amplitudes of forced vibrations is applicable for layered thin bodies as well

4. Conclusions

Effectiveness of asymptotic method of singularly perturbed differential equations 
solution for the solution of boundary and dynamic problems of elasticity theory for thin 
bodies (beams, bars, plates, shells). Connection of asymptotic method with Saint-Venant 
principle, with applied theories of beams, plates and shells is established. Nonclassical 
problems of thin bodies are solved. The frequencies of free vibrations and the amplitudes of 
forced vibrations of orthotropic beams and plates to the corresponding nonclassical 
boundary value problems arc determined.
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