

Մեխանիկա

56, Nº4, 2003

Механика

УДК 539.3

ИЗГИБ АНИЗОТРОПНОЙ ПОЛОСЫ Баблоян А.А. Бегларян А.Г.

Ա.Հ. Բաբլոյան, Ա.Գ. Բեզլարյան

Անիգոտրոպ չերտի ծռումը

Ստաված է առաձգականության տեսության հավասարակշռության հավասարումների ընդհանուր լուծումը ուղղապծորեն անիզուորոպ (ոյ օրրուտրոպ) շերտի նամար։ Որպես օրինակ, ուսումնասիրվում է անիզոտրոպ շերտի ծռումը նորմալ ուժերով անիզոսլլուպիայի գլխավոր առանցքների տարբեր ուղղությունների դեպրում։

A.H. Babloyan, A.G. Beglaryan Bending of Anisotropic Layer

Приводится общее решение уравнений равновесия теории упругости для прямолинейноанизотропной (неортотропной) полосы. В качестве конкретного примера изучается изгиб авизотропной полосы пормальными силами при различных направлениях главных осей анизотропной.

Общее решение уравнений равновесия теории упругости для ортотропной полосы построено многими авторами [1-3]. Из этого решения путем использования формул поворота координатных осей для напряжений и перемещений можно получить общее решение уравнений равновесия для прямолинейно-анизотропной полосы (идея С.Г. Лехницкого [4]). Аналогичные задачи рассматривались в работах [5-7]. Эти же вопросы в рамках теории пластин и оболочек подробно изучены в работах [8-14].

1. Вывод общего решения. Пусть прямолинейно-анизотропная полоса в координатной системе (Ξ, η) занимает область $(-\infty < \Xi < \infty, 0 \le \eta \le h)$. Вводим ортогональную систему координат (x, z). совнадающую с главными направлениями анизотропии (фиг.1). Через φ обозначим угол между осями 0x и 0Ξ . Тогда переход от одной координатной системы к другой

осуществляется формулами

$$c = \varepsilon \cos \varphi - \eta \sin \varphi, \quad z = \xi \sin \varphi + \eta \cos \varphi \tag{1.1}$$

В системе (*x*, *z*) уравнения равновесия плоско-деформированного состояния анноотропного материала имеют вид [2]

$$c_{11}\frac{\partial u_x}{\partial x^2} + c_{44}\frac{\partial u_x}{\partial z^2} + (c_{13} + c_{44})\frac{\partial u}{\partial x \partial z} = 0$$

$$(c_{11} + c_{44})\frac{\partial u}{\partial x \partial z} + c_{44}\frac{\partial^2 u_z}{\partial x^2} + c_{33}\frac{\partial^2 u_z}{\partial z^2} = 0$$

$$(1.2)$$

а закон Гука будет

$$\mathbf{O}_{x} = c_{11} \varepsilon_{x} + c_{13} \varepsilon_{z}, \quad \mathbf{O}_{y} = c_{12} \varepsilon_{x} + c_{13} \varepsilon_{z}, \quad \mathbf{O}_{z} = c_{13} \varepsilon_{x} + c_{33} \varepsilon_{z}$$

$$\tau_{xz} = \epsilon_{\pm z} \varepsilon_{xy}, \ \varepsilon_x = \frac{\partial u}{\partial x}, \ \varepsilon_z = \frac{\partial u}{\partial z}, \ \varepsilon_z = \frac{\partial u}{\partial x}, \ \varepsilon_z = \frac{\partial u}{\partial z}, \ \varepsilon_y = \varepsilon_{xy} = \varepsilon_{yz} = 0$$
(1.3)

Фундаментальную систему решений уравнений равновесия (1.2) ищем в виде

$$u_x = i_{10}^{\alpha}(\alpha)Z_0, \quad u_z = -Z_0, \quad Z_0 = e^{i_{11}(\alpha)}$$
(1.4)

Подставляя выражения (1.4) в (1.2), после ряда преобразований, для определения функции $\gamma_0(\alpha)$ получим два равносильных выражения:

$$\gamma_0(\alpha) = \frac{(c_{11} + c_{44}) \cdot \alpha}{c_{11} - \alpha^2 c_{44}} = -\frac{c_{44} - \alpha^2 c_{33}}{(c_{13} + c_{44}) \cdot \alpha}$$
(1.5)

Отсюда следует, что 🛿 является корнем биквадратного уравнения -

$$\Delta_0(\alpha) = (c_{11} - \alpha^2 c_{41})(c_{41} - \alpha^2 c_{33}) + (c_{13} + c_{44})^2 \alpha^2 = 0$$
(1.6)

Из закона Гука (1.3), в силу (1.4), для напряжений получим выражения

$$\sigma_{1} = i\lambda_{0}[c_{13}\gamma_{0}(\alpha) - c_{13}\alpha]Z_{0}, \quad \sigma_{2} = i\lambda_{0}[c_{13}\gamma_{0}(\alpha) - c_{33}\alpha]Z_{0}$$

$$\tau_{12} = -\lambda_{0}c_{44}[\alpha\gamma_{0}(\alpha) + 1]Z_{0}, \quad \sigma_{3} = i\lambda_{0}[c_{12}\gamma_{0}(\alpha) - c_{13}\alpha]Z_{0}$$

(1.7)

Пепосредственной проверкой можно убедиться в справедливости соотношений

$$E_{0}(\alpha) = \alpha^{-1} [c_{11}\gamma_{0}(\alpha) - c_{13}\alpha] = -\alpha [c_{13}\gamma_{0}(\alpha) - c_{33}\alpha] =$$

$$= c_{44} [\alpha\gamma_{0}(\alpha) + 1] = c_{44} \frac{c_{14} + \alpha^{2}c_{33}}{c_{13} + c_{44}}$$
(1.8)

если только (1 – корень уравнения (1.6).

В силу [1,8] формулы для напряжений (1.7) можно представить в виде $\sigma_x = i\lambda_0 \alpha E_0(\alpha) Z_0$, $\sigma_z = -i\lambda_0 \alpha^{-1} E_0(\alpha) Z_0$, $\tau_z = -\lambda_0 E_0(\alpha) Z_0$ (1.7) где λ_0 -произвольный параметр.

Имея напряжения (1.7) и перемещения (1.4) в координатной системе (*x*, *z*), вычислим эти же величины в системе (ξ, η). Пользуясь формулами поворота координатных осей для перемещений и напряжений из (1.4) и (1.7), получим

$$u_n = [i\gamma_0(\alpha)\cos\varphi - \sin\varphi]Z_n, \qquad = -[i\gamma_0(\alpha)\sin\varphi + \cos\varphi]Z_n$$

$$\sigma_n = [i(\alpha\cos^2\varphi - \alpha^{-1}\sin^2\varphi) - \sin2\varphi]E_n(\alpha)\lambda_n Z_n$$

$$\sigma_{\rm u} = [i(\alpha \sin^2 \varphi - \alpha^{-1} \cos^2 \varphi) + \sin 2\varphi] E_{\rm u}(\alpha) \lambda_{\rm u} Z_{\rm u}$$
(1.9)

$$\mathbf{r}_{\mathrm{eq}} = -[i(\alpha + \alpha^{-1})\sin\varphi\cos\varphi + \cos 2\varphi]E_{0}(\alpha)\lambda_{0}Z_{0}$$

Пользуясь формулами (1.1), преобразуем теперь стенень экспоненциальной функции Z₀ двумя способами

$$\Lambda_{\eta}(x + i\alpha z) = \Lambda(\beta \eta + i\xi) = \mu(\delta \xi + i\eta)$$
(1.10)

$$\lambda = \lambda_0 (\alpha \sin \varphi - i \cos \varphi), \quad \beta = \frac{i \alpha \cos \varphi - \sin \varphi}{\alpha \sin \varphi - i \cos \varphi}$$
(1.11)

$$\mu = \lambda_0 (\alpha \cos \varphi - i \sin \varphi), \quad \delta = \frac{\cos \varphi + i \alpha \sin \varphi}{\alpha \cos \varphi + i \sin \varphi}$$
(1.12)

Совокупность функций (1.9) при произвольных значениях нараметра λ (или μ) с учетом формул (1.10) – (1.12) будет представлять полный набор частных решений уравнений равновесия (1.2) в координатах (ξ , η), если только корни биквадратного уравнения (1.6) не равны между собою ($\alpha_i \neq \alpha_i, i \neq j, i, j = 1 \div 4$). Случай равных корпей получается из (1.9)-(1.12) путем предельного перехода, когда $\alpha_i \rightarrow \alpha_i$. Такой предельный переход целесообразно выполнить после окончательного решения конкретных краевых задач.

С целью компактного представления решения системы [1.2] введем обозначения для приведенных упругих востоящных:

$$c_n = \alpha \cos \varphi + i \sin \varphi, \quad s_p = \alpha^{-1} \sin \varphi - i \cos \varphi$$

 $d_p = [i\gamma_u(\alpha_p)\cos\varphi - \sin\varphi]E_u^{-1}(\alpha_p), \ e_p = [i\gamma_u(\alpha_p)\sin\varphi + \cos\varphi]E_u^{-1}(\alpha_p)$

$$\beta_{p} = \frac{i\alpha_{p}\cos\varphi - \sin\varphi}{\alpha_{p}\sin\varphi - i\cos\varphi} = \frac{s_{p}}{ic_{p}}, \quad \delta_{p} = \frac{\cos\varphi + i\alpha_{p}\sin\varphi}{\alpha_{p}\cos\varphi + i\sin\varphi} = \frac{c_{p}}{is_{p}}$$

$$I_{p} = \frac{1 - \alpha_{p}^{2}}{c_{p}\alpha_{p}^{2}} - c_{p}, \quad m_{p} = \frac{1 - \alpha_{p}^{2}}{s_{p}\alpha_{p}^{2}} - s_{p}, \quad (p = 1, 2, 3, 4)$$
(1.13)

При обозначениях [1.13] общее решение уравнений равновесия [1.2] в координатах (ξ , η) для полосы ($-\infty < \xi < \infty$, $0 \le \eta \le h$) представляется в виде интеграла (ряда) Фурье

$$\begin{split} u_{z} &= \int_{-\infty}^{\infty} \sum_{p=1}^{4} d_{p} A_{p}(\lambda) e^{\lambda (i\xi + \beta_{p} \eta)} d\lambda, \quad u_{\eta} = -\int_{-\infty}^{\infty} \sum_{p=1}^{4} e_{p} A_{p}(\lambda) e^{\lambda (i\xi - \beta_{p} \eta)} d\lambda, \\ \sigma_{\eta} &= \int_{-\infty}^{\infty} \sum_{p=1}^{4} c_{p} A_{p}(\lambda) \lambda e^{\lambda (i\xi - \beta_{p} \eta)} d\lambda, \quad \sigma_{z} = \int_{-\infty}^{\infty} \sum_{p=1}^{4} l_{p} A_{p}(\lambda) \lambda e^{\lambda (i\xi - \beta_{p} \eta)} d\lambda, \quad (1.14) \\ \tau_{z\eta} &= \int_{-\infty}^{\infty} \sum_{p=1}^{4} s_{p} A_{p}(\lambda) \lambda e^{\lambda (i\xi - \beta_{p} \eta)} d\lambda. \end{split}$$

где $A_{\mu}(\lambda)$ -произвольные функции. Решение (1.14) получается из (1.9), (1.11) и первого преобразования (1.10).

Второе решение уравнений равновесия (1.2), позволяющее решать краевые задачи для анизотропной полосы $(0 < \xi < h, -\infty \le \eta \le \infty)$, можно получить из (1.9), (1.12) и второго преобразования (1.10).

$$u_{1} = \int_{-\infty}^{\infty} \sum_{p=1}^{n} d_{p} B_{p}(\mu) e^{\mu(b_{p}\xi + m)} d\mu, \quad u_{n} = -\int_{-\infty}^{\infty} \sum_{p=1}^{n} c_{p} B_{p}(\mu) e^{\mu(b_{p}\xi + m)} d\mu$$

$$\sigma_{\xi} = -\int_{-\infty}^{\infty} \sum_{p=1}^{n} s_{p} B_{p}(\mu) \mu e^{\mu(b_{p}\xi + m)} d\mu, \quad \sigma_{\eta} = -\int_{-\infty}^{\infty} \sum_{p=1}^{n} m_{p} B_{p}(\mu) \mu e^{\mu(b_{p}\xi + m)} d\mu$$

$$\tau_{\xi\eta} = -\int_{-\infty}^{\infty} \sum_{p=1}^{n} c_{p} B_{p}(\mu) \mu e^{\mu(b_{p}\xi + m)} d\mu \qquad (1.15)$$

где B (u) – произвольные функции.

Полученные общие решения (1.14) и (1.15) представлены в виде интегралов (или рядов) Фурье по координатам с и п соответственно.

2. Частные решения уравнений равновесия. Рассмотрим только те частные решения уравнений равновесия (1.2), когда перемещения зависят от координат линейным образом.

$$= a_1 \xi + b_1 \eta + d_1, \ u_\eta = a_2 \xi + b_2 \eta + d_2, \ (a_3 = b_1 + a_2)$$
(2.1)

Отсюда, путем неоднократного использования формул поворота и закона Гука, для напряжений получим

$$a_{11} \left[c_{11} \cos^{4} \varphi + c_{33} \sin^{4} \varphi + (0.5c_{13} + c_{11}) \sin^{2} 2\varphi \right] + + 0.25b_{2} \left[4c_{13} + c_{00} \sin^{2} 2\varphi \right] - 0.25a_{3} \left[c_{11} - c_{33} + c_{00} \cos 2\varphi \right] \sin 2\varphi = 0.25a_{1} \left[4c_{13} - c_{00} \sin^{-} \varphi \right] + b_{2} \left[c_{33} \cos^{4} \varphi + c_{11} \sin^{4} \varphi + + (0.5c_{13} + c_{41}) \sin^{2} 2\varphi \right] - 0.25a_{2} \left(c_{11} - c_{33} - c_{23} \cos 2\varphi \right) \sin 2\varphi = c_{44} \left[a_{3} \cos 2\varphi + (a_{1} - b_{2}) \sin 2\varphi \right] \cos 2\varphi + 0.25 \left\{ (c_{11} - 2c_{13} + c_{33}) \times \right. \\ \times \left[a_{3} \sin 2\varphi + (b_{2} - a_{1}) \cos 2\varphi \right] - (c_{11} - c_{33}) \left(a_{1} + b_{2} \right) \right\} \sin 2\varphi c_{00} = c_{11} - 2c_{13} + c_{33} - 4c_{44}$$
(2.2)

Для сравнения здесь же приводим формулы напряжений, действующих на площадках с нормалями, совпадающими с главными направлениями анизотропни:

 $\sigma_{x} = a_{1}(c_{11}\cos^{2}\varphi + c_{11}\sin^{2}\varphi) + b_{2}(c_{11}\sin^{2}\varphi + c_{12}\cos^{2}\varphi) - 0.5a_{3}(c_{11} - c_{13})\sin 2\varphi$ $\sigma_{z} = a_{1}(c_{33}\sin^{2}\varphi + c_{13}\cos^{2}\varphi) + b_{2}(c_{21}\cos^{2}\varphi + c_{13}\sin^{2}\varphi) + 0.5a_{3}(c_{33} - c_{13})\sin 2\varphi$ $\tau_{zz} = c_{44}[a_{3}\cos 2\varphi + (a_{1} - b_{2})\sin 2\varphi]; \qquad (\sigma_{\xi} + \sigma_{\eta} = \sigma_{x} + \sigma_{y})$ (2.3)

Отметим, что все напряжения не зависят от параметров a_2 и b_2 в отдельности, а зависят только от суммы $a_1 = a_1 + b_2$.

На основе формул (2.1)-(2.3) рассмотрим некоторые случаи частных нагружений анизотропного прямоугольника.

Задача 1. Пусть граничные условия анизотропного прямоугольника имеют вид

$$\sigma_{\xi}(\pm l,\eta) = 1, \quad \sigma_{\eta}(\xi,\pm h) = 0, \quad \tau_{\xi\eta}|_{\Gamma} = 0$$
 (2.4)

Из приведенных условий для коэффициентов формул (2.1) получим

$$a_1 = \Delta_1 / \Delta, \quad b_2 = \Delta_2 / \Delta, \quad a_3 = \Delta_3 / \Delta_0$$
 (2.5)

где

 $\Delta = 4(\Delta_1 = -$

$$\Delta_{0} = 4c_{44}(c_{11}c_{33} - c_{13}^{2}), \qquad \Delta = 4(c_{11}c_{33} - c_{13}^{2} - c_{0}\sin^{2}2\varphi)$$

$$(c_{11}\sin^{2}\varphi + c_{33}\cos^{2}\varphi) - c_{01}\sin^{2}2\varphi + 2a_{3}[c_{44}(c_{11} - c_{33}) + c_{0}\cos2\varphi]\sin2\varphi$$

$$(4c_{11} - c_{00}\sin^{2}2\varphi + 2a_{3}[c_{44}(c_{11} - c_{33}) - c_{0}\cos2\varphi]\sin2\varphi \qquad (2.6)$$

 $\Delta_3 = 2c_{44}(c_{11} - c_{33})\sin 2\varphi + c_0 \sin 4\varphi$, $c_0 = c_{11}c_{33} - c_{13}^2 - c_{44}(c_{11} + 2c_{13} + c_{33})$ Подставляя (2.5) – (2.6) в формулы (2.1), получим значения перемещения с точностью до жесткого смещения и поворота. Так как

$$\varepsilon_{\xi\eta} = \frac{\partial u_{\xi}}{\partial \eta} + \frac{\partial u_{\eta}}{\partial \xi} = b_1 + a_2 = a_3$$

то вервоначальный прямоугольник после нагружения по закону (2.4) переходит в параллелограмм с углами 90° ± arctga₃.

Наибольший сдвиг получается при угле φ = φ₀, где φ₀, согласно (2.6). определяется формулой

$$\varphi_0 = \frac{1}{2} \arccos\left(\frac{-A_0 \pm \sqrt{A_0^2 + 32c_0^2}}{8c_0}\right) \quad A_0 = 2c_{44}(c_{11} - c_{33}), \quad 0 < |\varphi_0| < 90^\circ$$

Задача 2. Пусть граннчные условия анизотропного прямоугольника имеют вид

$$\sigma_{\xi}(\pm l,\eta) = \sigma_{\eta}(\xi,\pm h) = 0, \quad \tau_{\xi\eta}|_{\Gamma} = 1$$
(2.7)

Здесь постоянные a_1 , b_2 и a_3 определяются по формулам (2.5), где $\Delta_1 = a_3 [2c_{44}(c_{11} - c_{33})\sin 2\varphi + c_0\sin 4\varphi], \quad \Delta_0 = c_{44}(c_{11}c_{33} - c_{13}), \quad \Delta = 4\Delta_3$ $\Delta_2 = a_3 [2c_{44}(c_{11} - c_{33})\sin 2\varphi - c_0\sin 4\varphi], \quad \Delta_3 = c_{11} - c_0\sin^2 2\varphi$

3. Первая основная задача теории упругости для анизотропной полосы. Как первое применение полученных общих формул [1.14] и [1.15], приведем решение задачи для анизотропной полосы $(-\infty < \xi < \infty, 0 \le \eta \le h)$ когда на ее границах заданы компоненты напряжений (фиг. 1).

 $\sigma_n(\xi, h) = f_2(\xi), \tau_{\xi_n}(\xi, \eta) = g_1(\xi), \sigma_n(\xi, 0) = f_1(\xi), \tau_{\xi_n}(\xi, 0) = g_1(\xi), (|\xi| < \infty) (3.1)$ Будем считать, что граничные функции удовлетворяют условиям равновесия статики, а на бесконечности стремятся к пулю.

Решение задачи ищем в виде (1.14). Удовлетворяя граничным условиям, для определения неизвестных функций $A_{\mu}(\lambda)$ получим систему алгебраических уравнений

$$\sum_{p=1}^{4} c_{p} z_{p} A_{p} = \tilde{f}_{2}, \quad \sum_{p=1}^{4} s_{p} z_{p} A_{p} = \tilde{g}_{2}, \quad \sum_{p=1}^{4} c_{p} A_{p} = \tilde{f}_{2}, \quad \sum_{p=1}^{4} s_{p} A_{p} = \tilde{g}_{1}$$
(3.2)

Где

$$\widetilde{f}_{k}(\lambda) = \frac{1}{2\pi\lambda} \int f_{k}(\xi) e^{-i\lambda\xi} d\xi, \quad \widetilde{g}_{k}(\lambda) = \frac{1}{2\pi\lambda} \int_{-\infty}^{\infty} g_{k}(\xi) e^{-i\lambda\xi} d\xi, \quad z_{p} = e^{i\lambda\beta_{p}} (k = 1; 2, p = 1; 2; 3; 4)$$
(3.3)

33

Решение системы (3.2) представим в виде

 $\Delta(\lambda)A_p(\lambda) = i\alpha_p[\overline{f}_2(\lambda)x_{p1} + \overline{g}_2(\lambda)x_{p2} + \overline{f}_1(\lambda)x_{p3} + \overline{f}_1(\lambda)$

$$\Delta(\lambda) = (\alpha_1 - \alpha_2)(\alpha_3 - \alpha_4)(z_1z_2 + z_3z_4) - (\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)(z_1z_3 + z_2z_4) + (\alpha_2 - \alpha_3)(\alpha_1 - \alpha_4)(z_2z_3 + z_1z_4)$$
(3.5)
функция $x_{a_1}(\lambda)$ определяются формулами

$$\begin{aligned} x_{11} &= (\alpha_{1} - \alpha_{4})\alpha_{3}s_{3}z_{3} + (\alpha_{4} - \alpha_{3})\alpha_{5}s_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{4}s_{4}z_{4} \\ x_{21} &= (\alpha_{3} - \alpha_{4})\alpha_{4}s_{4}z_{1} + (\alpha_{4} - \alpha_{4})\alpha_{3}s_{3}z_{3} + (\alpha_{1} - \alpha_{3})\alpha_{4}s_{4}z_{4} \\ x_{31} &= (\alpha_{4} - \alpha_{2})\alpha_{1}s_{1}z_{1} + (\alpha_{1} - \alpha_{4})\alpha_{1}s_{2}z_{2} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{4} \\ x_{41} &= (\alpha_{2} - \alpha_{3})\alpha_{1}s_{1}z_{1} + (\alpha_{3} - \alpha_{1})\alpha_{2}s_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{3}s_{3}z_{3} \\ x_{11} &= (\alpha_{4} - \alpha_{2})\alpha_{5}c_{3}z_{3} + (\alpha_{3} - \alpha_{4})\alpha_{2}c_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{3}c_{3}z_{3} \\ x_{22} &= (\alpha_{4} - \alpha_{1})\alpha_{4}c_{4}z_{4} \\ x_{22} &= (\alpha_{4} - \alpha_{1})\alpha_{4}c_{4}z_{1} + (\alpha_{4} - \alpha_{1})\alpha_{4}c_{4}z_{2} + (\alpha_{4} - \alpha_{1})\alpha_{4}c_{4}z_{4} \\ x_{42} &= (\alpha_{3} - \alpha_{2})\alpha_{1}c_{1}z_{1} + (\alpha_{4} - \alpha_{3})\alpha_{2}c_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{4} \\ x_{42} &= (\alpha_{3} - \alpha_{4})\alpha_{1}s_{1}z_{3}z_{4} + (\alpha_{4} - \alpha_{3})\alpha_{2}s_{2}z_{3}z_{4} + (\alpha_{3} - \alpha_{1})\alpha_{4}s_{4}z_{2}z_{3} \\ x_{33} &= (\alpha_{4} - \alpha_{1})\alpha_{1}s_{1}z_{2}z_{1} + (\alpha_{4} - \alpha_{1})\alpha_{2}s_{2}z_{2}z_{1}z_{4} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{1}z_{2} \\ x_{41} &= (\alpha_{3} - \alpha_{4})\alpha_{1}s_{1}z_{3}z_{4} + (\alpha_{1} - \alpha_{2})\alpha_{3}c_{3}z_{2}z_{4} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{1}z_{2} \\ x_{43} &= (\alpha_{4} - \alpha_{3})\alpha_{1}s_{1}z_{2}z_{4} + (\alpha_{4} - \alpha_{1})\alpha_{2}s_{2}z_{1}z_{4} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{1}z_{2} \\ x_{41} &= (\alpha_{4} - \alpha_{3})\alpha_{1}s_{1}z_{2}z_{4} + (\alpha_{4} - \alpha_{3})\alpha_{2}s_{2}z_{1}z_{4} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{1}z_{2} \\ x_{44} &= (\alpha_{4} - \alpha_{3})\alpha_{4}c_{4}z_{2}z_{3} + (\alpha_{4} - \alpha_{3})\alpha_{2}c_{3}z_{2}z_{4} + (\alpha_{2} - \alpha_{1})\alpha_{4}c_{4}z_{1}z_{3} \\ x_{34} &= (\alpha_{4} - \alpha_{3})\alpha_{1}c_{1}z_{3}z_{4} + (\alpha_{4} - \alpha_{1})\alpha_{2}c_{2}z_{1}z_{4} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{1}z_{2} \end{aligned}$$
(3.6)

Преобразуем к бодее простому виду основной детерминант Δ(λ) системы (3.2). Рассмотрим два случая:

а) корни уравнения (1.6) деиствительны: $\alpha_1 = -\alpha_2$, $\alpha_2 = -\alpha_3$. Тогда числа β_p принимают значения $\beta_1 = -\overline{\beta}_4 = e_1$ id_1 , $\beta_2 = -\overline{\beta}_3 = e_2 + id_2$. При этом функция $\Delta(\lambda)$ преобразуется к виду

$$\Delta(\Lambda) = 2\Delta_1(\Lambda, \varphi)e^{i(d_1-1)} \qquad \Delta_1(\Lambda, \varphi) = \{4\alpha_1\alpha_2\cos[(d_1-d_2)\Lambda h] - (\alpha_1 + \alpha_2)^2 \operatorname{ch}[(e_1 - e_2)\Lambda h] + (\alpha_1 - \alpha_2)^2 \operatorname{ch}[(e_1 + e_2)\Lambda h]\}$$
(3.7)

6) корни уравнения (6) комплексны: $\alpha_1 = -\alpha_2 = -(a + bi)$, $\alpha_2 = -\alpha_3 = -(a + bi)$. Числа β при этом будут $\beta_1 = -\overline{\beta}_3 = e_1 + id_1$, $\beta_2 = -\overline{\beta}_4 = e_2 + id_2$. Для функции $\Delta(\lambda)$ получается выражение 34

$$\Delta(\lambda) = -8\Delta_{\gamma}(\lambda, \varphi)e^{i(d_1+d_2)\lambda h}$$
(3.8)

 $\Delta_{1}(\lambda,\varphi) = \{a^{-}\cos[(d_{1}-d_{2})\lambda h] + b^{-}ch[(e_{1}-e_{2})\lambda h] - (a^{-}+b^{2})ch[(e_{1}-e_{2})\lambda h]\}$

Из (3.7) и (3.8) следует, что корни функции $\Delta(\lambda)$ расположены симметрично относительно координатных осей комплексной плоскости λ . причем $\lambda = 0$ всегда является четырехкратным корнем $\Delta(\lambda)$. При этом, интегралы (1.14). будут сходящимися только при выполнении условий равновесия статики и "закрепления" произвольной точки (точка отсчета) полосы.

4. Численный пример. В качестве конкретного примера рассматривается задача об изгибе анизотропной полосы под действием пормальных сил (плоское деформированное состояние).

$$f_{1}(\xi) = \begin{cases} P_{1}, \ (|\xi| \equiv (a,b)) \\ 0, \ (|\xi| \not\equiv (a,b)) \end{cases}, \qquad f_{1}(\xi) = \begin{cases} P_{2}, \ (|\xi| < l) \\ 0, \ (|\xi| > l) \end{cases}$$

$$g_{1}(\xi) = g_{2}(\xi) = 0, \qquad P_{1}(b-a) = P_{2}l = P_{0}$$

$$(4.1)$$

Преобразование Фурье (3.3) этой нагрузки будет

$$\widetilde{f}_1(\lambda) = \frac{P_1}{\pi \lambda^2} (\sin \lambda b - \sin \lambda a), \qquad \widetilde{f}_2(\lambda) = \frac{P_1}{\pi \lambda^2} \sin \lambda l \qquad (4.2)$$

Пусть материал полосы-пьезокерамика ЦТБС-3. для которого

$$c_{11} = 15.51\chi, c_{13} = 8\chi, c_{33} = 13.6\chi, c_{44} = 2.9\chi, \chi = 10^{\circ} \text{ krc/cm}^{-1}$$
 (4.3)

Значения корной уравнения (1.6) и числа β для этого материала приведены в табл. 1

φ	р	[2	3	4
	α_p	-2.2494	-0.4748	0.4748	2.2494
0	β_p	2.2494	0.4748	-0.4748	-2.2494
π/8	β _p	1.4107 ± 0.9002	0.5355-0.30897	-0.5355-0.30891	-1.4107 + 0.9002 i
π/4	β_p	0.7424 + 0.6700 i	0.7749-0.6321 /	-0.7749-0.63217	0.7424 + 0.6700 r
3π/8	β,	0.5038 + 0.3214 r	1.4012-0.80831	-1.4012-0.80831	-0.5038 + 0.32147
π/2	β _p	0.4446	2.1063	-2.1063	0.4446

(α,	И	β.)	для	материала	(4.3)
---	----	---	----	---	-----	-----------	-------

Трансцендентная функция $\Delta(\lambda)$, согласно (3.7), записывается в виде

$$\Delta(\lambda) = 2\Delta_1(\lambda, \varphi) \cdot e^{i\omega_2 \lambda a}$$
(4.4)

 $\Delta_1(\lambda, \varphi) = 4.27166 \cdot \cos(a_1 \lambda h) - 7.42097 \cdot ch(a_1 \lambda h) + 3.14931 \cdot ch(a_1 \lambda h)^{(3.3)}$

Значения параметров a_k ($k = 0 \div 3$), в зависимости от утла ϕ , приведены в табл. 2.

Таблица 1

3	начения а _к	(k = 0, 1, 2, 3)		Табли	tta 2
¢ a.	a_0	<i>a</i> ₁	a2	<i>a</i> ₃	
0	0	0	1.77463	2.72415	
π/8	0.59131	1.20907	0.87515	1.94619	
π/4	0.03791	1.30208	0.032462	1.51727	
3π/8	0.48692	1.12971	0.897396	1.90491	
π/2	0	0	1.66177	2.55090	

Для материала (4.3) вычислены корпи трансцендентного уравнения (4.4) при различных направлениях главных осей анизотропии. Значения первых шести корней $w_k = \lambda_z h$ функции $\Delta_1(\lambda, \varphi)$ приведены в табл. 3.

Корни $w_k = \lambda_k h$ функции $\Delta(\lambda)$

¢ */	Û	π/8	π/4	3π/8	π/2
1	2.94978i	2.24493+3.50168 (3.20308+3.483667	2.23785+3.679031	3.150121
2.	4.060551	3.74816+5.74557 1	5.23130+5.862841	3.75978+6.02264 1	4.336327
3	7.000331	5.17409+8.081921	7.27873+8.24750 /	5.17800+8.468451	7.47575 r
-4	7.82883 /	6.62572+10.4128 r	9.32528+10.63237	6.63122+10.9118 i	8.36052 r
5	9.96480 /	8.07230+12.7414 i	11.3719+13.01717	8.07773+13.3505 i	10.6415 1
6	11.06767	9.51944+15.07101	13,4184+15,40191	9,52478+15,7910 i	11.81927

Дальнейшие вычисления проводились для следующих значений параметров (4.1) и (4.2):

 $l = 0.5eg., h = 1eg., a = 5eg., b = 6eg., P_1 = 1eg., P_2 = 2eg.$

 $\sigma_{\epsilon}(\xi,\eta)$

Таблица 4

Таблица 3

φ	n	0	0.5	ł	2	3	4	5	6
	0	32.32	30.51	27.12	21.01	15.00	9.00	2.74	-0.26
0	0.5	0.095	0.015	-0.044	-0.004	-0.001	-0.007	-0.007	-0.007
	1	-32.61	-30.52	-26.99	-21.01	-15.01	-9.00	-2.75	0.25
	0	31.57	30.66	28.14	22.19	16.18	10.18	3.55	0.163
$\pi/8$	0.5	0.1403	-0.2490	-0.5963	-0.5928	-0.5911	-0.5985	-0.4201	-0 1609
	1	-31.93	-29.27	-25.76	-19.83	-13.82	-7.812	-2.078	0.327
	0	31.297	30.106	27.222	21.069	15.073	9.0067	3.108	-0.0337
$\pi/4$	0.5	0.1812	-0.0403	-0.1365	-0.0349	-0.0379	-0.0373	-0.0391	0.0005
	1	-31.767	-29.860	-26.88	-20,936	-14,927	-8.9269	-2.9098	0.0147
	0	31.62	29.67	26.14	20.02	14.02	8.034	2.215	-0.282
$3\pi/$	0.5	0.1227	0.1987	0.3602	0.4894	0.4871	0.4834	0.3398	0.1551
, i	1	-31.94	-30.60	-27.74	-21.98	-15.98	-9.983	-3.653	-0.2213
	0	32.24	30.45	27.09	21.01	15.00	9.00	2.78	-0.225
$\pi/2$	0.5	0.0781	0.0106	-0.0367	-0.0022	-0.0003	-0.0051	0.0053	0.0053
	1	-32.46	-30.45	-26.97	21.01	-15.01	-9.00	-2.78	0.224

36

 $\tau_{\xi\eta}(\xi,\eta), \ (\tau_{\xi\eta}(\xi,0) = \tau_{\xi\eta}(\xi,1) = 0)$

Таблица 5

φ	T E	0	0.5	1	2	3	4	5	6
	0.25	0	0.9820	1.1486	1.1267	1.1249	1.1218	1.1650	-0.0400
0	0.5	0	1.2934	1.4876	1.500	1.500	1.500	1.396	0.1033
	0.75	0	1.2050	1.1101	1.1234	1.1251	1.1287	1.0535	0.0715
	0.25	-0.1056	0.8351	1.0981	1.1267	1.1250	1.1213	1.2330	-0.0011
π/8	0.5	-0.0204	1.3176	1.5274	1.4995	1.4999	1.5018	1.4088	0.0931
	0.75	0.1139	1.3409	1.1411	1.1237	1.1251	1.1276	0.9801	0.0372
	0.25	-0.0203	0.9030	1.1802	1.1230	1.1252	1.1208	1.1936	-0.0613
π/4	0.5	-0.0007	1.3247	1.5201	E.5001	1.5000	1.4993	1.4123	0.0881
	0.75	0.0215	1.2622	1.0575	1.1270	1.1248	1.1296	1.0140	0.1035
	0.25	0.0724	1.038	1.2130	1.1240	1.1251	1.1184	1.1340	-0.0961
3π/8	0.5	0.0181	1.3197	1.5017	1.5012	1.5000	1.5029	1,4098	0.0887
	0.75	-0.0785	1.1430	1.0369	F.1252	1.1248	1.1302	1.0815	0.1314
	0.25	0	0.9924	1.1465	1 1262	1.1249	1.1225	1.163	-0.0363
$\pi/2$	0.5	0	1.3061	1.4898	1.499	1.5000	1.4994	1.4031	0.0969
	0.75	0	1.1975	1.1104	1.1240	1.1251	1.1279	1.0587	0.0663

В различных точках полосы при различных ориентациях главных осей анизотропии вычислены значения нормального σ_τ (ξ, η) и касателького τ_{εη} (ξ, η) напряжений. Результаты вычислений приведены в табл. 4. 5 соответственно.

В табл. 6 приведены значения относительного прогиба $[v(\xi,\eta) - v(6,0)]$ в различных граничных точках полосы, когда $(-5 \le \xi \le 5, \eta = 0 \ \text{и} \ \eta = 1)$.

 $10^{\circ}[v(6.0) - v(\xi, \eta)]$

Таблица б

¢	र्ष् ग	X	0.5	1	2	3	4	5
Û	0 1	18.113 18.182	13.245 13.278	9.368 9.369	3.516 3.517	0.989 0.990	0.132 0.132	0.162 0.169
π/8	0	27.379 27.471	20.426 20.497	14.777 14.808	6.719 6.748	2.231 2.260	0.293 0.321	0.043 0.066
π/4	0	37.113 37.226	27.960 27.927	20.372 20.399	9.583 9.610	3.484 3.510	0.733 0.760	0.011 0.028
3л/	0 1	29.450 29.536	21.984 22.008	15.877 15.946	7.249 7.315	2.439 2.505	0.358 0.424	0.045 0.067
π/2	0	20.954 21.068	15.381 15.468	10.930 10.985	4.656 4.701	1.265 1.297	0.162 0.171	0.048 0.068

Полученные здесь результаты могут быть полезными при расчете деталей машин и строительных конструкций, а также при определении параметров будущего землетрясения методами современных сверхточных геодезических измерений [14].

ЛИТЕРАТУРА

- Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезокерамических и электропроводных тел. М.: Наука, 1988. 472с.
- Гринченко В.Т., Улитко А.Ф., Шульга Н.А. Механика связанных полей в элементах конструкций, Т.S. электроупругость. Киев: Наукова думка. 1989. 230с.
- Бегларян А.Г. Разработка и совершенствование методов и приборов для автоматизации геодезических деформационных измерений инженерных сооружений и разломоя земной коры. /Дисс. на соиск. уч. ст. докт. тех. наук. Ереван. 1997. 104с.
- Аехницкий С.Г. Теория упругости анизотропных тел. М.: Наука. 1977. 415с.
- Ray M.C., Bhattacharya R., Samanta B. Exact-solutions for static analysis of intelligent structures. AIAAJ, 1993, V.3, №9, p.1684-1691
- Brooks S.P., Heyliger P.R. Static behavior of piezoelectric laminates with distributed and patchet electrodes. J. Intelligent Mat. Sist. Struct. V.S. No. 1994, p.635-646
- Баблоян А.А., Мелкумян С.А. Смешанная задача электроупругости для пьезокерамического клина с электродами. // Докл. НАН Арм. 1999. Т.99, №1, С.45-51
- 8. Амбарцумян С.А. Теория анизотропных пластин. М.: Наука. 1957. 360с.
- Амбарцумян С.А., Гнуни В.Ц. О вынужденных колебаниях и динамической устойчивости трехслойных ортотропных пластинок. // Изв. АН СССР. Мех. и машиностр. 1961. №3.
- Агаловян А.А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука. 1997. 415с.
- Белубекян Э.В. Гнуни В.Ц. Оптимальные задачи колебаний анизотропных слоистых цилиндрических оболочек. // Механика полимеров, 1976. №5. С. 871-874.
- 12. Саркисян В.С. Некоторые задачи математической теории упругости анизотропного тела. Ереван. Из-во ЕГУ. 1976. S34c.
- Агаловян М.А. Краевые задачи на собственные значения для анизотропных тонкостенных тел / Дисс. на соиск. уч. ст. канд. ф-м. наук. Ереван. 1998 109с
- Бархударян А.М., Бегларян А.Г., Амбарцумян П.В. Гидродинамический нивелир. А.С. 1075075 (СССР)

Ереванский госуниверситет архитектуры и строительства Поступила в редакцию 2.10.2003