ЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

56, №4, 2003

Механика

УДК 539.3

ИЗГИБ АНИЗОТРОПНОЙ ПОЛОСЫ Баблоян А.А, Бегларян А.Г.

Ա.Հ. Բաբլոյան, Ա.Գ. Բեզլարյան Անիգոտրոպ շերտի ծռումը

Մտաված է առածգականության տեսության հավասարակչոության հավասարումների ընդհանուր լուծումը ուղղյագնորեն անիզուորոալ (ոյ օրրոտրոպ) չերտի նամար։ Որպես օրինակ, ուսումնասիրվում է անիզոտրոպ չերտի ծռումը նորմալ ուժերով անիզոտրոպիայի գլխավոր առանցքների տարբեր ուղղությունների դեպրում։

A.H. Babloyan, A.G. Beglaryan Bending of Anisotropic Layer

Приводится общее решение уравнений равновесия теории упругости для прямодинейновиизотронной (неортотронной) полосы. В качестве конкретного примера изучается изгиб виязотронной полосы пормальными силами при раздичных направлениях главных осей анизотроннии.

Общее решение уравнений равновесия теории упругости для ортотрошной полосы построено многими авторами [1-3]. Из этого решения путем использования формул поворота координатных осей для напряжений и перемещений можно получить общее решение уравнений равновесия для прямолинейно-анизотропной полосы (идея С.Г. Лехницкого [4]). Аналогичные задачи рассматривались в работах [5-7]. Эти же вопросы в рамках теории пластин и оболочек подробно изучены в работах [8-14].

1. Вывод общего решения. Пусть прямолинейно-анизотропная полоса в координатной системе (\exists,η) запимает область $(-\infty < \exists < \infty,\ 0 \le \eta \le h)$. Вводим ортогональную систему координат (x,z), совпадающую с главными направлениями анизотропии $(\phi n \cdot 1)$. Через ϕ обозначим угол между осями 0x и $0 \in \mathbb{R}$. Тогда переход от одной координатной системы к другой

$$x = \xi \cos \varphi - \eta \sin \varphi$$
, $z = \xi \sin \varphi + \eta \cos \varphi$ (1.1)

В системе (x,z) уравнения равновесия плоско-деформированного состояния анизотропного материала имеют вид [2]

$$c_{11} \frac{\partial^{2} u_{x}}{\partial x^{2}} + c_{44} \frac{\partial^{2} u_{x}}{\partial z^{2}} + (c_{13} + c_{44}) \frac{\partial^{2} u_{z}}{\partial x \partial z} = 0$$

$$(c_{11} + c_{44}) \frac{\partial^{2} u_{x}}{\partial x \partial z} + c_{44} \frac{\partial^{2} u_{z}}{\partial x^{2}} + c_{33} \frac{\partial^{2} u_{z}}{\partial z^{2}} = 0$$

$$(1.2)$$

а закон Гука будет

$$\begin{aligned}
\mathbf{O}_{1} &= c_{11} \varepsilon_{x} + c_{13} \varepsilon_{z}, \quad \mathbf{O}_{.} &= c_{12} \varepsilon_{x} + c_{13} \varepsilon_{z}, \quad \mathbf{O}_{z} = c_{13} \varepsilon_{x} + c_{33} \varepsilon_{z} \\
\mathbf{\tau}_{xz} &= c_{.11} \varepsilon_{xy}, \quad \varepsilon_{x} = \frac{\partial u}{\partial x}, \quad \varepsilon_{z} = \frac{\partial u}{\partial z}, \quad \varepsilon_{z} = \varepsilon_{yz} = \varepsilon_{yz} = \varepsilon_{yz} = 0
\end{aligned} \tag{1.3}$$

Фундаментальную систему решений уравнений равновесия (1.2) ищем в виде

$$u_x = i\gamma_0(\alpha)Z_0, \quad u_z = -Z_0, \quad Z_0 = e^{-i\alpha + i\alpha + i\alpha}$$
 (1.4)

Подставмя выражения (1.4) в (1.2), после ряда преобразований, для определения функции $\gamma_0(\alpha)$ получим два равносильных выражения:

$$\gamma_0(\alpha) = \frac{(c_{11} + c_{44}) \cdot \alpha}{c_{11} - \alpha^2 c_{44}} = -\frac{c_{44} - \alpha^2 c_{33}}{(c_{13} + c_{44}) \cdot \alpha}$$
 (1.5)

Отсюда следует, что 🕻 является корнем биквадратного уравнения

$$\Delta_0(\alpha) = (c_{11} - \alpha c_{11})(c_{11} - \alpha^2 c_{33}) + (c_{13} + c_{14})^2 \alpha^2 = 0$$
 (1.6)

Из закона Гука (1.3), в силу (1.4), для напряжений получим выражения

$$\sigma_{\alpha} = i\lambda_{0}[c_{13}\gamma_{0}(\alpha) - c_{13}\alpha]Z_{0}, \quad \sigma_{z} = i\lambda_{0}[c_{13}\gamma_{0}(\alpha) - c_{33}\alpha]Z_{0}
\tau_{zz} = -\lambda_{0}c_{24}[\alpha\gamma_{0}(\alpha) + 1]Z_{0}, \quad \sigma_{z} = i\lambda_{0}[c_{12}\gamma_{0}(\alpha) - c_{13}\alpha]Z_{0}$$
(1.7)

Пепосредственной проверкой можно убедиться в справедливости соотпошений

$$E_{0}(\alpha) = \alpha^{-1} [c_{11} \gamma_{0}(\alpha) - c_{13} \alpha] = -\alpha [c_{13} \gamma_{0}(\alpha) - c_{33} \alpha] =$$

$$= c_{44} [\alpha \gamma_{0}(\alpha) + 1] = c_{44} \frac{c_{14} + \alpha^{2} c_{33}}{c_{13} + c_{44}}$$
(1.8)

если только (т - корень уравнения (1.6).

В силу [1,8] формулы для напряжений (1.7) можно представить в виде $\sigma_x = i \lambda_0 \alpha E_0(\alpha) Z_0, \quad \sigma_z = -i \lambda_0 \alpha^{-1} E_0(\alpha) Z_0, \quad \tau_z = -\lambda_0 E_0(\alpha) Z_0 \quad (1.7)$ где λ_0 -произвольный параметр.

Имея цапряжения $\{1.7\}$ и перемещения $\{1.4\}$ в координатной системе (x,z), вычислим эти же величины в системе (ξ,η) . Пользуясь формулами поворота координатных осей для перемещений и напряжений из $\{1.4\}$ и $\{1.7\}$, получим

$$u_{\tau} = [r\gamma_{0}(\alpha)\cos\varphi - \sin\varphi]Z_{0}, \quad u_{\tau} = -[r\gamma_{0}(\alpha)\sin\varphi + \cos\varphi]Z_{0}$$

$$\sigma_{z} = [i(\alpha\cos^{2}\varphi - \alpha^{-1}\sin^{2}\varphi) - \sin2\varphi]E_{0}(\alpha)\lambda_{0}Z_{0}$$

$$\sigma_{_{1}} = [i(\alpha \sin^{2} \varphi - \alpha^{-1} \cos^{2} \varphi) + \sin 2\varphi] E_{_{0}}(\alpha) \lambda_{_{0}} Z_{_{0}}$$

$$\tau_{_{E_{1}}} = -[i(\alpha + \alpha^{-1}) \sin \varphi \cos \varphi + \cos 2\varphi] E_{_{0}}(\alpha) \lambda_{_{0}} Z_{_{0}}$$
(1.9)

Пользуясь формулами (1.1), преобразуем теперь степень экспоненциальной функции Z_n двумя способами

$$\Lambda_{\eta}(x + i\alpha z) = \Lambda(\beta \eta + i\xi) = \mu(\delta \xi + i\eta) \tag{1.10}$$

$$\lambda = \lambda_0 (\alpha \sin \varphi - i \cos \varphi), \quad \beta = \frac{i\alpha \cos \varphi - \sin \varphi}{\alpha \sin \varphi - i \cos \varphi}$$
 (1.11)

$$\mu = \lambda_0 (\alpha \cos \varphi - i \sin \varphi), \quad \delta = \frac{\cos \varphi + i \alpha \sin \alpha}{\alpha \cos \varphi + i \sin \varphi}$$
 (1.12)

Совокупность функций (1.9) при произвольных значениях параметра λ (или μ) с учетом формул (1.10) — (1.12) будет представлять полный набор частных решений уравнений равновесия (1.2) в координатах (ξ,η), если только корни биквадратного уравнения (1.6) не равны между собою ($\alpha_i \neq \alpha_i$, $i \neq j$, i,j=1+4). Случай равных корпей получается из (1.9)-(1.12) путем предельного перехода, когда $\alpha_i \Rightarrow \alpha_i$. Такой предельный переход целесообразно выполнить после окончательного решения конкретных краевых задач.

С целью компактного представления решения системы [1.2] введем обозначения для приведенных упругих постоянных:

$$c_{p} = \alpha \cos \varphi + i \sin \varphi, \quad s_{p} = \alpha^{-1} \sin \varphi - i \cos \varphi$$

$$d_{p} = [i\gamma_{0}(\alpha_{p})\cos \varphi - \sin \varphi] E_{0}^{-1}(\alpha_{p}), \quad e_{p} = [i\gamma_{0}(\alpha_{p})\sin \varphi + \cos \varphi] E_{0}^{-1}(\alpha_{p})$$

$$\beta = \frac{i\alpha_{p} \cos \varphi - \sin \varphi}{\alpha_{p} \sin \varphi - i \cos \varphi} = \frac{s_{p}}{ic} \qquad = \frac{\cos \varphi + i\alpha_{p} \sin \varphi}{\alpha_{p} \cos \varphi + i \sin \varphi} = \frac{c_{p}}{is}$$

$$I_{p} = \frac{1 - \alpha_{p}}{c_{p}\alpha_{p}^{2}} - c_{p}, \quad m_{p} = \frac{1 - \alpha_{p}^{2}}{s_{p}\alpha_{p}^{2}} - s_{p}, \quad (p = 1, 2, 3, 4)$$

$$(1.13)$$

При обозначениях [1.13] общее решение уравнений равновесия [1.2] в координатах (ξ, η) для полосы $(-\infty < \xi < \infty, 0 \le \eta \le h)$ представляется в виде интеграла (ряда) Фурье

$$\begin{split} u_{n} &= \int \sum_{p=1}^{4} d_{p} A_{p}(\lambda) e^{i\kappa(i\xi+\beta_{p}\eta)} d\lambda, \quad u_{n} = -\int \sum_{p=1}^{4} c_{p} A_{p}(\lambda) e^{i\kappa(i\xi+\beta_{p}\eta)} d\lambda, \\ \sigma_{n} &= \int \sum_{p=1}^{4} c_{p} A_{p}(\lambda) \lambda e^{\lambda(i\xi+\beta_{p}\eta)} d\lambda, \quad \sigma_{n} = \int \sum_{p=1}^{4} l_{p} A_{p}(\lambda) \lambda e^{\lambda(i\xi+\beta_{p}\eta)} d\lambda, \quad (1.14) \\ \tau_{2n} &= \int \sum_{p=1}^{4} s_{p} A_{p}(\lambda) \lambda e^{\lambda(i\xi+\beta_{p}\eta)} d\lambda. \end{split}$$

где $A_n(\lambda)$ -произвольные функции. Решение (1:14) получается из (1:9), (1:11) и первого преобразования (1:10).

Второе решение уравнений равновесия [1.2], позволяющее решать краевые задачи для анизотропной полосы $(0 < \xi < h, -\infty \le \eta \le \infty)$, можно получить из (1.9), (1.12) и второго преобразования [1.10].

$$\alpha = \int_{-\infty}^{\infty} \int_{p-1}^{\infty} d\mu \, B_{-}(\mu) \mu \, e^{\mu(b_{p}\xi + p\eta)} d\mu, \quad \alpha_{\eta} = -\int_{-\infty}^{\infty} \int_{p-1}^{\infty} m_{p}B_{-}(\mu) \mu \, e^{\mu(b_{p}\xi + p\eta)} d\mu, \quad \alpha_{\eta} = -\int_{-\infty}^{\infty} \int_{p-1}^{\infty} m_{p}B_{-}(\mu) \mu \, e^{\mu(b_{p}\xi + h\eta)} d\mu$$

$$\tau_{\xi\eta} = -\int_{-\infty}^{\infty} \sum_{p-1}^{\infty} \epsilon_{p}B_{p}(\mu) \mu \, e^{\mu(b_{p}\xi + h\eta)} d\mu \qquad (1.15)$$

где $B_{\mu}(u)$ — произвольные функции.

Полученные общие решения (1.14) и (1.15) представлены в виде интегралов (или рядов) Фурье по координатам ξ и η соответственно.

2. Частные решения уравнений равновесия. Рассмотрим только те частные решения уравнений равновесия (1.2), когда перемещения зависят от координат линейным образом.

$$u_1 = a_1 \xi + b_1 \eta + d_1, \ u_{\eta} = a_2 \xi + b_2 \eta + d_2, \ (a_3 = b_1 + a_2)$$
 (2.1)

Отсюда, путем неоднократного использования формул поворота и закона Гука, для напряжений получим

$$= a_{1}[c_{11}\cos^{4}\varphi + c_{33}\sin^{4}\varphi + (0.5c_{13} + c_{11})\sin^{2}2\varphi] +$$

$$+ 0.25b_{1}[4c_{13} + c_{00}\sin^{2}2\varphi] - 0.25a_{3}[c_{11} - c_{33} + c_{00}\cos2\varphi]\sin2\varphi$$

$$= 0.25a_{1}[4c_{13} - c_{00}\sin\varphi] + b_{2}[c_{33}\cos^{4}\varphi + c_{11}\sin^{4}\varphi +$$

$$+ (0.5c_{13} + c_{41})\sin^{2}2\varphi] - 0.25a_{1}(c_{11} - c_{33} - c_{10}\cos2\varphi)\sin2\varphi$$

$$\tau_{5\eta} = c_{44}[a_{3}\cos2\varphi + (a_{1} - b_{2})\sin2\varphi]\cos2\varphi + 0.25\{(c_{11} - 2c_{13} + c_{33}) \times$$

$$\times [a_{5}\sin2\varphi + (b_{5} - a_{1})\cos2\varphi] - (c_{11} - c_{33})(a_{1} + b_{2})\}\sin2\varphi$$

$$c_{001} = c_{11} - 2c_{13} + c_{33} + 4c_{44}$$
(2.2)

Для сравнения здесь же приводим формулы напряжений, действующих на площадках с нормалями, совпадающими с главными направлениями анизотропни:

$$\sigma_{x} = a_{1}(c_{13}\sin^{2}\varphi + c_{13}\sin^{2}\varphi) + b_{2}(c_{11}\sin^{2}\varphi + c_{13}\cos^{2}\varphi) - 0.5a_{3}(c_{11} - c_{13})\sin 2\varphi$$

$$\sigma_{x} = a_{1}(c_{33}\sin^{2}\varphi + c_{13}\cos^{2}\varphi) + b_{3}(c_{23}\cos^{2}\varphi + c_{13}\sin^{2}\varphi) + 0.5a_{3}(c_{33} - c_{13})\sin 2\varphi$$

$$\tau_{xz} = c_{44}[a_{3}\cos 2\varphi + (a_{1} - b_{2})\sin 2\varphi]; \qquad (\sigma_{z} + \sigma_{z} = \sigma_{z} + \sigma_{z})$$
(2.3)

Отметим, что все напряжения не зависят от параметров a_2 и b_2 в отдельности, а зависят только от суммы $a_3=a_2+b_2$.

На основе формул (2.1)-(2.3) рассмотрим некоторые случаи частных нагружений анизотропного прямоугольника.

Задача 1. Пусть граничные условия анизотропного прямоугольника имеют вид

$$\sigma_{\xi}(\pm l, \eta) = 1, \quad \sigma_{\eta}(\xi, \pm h) = 0, \quad \tau_{\xi \eta}|_{\Gamma} = 0$$
 (2.4)

Из приведенных условий для коэффициентов формул (2.1) получим

$$a_1 = \Delta_1/\Delta$$
, $b_2 = \Delta_2/\Delta$, $a_3 = \Delta_3/\Delta_0$ (2.5)

PAR

$$\Delta_0 = 4c_{44}(c_{11}c_{33} - c_{13}^2), \qquad \Delta = 4(c_{11}c_{33} - c_{13}^2 - c_{01}\sin^2 2\varphi)$$

$$\Delta = 4(c_1 \sin^2 \varphi + c_{33} \cos^2 \varphi) - c_{01} \sin^2 2\varphi + 2a_3(c_{11} - c_{33}) + c_0 \cos 2\varphi \sin 2\varphi$$

$$\Delta_2 = -4c_{11} - c_{00}\sin^2 2\phi + 2a_3[c_{44}(c_{11} - c_{33}) - c_0\cos 2\phi]\sin 2\phi$$
 (2.6)

$$\Delta_3 = 2c_{44}(c_{11} - c_{33})\sin 2\varphi + c_0\sin 4\varphi$$
, $c_0 = c_{11}c_{33} - c_{13}^2 - c_{44}(c_{11} + 2c_{13} + c_{33})$

Подставляя (2.5) — (2.6) в формулы (2.1), получим значения перемещений с точностью до жесткого смещения и поворота. Так как

$$\varepsilon_{\xi\eta} = \frac{\partial u_{\xi}}{\partial \eta} \div \frac{\partial u_{\eta}}{\partial \xi} = b_1 + a_2 = a_3$$

то первоначальный прямоугольник после нагружения по закону (2.4) переходит в параллелограмм с углами $90^{\circ} \pm \arctan g a_3$.

Наибольший сдвиг получается при угле $\phi = \phi_0$, где ϕ_0 , согласно (2.6), определяется формулой

$$\phi_0 = \frac{1}{2} \arccos \left(\frac{-A_0 \pm \sqrt{A_0^2 + 32c_0^2}}{8c_0} \right) \quad A_0 = 2c_{44}(c_{11} - c_{33}), \quad 0 < |\phi_0| < 90^\circ$$

Задача 2. Пусть граничные условия анизотропного прямоугольника имеют вид

$$\sigma_{\xi}(\pm l, \eta) = \sigma_{\eta}(\xi, \pm h) = 0, \quad \tau_{\xi \eta}|_{\Gamma} = 1$$
 (2.7)

Здесь постоянные a_1 , b_2 и a_3 определяются по формулам (2.5), где

$$\Delta_1 = a_3[2c_{44}(c_{11} - c_{33})\sin 2\varphi + c_0\sin 4\varphi], \quad \Delta_0 = c_{44}(c_{11}c_{33} - c_{13}), \quad \Delta = 4\Delta_3$$

$$\Delta_2 = a_3[2c_{44}(c_{11} - c_{33})\sin 2\varphi - c_0\sin 4\varphi], \quad \Delta_3 = c_{11} \cdot c_{33} - c_0 \cdot -c_0\sin^2 2\varphi$$

3. Первая основная задача теории упругости для анизотропной полосы. Как первое применение полученных общих формул [1.14] и [1.15], приведем решение задачи для анизотропной полосы $(-\infty < \xi < \infty, \ 0 \le \eta \le h)$ когда на ее границах заданы компоненты напряжений (фиг. 1).

$$\sigma_{\eta}(\xi,h) = f_{2}(\xi), \ \tau_{\xi\eta}(\xi,\eta) = g_{1}(\xi), \ \sigma_{\eta}(\xi,0) = f_{1}(\xi), \ \tau_{\xi\eta}(\xi,0) = g_{1}(\xi), \ (\big|\xi\big| < \infty) \ (3.1)$$

Будем считать, что граничные функции удовлетноряют условиям равновесия статики, а на бесконечности стремятся к пулю.

Решение задачи ищем в виде (1.14). Удовлетворяя граничным условиям, для определения неизвестных функций $A_n(\lambda)$ получим систему алгебраических уравнений

$$\sum_{p=1}^{4} c_{p} z_{p} A_{p} = \widetilde{f}_{2}, \sum_{p=1}^{4} s_{p} z_{p} A_{p} = \widetilde{g}_{2}, \sum_{p=1}^{4} c_{p} A_{p} = \widetilde{f}_{1}, \sum_{p=1}^{4} s_{p} A_{p} = \widetilde{g}_{1}$$
 (3.2)

LYG

$$\tilde{f}_{k}(\lambda) = \frac{1}{2\pi\lambda} \int f_{k}(\xi) e^{-ik\xi} d\xi, \quad \tilde{g}_{k}(\lambda) = \frac{1}{2\pi\lambda} \int_{\mathbb{R}} g_{k}(\xi) e^{-ik\xi} d\xi, \quad z_{p} = e^{i\lambda k\beta_{p}}$$

$$(k = 1; 2, \ p = 1; 2; 3; 4)$$
(3.3)

Решение системы (3.2) представим в виде

$$\Delta(\lambda)A_p(\lambda) = i\alpha_p[\bar{f}_2(\lambda)x_{p1} + \bar{g}_2(\lambda)x_{p2} + \bar{f}_1(\lambda)x_{p3} + \overline{\chi}_2(\lambda)x_{p3}]$$
(3.4)

где α_{π} — кории характеристического уравнения (1.6), а $\Delta(\lambda)$ — основной детерминант системы (3.2)

$$\Delta(\lambda) = (\alpha_1 - \alpha_2)(\alpha_3 - \alpha_4)(z_1 z_2 + z_3 z_4) -$$

$$-(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)(z_1 z_3 + z_2 z_4) + (\alpha_2 - \alpha_3)(\alpha_1 - \alpha_4)(z_2 z_3 + z_1 z_4)$$
функции $X_{nk}(\lambda)$ определяются формулами

$$x_{11} = (\alpha_{1} - \alpha_{4})\alpha_{3}s_{3}z_{3} + (\alpha_{4} - \alpha_{3})\alpha_{5}s_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{4}s_{4}z_{4}$$

$$x_{21} = (\alpha_{3} - \alpha_{4})\alpha_{4}s_{1}z_{1} + (\alpha_{1} - \alpha_{4})\alpha_{3}s_{3}z_{3} + (\alpha_{1} - \alpha_{3})\alpha_{4}s_{4}z_{4}$$

$$x_{31} = (\alpha_{4} - \alpha_{2})\alpha_{1}s_{1}z_{1} + (\alpha_{1} - \alpha_{4})\alpha_{5}s_{2}z_{2} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{4}$$

$$x_{41} = (\alpha_{2} - \alpha_{3})\alpha_{1}s_{1}z_{1} + (\alpha_{3} - \alpha_{1})\alpha_{2}s_{2}z_{2} + (\alpha_{1} - \alpha_{2})\alpha_{3}s_{3}z_{3}$$

$$x_{11} = (\alpha_{4} - \alpha_{2})\alpha_{5}c_{3}z_{3} + (\alpha_{3} - \alpha_{4})\alpha_{2}c_{2}z_{2} + (\alpha_{2} - \alpha_{3})\alpha_{4}c_{4}z_{4}$$

$$x_{22} = (\alpha_{4} - \alpha_{5})\alpha_{5}c_{1}z_{3} + (\alpha_{4} - \alpha_{1})\alpha_{5}c_{2}z_{5} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{4}$$

$$x_{32} = (\alpha_{2} - \alpha_{3})\alpha_{1}c_{1}z_{3} + (\alpha_{4} - \alpha_{1})\alpha_{2}c_{2}z_{5} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{4}$$

$$x_{41} = (\alpha_{3} - \alpha_{2})\alpha_{1}c_{1}z_{5} + (\alpha_{4} - \alpha_{1})\alpha_{2}c_{2}z_{5} + (\alpha_{2} - \alpha_{1})\alpha_{3}c_{3}z_{3}$$

$$x_{13} = (\alpha_{2} - \alpha_{4})\alpha_{3}s_{3}z_{2}z_{4} + (\alpha_{4} - \alpha_{3})\alpha_{2}c_{2}z_{2} + (\alpha_{2} - \alpha_{1})\alpha_{3}c_{3}z_{3}$$

$$x_{23} = (\alpha_{3} - \alpha_{4})\alpha_{1}s_{1}z_{3}z_{4} + (\alpha_{4} - \alpha_{3})\alpha_{2}s_{2}z_{3}z_{4} + (\alpha_{3} - \alpha_{5})\alpha_{4}s_{4}z_{2}z_{3}$$

$$x_{33} = (\alpha_{4} - \alpha_{5})\alpha_{1}s_{5}z_{5}z_{5} + (\alpha_{4} - \alpha_{5})\alpha_{2}s_{5}z_{7}z_{5} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{7}z_{2}$$

$$x_{41} = (\alpha_{2} - \alpha_{3})\alpha_{1}s_{5}z_{2}z_{1} + (\alpha_{3} - \alpha_{1})\alpha_{5}s_{5}z_{7}z_{5} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{7}z_{2}$$

$$x_{41} = (\alpha_{4} - \alpha_{3})\alpha_{1}s_{5}z_{2}z_{1} + (\alpha_{3} - \alpha_{1})\alpha_{5}s_{5}z_{7}z_{5} + (\alpha_{2} - \alpha_{1})\alpha_{4}s_{4}z_{7}z_{2}$$

$$x_{44} = (\alpha_{4} - \alpha_{3})\alpha_{1}c_{1}z_{3}z_{4} + (\alpha_{1} - \alpha_{4})\alpha_{5}c_{2}z_{7}z_{4} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{7}z_{2}$$

$$x_{34} = (\alpha_{4} - \alpha_{3})\alpha_{1}c_{1}z_{3}z_{4} + (\alpha_{4} - \alpha_{1})\alpha_{5}c_{2}z_{7}z_{4} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{7}z_{2}$$

$$x_{44} = (\alpha_{3} - \alpha_{2})\alpha_{1}c_{1}z_{3}z_{4} + (\alpha_{4} - \alpha_{1})\alpha_{5}c_{2}z_{7}z_{4} + (\alpha_{1} - \alpha_{2})\alpha_{4}c_{4}z_{7}z_{2}$$

$$x_{44} = (\alpha_{3} - \alpha_{2})\alpha_{1}c_{1}z_{3}z_{3} - (\alpha_{4} - \alpha_{3})\alpha_{2}c_{2}z_{7}z_{3} + (\alpha_{4} - \alpha_{1})\alpha_{4}c_{4}z_{7}z_{2}$$

$$x_{5} = (\alpha_{5} - \alpha_{5})\alpha_{5}c_{5}z_{5}z_{5} + (\alpha_{5} - \alpha_{5})\alpha_{5}c_{5}z_{5}z_{5} +$$

Преобразуем к бодее простому виду основной детерминант $\Delta(\lambda)$ системы (3.2). Рассмотрим два случая:

а) кории уравнения (1.6) деиствительны: $\alpha_1 = -\alpha_4$, $\alpha_2 = -\alpha_3$. Тогда числа β_p принимают значения $\beta_1 = -\beta_4 = e_1$ id, $\beta_2 = -\beta_3 = e_2 + id_2$. При этом функция $\Delta(\lambda)$ преобразуется к виду

$$\Delta(\Lambda) = 2\Delta_1(\Lambda, \varphi)e^{i\omega t_1} \qquad \Delta_1(\Lambda, \varphi) = \{4\alpha_1\alpha_2\cos[(d_1 - d_2)\Lambda h] - (\alpha_1 + \alpha_2)^2 \cosh[(e_1 - e_2)\Lambda h] + (\alpha_1 - \alpha_2)^2 \cosh[(e_1 + e_2)\Lambda h]\}$$
(3.7)

б) корни уравнения (6) комплексны: $\alpha_1 = -\alpha_2 = -(a+bi)$, $\alpha_2 = -\alpha_3 = -(a+bi)$. Числа б при этом будут $\beta_1 = -\overline{\beta}_3 = e_1 + id$, $\beta_2 = -\overline{\beta}_4 = e_2 + id_2$. Для функции $\Delta(\Lambda)$ получается выражение

$$\Delta(\lambda) = -8\Delta_{\gamma}(\lambda, \varphi)e^{i(d_{\gamma}+d_{\gamma})\lambda h}$$
(3.8)

$$\Delta_{1}(\lambda, \varphi) = \{a \cos[(d_{1} - d_{2})\lambda h] + b^{-} \cosh[(e_{1} - e_{2})\lambda h] - (a^{2} + b^{2}) \cosh[(e_{2} - e_{2})\lambda h]\}$$

Из (3.7) и (3.8) следует, что корни функции $\Delta(\lambda)$ расположены симметрично относительно координатных осей комплексной плоскости λ , причем $\lambda = 0$ всегда является четырехкратным корнем $\Delta(\lambda)$. При этом, интегралы (1.14) будут сходящимися только при выполнении условий равновесия статики и закрепления произвольной точки (точка отсчета) полосы.

4. Численный пример. В качестве конкретного примера рассматривается задача об изгибе анизотропной полосы под действием пормальных сил (плоское деформированное состояние).

$$f_{1}(\xi) = \begin{cases} P_{1}, & (|\xi| \in (a,b)) \\ 0, & (|\xi| \notin (a,b)) \end{cases} \qquad f_{1}(\xi) = \begin{cases} P_{2}, & (|\xi| < l) \\ 0, & (|\xi| > l) \end{cases}$$

$$g_{1}(\xi) = g_{2}(\xi) = 0, \qquad P_{1}(b-a) = P_{2}l = P_{0}$$

$$(4.1)$$

Преобразование Фурье (3.3) этой нагрузки будет

$$\widetilde{f}_1(\lambda) = \frac{P_1}{\pi \lambda^2} (\sin \lambda b - \sin \lambda a), \qquad \widetilde{f}_2(\lambda) = \frac{P_1}{\pi \lambda^2} \sin \lambda l$$
 (4.2)

Пусть материал полосы-пьезокерамика ЦТБС-3, для которого

$$c_{11} = 15.51 \chi$$
, $c_{13} = 8 \chi$, $c_{33} = 13.6 \chi$, $c_{44} = 2.9 \chi$, $\chi = 10^{\circ} \text{krc/cm}^2$ (4.3)

Значения корной уравнения (1.6) и числа β_s для этого материала приведены в табл. 1

 $(\alpha_p \ \text{и} \ \beta_p)$ для материала (4.3)

Таблица 1

φ	p	1	2	3	4	
	α_p	-2.2494	-0.4748	0.4748	2.2494	
0	β,	2.2494	0.4748	-0.4748	-2.2494	
π/8	βρ	1.4107 + 0.9002r	0.5355-0.30897	-0.5355-0.3089 i	-1.4107 + 0.9002 i	
π/4	β,	0.7424 + 0.6700 i	0.7749-0.6321 1	-0.7749-0.63217	0.7424 + 0.6700 r	
3π/8	β,	0.5038 + 0.32141	1.4012-0.8083 /	-1.4012-0.8083 i	-0.5038 + 0.32147	
π/2	β_p	0.4446	2.1063	-2.1063	0.4446	

Трансцендентная функция $\Delta(\Lambda)$, согласно (3.7), записывается в виде

$$\Delta(\lambda) = 2\Delta_1(\lambda, \varphi) \cdot e^{u_i \lambda h}$$

$$\Delta_1(\lambda, \varphi) = 4.27166 \cdot \cos(a_1 \lambda h) - 7.42097 \cdot \cosh(a_1 \lambda h) + 3.14931 \cdot \cosh(a_3 \lambda h)$$
[4.4]

Значения параметров a_k ($k=0\div 3$), в зависимости от угла ϕ , приведены в табл. 2.

φ a,	a_0	a_1	a ₂	a_3
0	0	0	1.77463	2.72415
π/8	0.59131	1.20907	0.87515	1.94619
$\pi/4$	0.03791	1.30208	0.032462	1.51727
$3\pi/8$	0.48692	1.12971	0.897396	1.90491
π/2	0	0	1.66177	2.55090

Для материала (4.3) вычислены корпи трансцендентного уравнения (4.4) при различных направлениях главных осей анизотропии. Значения первых шести корней $w_k = \lambda_* h$ функции $\Delta_1(\lambda, \phi)$ приведены в табл. 3.

Корни $w_k = \lambda_{i,k}$ функции $\Delta(\lambda)$

Таблица 3

k/	Û	$\pi/8$	π/4	3π/8	$\pi/2$
1	2.94978i	2.24493+3.50168 (3.20308+3.48366+	2.23785+3,67903 /	3.15012 i
2.	4.060551	3.74816+5.74557 (5,23130+5,862841	3.75978+6.022641	4.336327
3	7.000331	5.17409+8.081921	7.27873+8.24750 /	5.17800+8.46845 /	7.47575 i
4	7.82883 /	6.62572+10.41281	9.32528+10.63237	6.63122+10.9118 i	8.36052 /
5	9.964801	8.07230+12.7414 i	11.3719+13.0171 i	8.07773+13.3505 i	10.6415 i
6	11.06767	9.51944+15.07101	13,4184+15,40191	9.52478+15.7910 i	11.8192 i

Дальнейшие вычислення проводились для следующих значений параметров (4.1) и (4.2):

$$l = 0.5$$
ед., $h = 1$ ед., $a = 5$ ед., $b = 6$ ед., $P_1 = 1$ ед., $P_2 = 2$ ед.

 $\sigma_{\epsilon}(\xi,\eta)$

Таблица 4

	-	(31.1)							,
φ	m/	0	0.5	ı	2	3	4	5	6
	0	32.32	30.51	27.12	21.01	15.00	9.00	2.74	-0.26
0	0.5	0.095	0.015	-0.044	-0.004	-0.001	-0.007	-0.007	-0.007
	1	-32.61	-30.52	-26.99	-21.01	-15.01	-9.00	-2.75	0.25
	0	31.57	30.66	28.14	22.19	16.18	10.18	3.55	0.163
$\pi/8$	0.5	0.1403	-0.2490	-0.5963	-0.5928	-0.5911	-0.5985	-0.4201	-0 1609
	1	-31.93	-29.27	-25.76	-19.83	-13.82	-7.812	-2.078	0.327
	0	31.297	30.106	27.222	21.069	15.073	9.0067	3.108	-0.0337
$\pi/4$	0.5	0.1812	-0.0403	-0.1365	-0.0349	-0.0379	-0.0373	-0.0391	0.0005
	1	-31.767	-29.860	-26.88	-20,936	-14.927	-8.9269	-2.9098	0.0147
	0	31.62	29.67	26.14	20.02	14.02	8.034	2.215	-0.282
$3\pi/$	0.5	0.1227	0.1987	0.3602	0.4894	0.4871	0.4834	0.3398	0.1551
_ ′	1	-31.94	_30.60	-27.74	-21.98	-15.98	-9.983	-3.653	-0.2213
	0	32.24	30.45	27.09	21.01	15.00	9.00	2.78	-0.225
$\pi/2$	0.5	0.0781	0.0106	-0.0367	-0.0022	-0.0003	-0.0051	0.0053	0.0053
	1	-32.46	-30.45	-26.97	21.01	-15.01	-9.00	-2.78	0.224

φ	1 5	0	0.5	1	2	3	4	5	6
	0.25	0	0.9820	1.1486	1.1267	1.1249	1.1218	1.1650	-0.0400
0	0.5	0	1.2934	1.4876	1.500	1.500	1.500	1.396	0.1033
	0.75	0	1.2050	1.1101	1.1234	1.1251	1.1287	1.0535	0.0715
	0.25	-0.1056	0.8351	1.0981	1.1267	1.1250	1.1213	1.2330	-0.0011
π/8	0.5	-0.0204	1.3176	1.5274	1.4995	1.4999	1.5018	1.4088	0.0931
	0.75	0.1139	1.3409	1.1411	1.1237	1.1251	1.1276	0.9801	0.0372
	0.25	-0.0203	0.9030	1.1802	1.1230	1.1252	1.1208	1.1936	-0.0613
$\pi/4$	0.5	-0.0007	1.3247	1.5201	1.5001	1.5000	1.4993	1.4123	0.0881
	0.75	0.0215	1.2622	1.0575	1.1270	1.1248	1.1296	1.0140	0.1035
	0.25	0.0724	1.038	1.2130	1.1240	1.1251	1.1184	1.1340	-0.0961
3π/8	0.5	0.0181	1.3197	1.5017	1.5012	1.5000	1.5029	1,4098	0.0887
211/0	0.75	-0.0785	1.1430	1.0369	1.1252	1.1248	1.1302	1.0815	0.1314
	0.25	0	0.9924	1.1465	1.1262	1.1249	1.1225	1.163	-0.0363
$\pi/2$	0.5	0	1.3061	1.4898	1.499	1.5000	1.4994	1.4031	0.0969
	0.75	0	1.1975	1.1104	1.1240	1.1251	1.1279	1.0587	0.0663

В различных точках полосы при различных ориентациях главных осей анизотропии вычислены значения нормального $\sigma_{\epsilon}(\xi,\eta)$ и касательного $\tau_{\epsilon_{\eta}}(\xi,\eta)$ напряжений. Результаты вычислений приведены в табл. 4. 5 соответственно

В табл. 6 приведены значения относительного прогиба $[v(\xi,\eta)-v(6.0)]$ в различных граничных точках полосы, когда $(-5 \le \xi \le 5, \ \eta = 0 \ \text{и} \ \eta = 1)$.

 $10^{5}[v(6.0) - v(\xi, \eta)]$

Таблица б

φ	ђ И	19	0.5	1	2	3	4	5
Û	0	18.113 18.182	13.245 13.278	9.368 9.369	3.516 3.517	0.989 0.990	0.132 0.132	0.162 0.169
π/6	0	27.379 27.471	20.426 20.497	14.777 14.808	6.719 6.748	2.231 2.260	0.293 0.321	0.043 0.066
$\pi/4$	0	37.113 37.226	27.960 27.927	20.372 20.399	9.583 9.610	3.484 3.510	0.733 0.760	0.011 0.028
3π/	0	29.450 29.536	21.984 22.008	15.877 15.946	7.249 7.315	2.439 2.505	0.358 0.424	0.045 0.067
π/2	0	20.954 21.068	15.381 15.468	10.930 10.985	4.656 4.701	1.265 1.297	0.162 0.171	0.048 0.068

Полученные здесь результаты могут быть полезными при расчете деталей машин и строительных конструкций, а также при определении параметров будущего землетрясения методами современных сверхточных геодезических измерений [14].

ЛИТЕРАТУРА

- 1. Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезокерамических и электропроводных тел. М.: Наука, 1988, 472с.
- 2. Гринченко В.Т., Улитко А.Ф., Шульга Н.А. Механика связанных полей в элементах конструкций, Т.S. электроупругость. Киев: Наукова думка. 1989. 230с.
- Бегларян А.Г. Разработка и совершенствование методов и приборов для автоматизации геодезических деформационных измерений инженерных сооружений и разломов земной коры. /Дисс. на соиск. уч. ст. докт. тех. наук. Ереван. 1997. 104c.
- 4. Лехницкий С.Г. Теория упругости анизотролных тел. М.: Наука. 1977. 415с.
- Ray M.C., Bhattacharya R., Samanta B. Exact-solutions for static analysis of intelligent structures. AIAAJ, 1993, V.3, №9, p.1684-1691
- Brooks S.P., Heyliger P.R. Static behavior of piezoelectric laminates with distributed and patchet electrodes. If J. Intelligent Mat. Sist. Struct. V.5, N25, 1994, p.635-646
- Баблоян А.А., Мелкумян С.А. Смешанная задача электроупругости для пьезокерамического клина с электродами. // Докл. НАН Арм. 1999. Т.99, №1, С.45-51
- 8. Амбарцумян С.А. Теория анизотропных пластин. М.: Наука. 1957. 360с.
- Амбарцумян С.А., Гнуни В.Ц. О вынужденных колебаниях и динамической устойчивости трехслойных орготропных пластинок. // Изв. АН СССР. Мех. и машиностр. 1961. №3.
- 10. Агаловян А.А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука. 1997. 415с.
- 11. Белубекян Э.В., Гнуни В.Ц. Оптимальные задачи колебаний анизотропных слоистых цилиндрических оболочек. // Механика полимеров, 1976. №5. С. 871-874.
- 12. Саркисян В.С. Некоторые задачи математической теории упругости анизотропного тела. Ереван. Из-во ЕГУ. 1976. 534c.
- Агаловян М.А. Краевые задачи на собственные значения для анизотропных тонкостенных тел. / Дисс. на соиск. уч. ст. канд. ф-м. наук. Ереван. 1998. 109с
- Бархударян А.М., Бегларян А.Г., Амбарцумян П.В. Гидродипамический нивелир. А.С. 1075075 (СССР)

Ереванский госуниверситет архитектуры и строительства Поступила в редакцию 2.10.2003