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Մ.Վ Բերււրեկյան
Բարակապատ սափ ազատ եզրի շրջավայրում մագնիսաառաձգական տեղայնացված տատանումներ

Կիրհոֆի տեսության և իդեալական հաղորդիչ միջավայրի մոդելի հիման վրա դիտարկվում I. սափ 
մազնիսաաոաձգակաԱ տատանո՚մների խնդիրը: Հաստատված են ազատ եզրի շրջակայքում 
տեղայնացված լայնական տատանումների գոյության պայմանները՛ Գտնված Է, որ մագնիսական դաշտի 
միջոցով կարելի է վերացնել տեղայնացված տատանումները:

М.В. Бслубекян
Магмитоупру։ме колебания, локализованные п окрестности 

свободного края гонкой пластинки.

На основе теории пластик Кирхгофа и модели идеально проводящей среды 
рассматривается задача магжггоупругих колебаний пластинки н продольном магнитном поле. 
Установлены условия существования локализованных изгибиых колебаний у свободного 
края пластинки Показано, что при помощи магнитного поля можно устранил, 
локализованные колебания

We will consider the problem of magneioelastic vibrations of plate in the 
longitudinal magnetic field based on the Kirchhoff plate theory and the model of 
perfect conductive medium. The conditions of the existence of localized bending 
vibrations in the vicinity of the free edge of the plate have been established. It was 
shown that the localized vibrations could be eliminated by means of the magnetic 
field.

Y.K. Konenkov [1| was the first who investigated the problem of localized 
bending plate vibrations. At a later time this direction was widely developed as we 
can judge by the literature mentioned in |2-4J.

As a basis for research of vibrations in an electro conductive plate served 
simple models - the model of the perfect conductive medium [5] and the model of 
the “weak" conductive medium [6]. Later the hypothesis of magnetoelasticity of 
thin bodies [7, S| was suggested and allowed us to reduce the spatial problems of 
magenloelastic vibrations to two-dimensional ones. The researches on problems of 
magneto clastic vibrations of the plate on the basis of exact solutions and the 
hypothesis of magneioclaslicity of thin bodies have shown that the application of 
simple models depends on the configuration of the external magnetic field 
(longitudinal or transversal) as well as on the character ol the considered problem 
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(planar or transversal vibrations) [9, 10]. In particular, it was determined that the 
model of perfect conductive medium can be applied (with the adequate accuracy) 
to the problem of plate bending vibrations at presence of the longitudinal magnetic 
field but it could not be applied to the problem of planar vibrations in the same 
magnetic field [9, 11,12].

1. The plate in the Cartesian frame of reference holds the position: 
Osxsa, 0 £ y £b , -A szs/t. The plate in the unperturbed condition is 
situated in the constant magnetic field parallel to Ox axis.

H() - t , HQ - const (1.1)
Let us assume that the plate is isotropic, homogeneous and perfect conductive. 

In this case instead ol perfect relationship for the plate perturbed condition

We will take [5]

- [xdü -
J =op + - —x//„

( c dt

p du - 
e-----------x 7/(1

c dt

(1.2)

(1.3)

Where u - is the elastic displacement vector, j - is the induced density of the 
electric current, e - is the perturbed electrical field, a • is the electrocondactivity 
coefficient, p- is the magnetic permability of (he plate material, c - is the constant 
equal to the velocity of light in vacuum (in the Gaussian system of units).

-Xccording to (1.3) model and electrodynamics equations, the perturbed 
magnetic field, the induced electric current and the body force exerting on the plate 
are defined in the following way

h = rot 1/7 x I j- — rot A, /?»—(fxH„) (1.4)
c

The equations of the plate vibrations have the following appearance:

֊֊ +/<=^ </ = 1’2’3) <L5>dx. dt

where u, are the components of vector /7, /?( arc the components of vector 7?,

OH are the components of the stress tensor, p - is the density of the plate material. 

According to (1.4) for the considered problem the Ri components arc defined in 
the following way;
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Ä,»0, R. = • * a
IkHfi 1՛ d՝u2 d2u: 
4rc I dx2 à y՜

d'n.

dydz

K r , a?u, , a*u, \
4n ldx: ?z‘ d yd z ]

The following boundary conditions should be set on the plate’s 
planes:

(/»nJ)

(1.6)

z - ± h l ace

(1.7)

where 8/c the components of Maxwell symmetric linearized tensor,
correspondingly inside the region occupied by the plate and outside of it. If we take 
into account the (1.1) conditions then the expressions for the components of 
Maxwell tensor look like:

4ä

»n-T-Wo*;.

I1 ,, .“ G» » ~ ~~ 7/0 
4n

rn » —— Ho hj, /y = 0 
4rr

(1.8)

The components of t ՝" tensor for the media surrounding the plate are being 

defined in similar way with taking into account ii = 1 condition.
Ilis clear from (1.7) boundary conditions that in general it is necessary to sovle 

the plate vibration equations jointly with the electrodynamics equations for the 
media surrounding the plate. This circumstance essentially complicates the 
researches on problems of magentoelastic vibrations of the plate. But we can 
overcome this obstacle for this type of problem when the magnetic field is parallel 
fo the planes bounding the plate. Noting that the conditions of continuity of the 
normal components of perturbed induction of the magnetic field ( u/tx = h \''' ) 

should be satisfied on the z = ±h planes and neglecting the t in comparison 

with (because of the discontinuity of the tangential component of the perturbed 
magnetic field), the (1.7) boundary conditions are being replaced with the 
following ones:

Ou-(.l. 0,;-O. (1.9)
The mentioned approximate (1.9) boundary conditions are based on the fact 

that during the resolving the mentioned problem with taking into account the 
Kirchhoff hypothesis for the infinite plate [11], the (IT) and (1.9) boundary 
conditions give the same result lor the plate’s scll-vibranon frequency

I 2. According to ihe Kirchhoff plate theory we will take mtn account the 
following assumptions
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the assumptions for displacements:

u}-u-z—, -l'-Z —, uy - w, U.V,W ‘-(x.y,Z) (2.1)
dx ‘ dy

the assumptions for main stresses
E ( v E / \ E

«.I-;-----2(eh+v^)- «r B:-----r^a + ^iJ Ou-7—E>2 (2-2)
J-v 1-v 1+v

The usual procedure of averaging the plate vibration equations (1.5) is being 
implemented with taking into consideration the (1.6) expressions, (1.9) boundary 
conditions, (2.1) assumptions and neglecting the moment of rotatory inertia. The 
averaged equations look like

ar as „ , a’w as ar, ,, .> , , aS-
-֊ + — -2(>h֊r. _ + ֊- + L—a[au + Z.(u,v)]-2p/i— (2.3) 
dx dy dt dx dy 2n dt

We used the generally accepted designations [12] for stresses and moments in 
(2.3), (2.4) . The L(u,v) operator is identically equal to zero if in expression for

dA\ 
dx '

dx

dN. d՝w d'w
dy 2n dx2 " P dt2 

(2.4)
du dH dM.

+ — -M; — + -—
dy dx dy

R2 from (1.6) we accept, according to (2.1), that En = du3 / dz = 0,

L(u.v)- v d f du d v \ ---------- ------ —
1 - v dy dx dy )

(2-5)

and substitute from the Hooke's law into R:.
The substitution of the stresses and moments expressions into (2.3) and (2.4) 

equations brings to the following equations regarding the displacements of the 
plate's middle plane.

d2u

dt1
(2-6)

A A \ . d I du dv 1 d՝v
dy I dx dy C, dt

D^H._^^+2pA^_0 (2.7)

2n dx: dt*
where

fl-֊----- , K-—, (3--^֊ in view of En * 0 (2.8)
1-v 4nG ’1-v w

dl

A q 5 IAu + V--- ---
dx I dx

1

c.
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As it is in Kirchhoff regular plate theory, the equations defining the planar and 
bending vibrations are being separated. The (2.7) bending magnetoelastic 
vibrations equation is the analogous to the bending vibrations equation of the plate, 
pre-extended in x direction.

3. The boundary conditions on the plate’s x = const and y = const edges are 
obtained via the averaging the boundary conditions of the spatial problem of the 
theory of magnetoelasticity of the perfect conductive medium. It is evident that the 
boundary conditions lor the fixed edge arc the same as in the regular plate theory. 
In case of Navicr conditions establishing on (he x = const edge

u2 “ °? u3 " ° (31)

it is taken into account that the component is continuous, because u/ij = h . 
Then the (3.1) conditions averaging leads to the regular conditions for the hinge 
joint.

T։=0, v-0, K-0, Afj-0 (3.2)
Let us assume that the conditions of sliding contact are established on the 

X-const edge.
«1=0, o։2+ri: = /£>, (33)

The *'n • terms in (3.3) are neglected in comparision with 

correspondingly l ]2, t JX and then the averaging by thickness of the plate is 
implemented. Fianlly, the conditions of sliding contact arc obtained in the 
following way:

u-0, S + ^^ = 0. ^-0, AT.-O 

2k Ax dx
Acting in the similar way with the boundary conditions of 

x = const free edge

(3.4)

the plate’s

+ Ai = Ai » + A2 = A2 j + As = Aj (3.5)
we can obtain the following conditions corresponding to the Kirchhoff plate theory 
conditions

7>0, sÆ^-0. ,V0. N,+^  ̂= 0 (3.6)

2n dx 1 ' 2k dx
where jV, is the generalized transverse shearing force
■ W, = N, + —- (3.7)

dy
The conditions ol the plate’s )■' - const edge are obtained in the similar way 

and have the following appearance:
for the hinge joint edge :
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z/=0, Г,-0, w»O։ ЛЛ=О (3.8)?
for the sliding contact

ли.
w=O, S-0, — = 0. Л\=0 (3.9)

dy
for the tree edge

֊0, 5 = 0, 3 y-0, N.-O (3.10)
2л ду 6л dy‘

4. Now let us consider the localized bending vibrations of the plate [1]. Let us 
assume that the semi-infinite plate occupies the 0 £ X < <», - co < у < a , 
-h z h region. The localized waves are being propagated along the x = 0 
edge. It is necessary to find the solution of (2.7) equation, which satisfies the 
boundary conditions on the x = 0 edge and the condition of damping

lim tv = 0 (4.1)

It is obvious that the solution of the (2.7) equation satisfying the (4.1) condition 
has the following appearance

tv = (cZ*p՝x +■ c2e"App:)expi(<D/ - ky) (4.2)

where

A - (1 + X + 7T +^C+2x’) > Pl - (1 + x-Vn2+2x + x’)

, 2pW 3(1-v)
1 Dk* ’ X 4nDk2 4k2h2 X i

The non-dimensional Y|? parameter in (4.3) defines the sought frequency of 
vibration, and according to the condition of damping (4.1), it should satisfy the 
following inequalities:

0<rp <1 (4.4)
It is easy to check that the problem has no solution, satisfying the condition 

(4.4), if the conditions of clamped edge or conditions lor the the hinge joint (3.2) 
or the conditions of sliding contact (3.4) are set on the plate’s л = 0 edge.

The boundary conditions of the true edge (3.6) for the bending vibrations of the 
plate, with taking into account the expressions for the moments and stresses, looks 
like

cTw d*iv d »v / x d w dw _
— 4-v—r-0, —Т- + 12-У)-------- ~ =0

Эх՜ dy՜ Эх дхду՜ 2лГ) дх
(4-5)

The substitution of the solution (4.2) into the (4.5) boundary conditions brings 
to a homogeneous equations system relative to the arbitrary c, c՝2 constatns. The 
equalization to zero the determinant of the mentioned set defines the dispersion 
equation of the problem in the tollowing way :
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K(n) = P2(p2 ֊ v)[pj ֊(2֊ V֊ 2x)]- Pl (p22 - v)[pi2 -(2- V-2x)]- 0 (4.6)
After some transformations the (4.6) equations result in

^(n)-(p3-P,XW (4-7)
where

^,(n)EPi!P2՝ + 2(l֊v֊x)p,P2֊v': (4.8)

Since the p} p2, we see that the frequency of the vibrations can be obtained 
from the following equation:

K,(h)=U (4.9)
Noting that

K1(0) = (l-v)(3 + v)-2X։ X,(l)--v2<0 (4.10)
we shall obtain the sufficient condition of the (4.9) equation root existence

X<0.5(3 + v)(l-v), v#0 (4.11)

This condition is also a necessary one, since it is easy to show that K,(t]) 
function is monotonous in the [0. 1] interval. The root of the (4.9) equation Ls being 
found in the following way

T]2 =1+2(1-v-x)^(l-v-xbv! -2(1-V֊x)2 ֊V2 (4.12)

From (4.11) and (4.3) it follows that satisfying the condition
Xa2*2ft2(l + v/3) (4.13)

the localized vibrations in the vicinity of the free edge of the plate are being 

eliminated. In particular, for the metal plate (G - ï()'] din / sm2 ) and the relative 

wave-length kh » 10՜2 the induction of the intensity of the magnetic field 

b, -P necessary for eliminating the localized vibrations, is turned out an 

order of 1.5 tesla.
Now let us assume that the semi-infinite plate occupies the 

-cc<x<»} 0 s y < oc, -h £ z s h region. We will consider the localized 

vibrations al the y = 0 free edge, taking into account the damping condition

limw-0 (4.14)
>--

In this case the solution of the equation (2.7), satisfying the (4.14) condition 
has the following appearance:

w = (cjC '՛՛ ‘ + c2e~kr'1 )cxp i (tor - kx) (4.15)
where
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r -(l + Vn'-2y. i » r,-|l-7n:-2xf (4.16)

The designations for the rf and / are th«, same as in (4.3). The condition of 
the existence of the localized vibrations is formulated in the following way:

2Z<ir<l + 2Z (4.17)

According to (3.10), the boundary conditions of the free edge y « 0 look like

From the requirement that the solution of (4.15) should satisfy the (4.18) 
boundary conditions wc will obtain a dispersion equation, which can be brought to 
the following appearance after some definite transformations:

+ + + -p’-0 (4.19)

The calculation ol the K (1]) function values at the ends of (4.17) interval 
results in

KJ(2x)-(l-‘')(3*»' + ^xj>0. K,(l + 2x)--v։<0 (4.20)

This implies for this problem the localized vibrations existence (vx(l) 
regardless of the magnitude ol intensity of the magnetic field. We ought to notice 
that the influence of the magnetic field on the localized vibrations in the vicinity of 

V = 0 free edge is essentially weak than it is in the vicinity of X = 0 free edge. At 

•he same time we should keep in mind that the intensity of the magnetic field 
should be also bounded by the < 1 inequality.
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