«ШЭЦUSUUD ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մնխանիկա

56, Nº1, 2003

Механика

УДК 539.3

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ КРУГОВЫХ КОЛЬЦЕВЫХ ПЛАСТИН

Вирабян Е.Г., Гсворкян Р.С.

Ե.Գ. Վիրաբյան, Ռ.Ս. Գեորգյան Շրջանային օղակաձև սալի հարկադրական տատանումները

Առաձգականության տեսության դինամիկական հավասարումների ասիմպտոտիկական ինտեգրման միջոցով ստացվել են սեղմելի և անսեղմելի նյութերից պատրաստված սալերի լարումների տենգորի և տեղափոխումների վեկտորների թաղադրիչները որոշելու համար ռևկուրենտ բանաձևեր. երբ նրանց երեսնային մակերեույթների վրա տրված են առաձգականության տեսության դինամիկական խնդրի եզրային պայմաններ։ Արտածված են հարկադրական տատանումների ամպլիտուղները հաշվելու բանաձևեր և համասեռ կինեմատիկական ու խառը եզրային պայմանների դեպքում հաստատված են ռեզոնանս առաջացնող սալի սեփական տատանումների հաճախությունների գլխավոր արժեքները։ Ապացուցված է սեղմեյի նյութից պատրաստված սալում երկու տեսակի ալիքների առկայությունը և ի հայտ է բերված անսեղմելի նյութից պատրաստված սալի առանձնահատկությունները։

Ye.G. Virabyan, R.S. Gevorgyan Constrained Vibrations of Round Circular Plates

Путем асимптотического интегрирования динамических уравнений теории упругости изсдены рекуррентные формулы для определения компонентов тензора напряжений и вестора перемещения круговых колыцевых пластии из сжимаемого и несжимаемого изтериалов, когда на их лицевых поверхностях заданы граничные условия динамической задачи теории упругости. Получены формулы для определения амплитуд вынужденных ислебаний. При однородных кинематических и смешанных граничных условиях установлены главные значения частот собственных колебаний пластин, обуславливающих возникновение резонанса. Доказано наличие двух видов волн в пластине из сжимаемого материала и выявлена особенность пластины из несжимаемого материала.

1. Имсем круговую кольцевую пластину. занимающую область $\Omega = \{r, \varphi, z; R_0 \le r \le R, 0 \le \varphi \le 2\pi, -h \le z \le h, h << l, l = \min R_0, R - R_0\}$

Требуется определить амплитуды вынужденных колебаний, если на лицевых поверхностях пластины заданы кинематические

a) $\overline{u}_{j}(r, \varphi, \pm h, t) = u^{*} \exp(i\Omega t)$ $j = r, \varphi, z$ (1.1) или смешанные

$$\overline{u} \quad (r, \varphi, -h, t) = u^{\dagger} \exp(i\Omega t) \qquad j = r, \varphi, z;$$

$$\overline{\sigma}_{j} \quad (r, \varphi, h, t) = \sigma^{*}, \exp(i\Omega t) \qquad j = r, \varphi, z;$$

$$\overline{u} \quad (r, \varphi, -h, t) = u^{\dagger} \exp(i\Omega t) \qquad j = r, \varphi, z;$$

$$(1.2)$$

B)
$$\overline{u}_{i}(r, \varphi, h, t) = u^{*} \exp(i\Omega t)$$
 (1.3)
 $\overline{\sigma}_{ii}(r, \varphi, h, t) = \sigma_{ii} \exp(i\Omega t)$ $j = r_{ii} \varphi_{ii}(r_{ii})$

r)

 $\overline{u}_{\cdot}(r,\varphi,-h,t) = u_{-}^{-}\exp(i\Omega t), \quad \overline{\sigma}_{zz}(r,\varphi,h,t) = \sigma_{zz}^{-}\exp(i\Omega t)$

 $\overline{u}_{i}(r,\varphi,\pm h,t)=u_{i}^{*}\exp(i\Omega t) \qquad j=r,\varphi,$

условия, т.е. требуется найти решение уравнений динамической задачи теории упругости, удовлетворяющее на лицевых поверхностях пластины одной из групп граничных условий (1.1)-(1.4).

Для решения поставленной краевой задачи в динамических уравнениях теории упругости в цилиндрических координатах [1] перейдем к безразмерным координатам и безразмерным перемещениям по формулам

 $\xi = r/l, \eta = \varphi, \zeta = z/h, \varepsilon = h/l, \overline{u} = u_r/l, \overline{v} = u_{\varphi}/l, \overline{w} = u_r/l$ (1.5) Одновременно все компоненты тензора напряжений и вектора перемещения представим в виде [2]

$$\overline{Q} = Q \exp(i\Omega t)$$
(1.6)

(1.4)

получим

$$\frac{\partial \sigma_{rr}}{\partial \xi} + \frac{1}{\xi} \frac{\partial \sigma_{rc}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{rr}}{\partial \zeta} + \frac{1}{\xi} (\sigma_{rr} - \sigma_{\varphi\varphi}) + \varepsilon^{-2} \omega^{2} u = 0$$

$$\frac{\partial \sigma_{rr}}{\partial \xi} + \frac{1}{\xi} \frac{\partial \sigma_{qr}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{qr}}{\partial \zeta} + \frac{2\sigma_{rr}}{\xi} + \varepsilon^{-2} \omega^{2} \upsilon = 0$$

$$\frac{\partial \sigma_{rr}}{\partial \xi} + \frac{1}{\xi} \frac{\partial \sigma_{qr}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{qr}}{\partial \zeta} + \frac{\sigma_{rr}}{\xi} + \varepsilon^{-3} \omega^{3} w = 0$$

$$\frac{\partial u}{\partial \xi} = \frac{1}{2(1+\nu)G} \left[\sigma_{rr} - \nu (\sigma_{\varphi\varphi} + \sigma_{zr}) \right]$$

$$\frac{1}{\xi} \frac{\partial u}{\partial \eta} + \frac{1}{\xi} u = \frac{1}{2(1+\nu)G} \left[\sigma_{qr} - \nu (\sigma_{qr} + \sigma_{zr}) \right]$$

$$(1.7)$$

$$\varepsilon^{-1} \frac{\partial w}{\partial \xi} = \frac{1}{2(1+\nu)G} \left[\sigma_{qr} - \nu (\sigma_{qr} + \sigma_{rr}) \right]$$

$$\frac{1}{\xi} \frac{\partial u}{\partial \eta} + \frac{\partial \upsilon}{\partial \xi} + \frac{1}{\xi} \upsilon = \frac{1}{G} \sigma_{r\varphi}$$

려

$$\begin{split} & \frac{\partial w}{\partial \xi} + \varepsilon^{-1} \frac{\partial u}{\partial \zeta} = \frac{1}{G} \sigma_{re} \\ & \frac{1}{\xi} \frac{\partial w}{\partial \eta} + \varepsilon^{-1} \frac{\partial v}{\partial \zeta} = \frac{1}{G} \sigma_{qe} \qquad \omega^2 = ph^2 \Omega^2 \,. \end{split}$$

Система уравнений (1.7) сингулярно возмущена геометрическим малым параметром £, поэтому ее рецісние ищем в виде асимптотического разложения

$$Q = \varepsilon^{\chi} \sum_{s=1}^{S} \varepsilon^{s} Q^{(s)}$$
(1.8)

у = −1 для напряжений, у = 0 для перемещений [3].

Подставив (1.8) в (1.7) и приравняв коэффициенты при є⁸ в левых и правых частях, получим непротиворечивую систему

$$\frac{\partial^{2} u^{(1)}}{\partial \xi^{2}} + \frac{\omega^{2}}{G} u^{(1)} = R^{(n)} \qquad (u, v)$$

$$\frac{\partial^{2} w^{(n)}}{\partial \xi^{2}} + \frac{\omega^{2} (1 - 2v)}{2(1 - v)G} w^{(n)} = R^{(1)} \qquad (1.9)$$

$$\sigma_{rr}^{(n)} = \frac{2vG}{1 - 2v} \frac{\partial w^{(n)}}{\partial \xi} + R^{(n)}_{rr} \qquad (r, \varphi)$$

$$\sigma_{rr}^{(n)} = \frac{2v(1 - v)G}{1 - 2v} \frac{\partial w^{(n)}}{\partial \xi} + R^{(n)}_{rr} \qquad (r, \varphi)$$

$$\sigma_{rr}^{(n)} = G\left(\frac{1}{\xi} \frac{\partial u^{(n-1)}}{\partial \eta} + \frac{\partial v^{(n-1)}}{\partial \xi} - \frac{v^{(n-1)}}{\partial \xi}\right)$$

$$\sigma_{rr}^{(n)} = G\left(\frac{1}{\xi} \frac{\partial w^{(n-1)}}{\partial \eta} + \frac{\partial v^{(n-1)}}{\partial \xi} - \frac{v^{(n-1)}}{\partial \xi}\right)$$

$$R_{rr}^{(n)} = -\frac{\partial \sigma_{rr}^{(n-1)}}{\partial \xi} - \frac{1}{\xi} \frac{\partial \sigma_{rr}^{(n-1)}}{\partial \eta} - \frac{1}{\xi} \frac{\partial \sigma_{rr}^{(n-1)}}{\partial \eta} - \frac{1}{\xi} \frac{\partial v^{(n-1)}}{\partial \eta}$$

$$R_{rr}^{(n)} = \frac{2(1 - v)G}{1 - 2v} \frac{\partial u^{(n-1)}}{\partial \xi} + \frac{2vG}{1 - 2v} \left(\frac{u^{(n-1)}}{\xi} + \frac{1}{\xi} \frac{\partial v^{(n-1)}}{\partial \eta}\right)$$

$$R_{qq} = \frac{2(1-\nu)G}{1-2\nu} \left(\frac{1}{\xi} \frac{\partial \upsilon^{(s-1)}}{\partial 1} + \frac{\omega^{(s-1)}}{\xi} \right) + \frac{2\nu G}{1-2\nu} \frac{\partial u^{(s-1)}}{\xi}$$

$$R_{\pi}^{(s)} = \frac{2\nu G}{1-2\nu} \left(\frac{\partial u^{(s-1)}}{\partial \xi} + \frac{1}{\xi} \frac{\partial \upsilon^{(s-1)}}{\partial \eta} + \frac{\omega^{(s-1)}}{\xi} \right)$$

$$R_{\pi}^{(s)} = \frac{1}{G} R_{\pi}^{(s)} - \frac{\partial^{-\omega^{(s-1)}}}{\partial \xi \partial \zeta}$$

$$R_{\nu}^{(s)} = \frac{1}{G} R_{\eta z}^{(s)} - \frac{1}{\xi} \frac{\partial^{-\omega^{(s-1)}}}{\partial \eta \partial \zeta}$$

$$(1.11)$$

$$R_{\mu}^{(s)} = -\frac{1-2\nu}{2\nu(1-\nu)G} \left(\frac{\partial R_{\mu}^{(s)}}{\partial \xi} + \frac{\partial \sigma_{\mu}^{(s-1)}}{\partial \xi} + \frac{1}{\xi} \frac{\partial \sigma_{\mu\nu}^{(s-1)}}{\partial \eta} + \frac{\sigma_{\mu\nu}^{(s-1)}}{\xi} \right)$$

Очевидно, что общее решение системы (1.9) имеет вид

$$u^{(s)} = A_{u}^{(s)} \cos \alpha_{u} \xi + B_{u}^{(s)} \sin \alpha_{u} \xi + J_{u}^{(s-i)} \quad (u, v)$$

$$w^{(s)} = A_{w}^{(s)} \cos \alpha_{w} \xi + B_{w}^{(s)} \sin \alpha_{w} \xi + J_{w}^{(s-1)} \quad (1.12)$$

$$\alpha_{u} = \alpha_{v} = \frac{\omega}{\sqrt{G}}, \quad \alpha_{w} = \omega \sqrt{\frac{1-2v}{2(1-v)G}}$$

где $A^{(i)}, B^{(i)}, (u, v, w)$ - неизвестные пока функции интегрирования, а $J^{(i)}, J^{(i)}, J^{(i)}, s \ge 1$ - частные решения неоднородных уравнений (1.9), которые имеют вид

$$J_{u}^{(\tau-1)} = \frac{1}{\alpha} \int_{0}^{1} R_{u}^{(\tau)} \sin \alpha_{u} (\zeta - \tau) d\tau, \qquad (u, v, w)$$
(1.13)

Рекуррентные формулы (1.8), (1.10)-(1.13) позволяют вычислить компоненты тензора папряжений и вектора перемещения пластины из сжимаемого материала, когда на ес лицевой поверхности заданы граничные условия вида (1.1)-(1.4).

 а) Удовлетворив граничным условиям (1.1), получим значения амплитуд вынужденных колебаний пластины, когда на лицевых поверхностях заданы кинематические условия

$$A_{u}^{(s)} = \frac{1}{2\cos\alpha_{u}} \left[u^{*(s)} + u^{*(s)} - J_{u}^{(s-1)}(\zeta = 1) - J_{u}^{(n-1)}(\zeta = -1) \right]$$

$$B_{u}^{(s)} = \frac{1}{2\sin\alpha_{u}} \left[u^{*(s)} - u^{*(s)} - J_{u}^{(n-1)}(\zeta = 1) + J_{u}^{(n-1)}(\zeta = -1) \right]$$
(1.14)

$$\sin 2\alpha_{u} \neq 0, \qquad (u, v, w)$$

125

 $u^{x(0)} = u^x_x / l, \quad u^{x(s)} = 0, \quad s \neq 0, \quad (r, \varphi, z; u, \upsilon, w).$

б) когда на лицевых поверхностях заданы граничные условия (1.2), получаем

$$A^{(s)} = \frac{1}{\cos 2\alpha_{u}} \left[\left(u^{-(s)} - J^{(s-1)}_{u} (\zeta = -1) \right) \cos \alpha_{u} + \frac{\sin \alpha_{u}}{\alpha_{u}} \left(\frac{\sigma_{iz}}{G} - \frac{\partial w^{(s-1)}}{\partial \xi} - \frac{\partial}{\partial \zeta} J^{(s-1)}_{u} (\zeta = 1) \right) \right]$$

$$B^{(s)}_{u} = \frac{1}{\cos 2\alpha_{u}} \left[\left(u^{-(s)} - J^{(s-1)}_{u} (\zeta = -1) \right) \sin \alpha_{u} + \frac{\cos \alpha_{u}}{\alpha_{u}} \left(\frac{\sigma_{iz}}{G} - \frac{\partial w^{(s-1)}}{\partial \xi} - \frac{\partial}{\partial \zeta} J^{(s-1)}_{u} (\zeta = 1) \right) \right]$$

$$\left(r, \varphi, z; u, \psi, w; \frac{\partial w^{(s-1)}}{\partial \xi}, \frac{1}{\xi} \frac{\partial w^{(s-1)}}{\partial \eta}, 0 \right) \qquad (1.15)$$

$$\cos 2\alpha_{u} \neq 0 \qquad (u, \psi, w)$$

в) когда на лицевых поверхностях заданы смешанные граничные условия (1.3), амплитуды А⁽¹⁾, B⁽¹⁾, B⁽¹⁾, O⁽¹⁾, O⁽¹⁾

г) При граничных условиях (1.4) решения (1.14), (1.15) справедливы, ссли $\sin 2\alpha_n \neq 0$, $\cos 2\alpha_n \neq 0$ (u, v, w). Если же эти условия не выполняются, то происходит резонанс и амплитуды вынужденных колебаний резко возрастают. Значения частоты вынуждающего воздействия Ω , при которых $\sin 2\alpha_n = 0$, $\cos 2\alpha_n = 0$, совпадают с главными значениями частот собственных колебаний пластины [4]. Эти значения можно определить тем же методом.

Удовлетворив на лицевой поверхности пластины $z = \pm h$ однородным граничным условиям жесткого закрепления или однородным смешанным условиям (1.2)-(1.4), при s = 0, используя (1.10), (1.12), получим ансперсионные уравнения

$$\sin 2\alpha_u = 0$$
, $\cos 2\alpha_u = 0$ (u, v, w) (1.16)
откуда определяются главные значения собственных частот:

а) когда лицевые поверхности пластины жестко закреплены

$$\Omega_{u,v} = \frac{\pi}{2h} k \sqrt{\frac{G}{\rho}}$$
для сдвиговых поперечных колебания,

$$\Omega_{w} = \frac{\pi}{2h} \bar{k} \sqrt{\frac{2(1-\nu)G}{(1-2\nu)\rho}}$$
для продольных колебаний. (1.17)

б) когда одна лицевая поверхность пластины жестко закреплена, а противоположная поверхность свободна от нагрузки, то

$$\Omega_{u,v} = \frac{\pi}{4h} (2k+1) \sqrt{\frac{G}{\rho}}$$

$$\Omega_{w} = \frac{\pi}{4h} (2k+1) \sqrt{\frac{2(1-v)G}{(1-2v)\rho}}, \quad k \in \mathbb{N}$$
(1.18)

Таким образом, в пластине из сжимаемого материала в основном (с точностью $O(\varepsilon^{"})$) возникают, независимые друг от друга, два вида собственных колебаний: поперечная и продольная, и каждая из них имеет свою собственную главную частоту.

2. Заметим, что для пластин из несжимаемых материалов (при $v = \frac{1}{2}$) в формулах (1.12)-(1.18) амплитуды вынужденных и частоты собственных продольных колебаний имсют особенность ($\Omega_w \rightarrow \infty$), следовательно, полученные решения поставленных задач для пластин из несжимаемых материалов непригодны.

Для того, чтобы решить поставленные краевые задачи для круглых кольцевих пластии из несжимаемого материала, к преобразованной системс (1.7) присоединим условие несжимаемости

$$\frac{\partial u}{\partial \xi} + \frac{1}{\xi}u + \frac{1}{\xi}\frac{\partial \upsilon}{\partial \eta} + \varepsilon^{-1}\frac{\partial w}{\partial \xi} = 0$$
(2.1)

и решение полученной сингулярно возмущенной системы представим в виде разложения (1.8). Для определения коэффициентов $Q^{(2)}$ получим непротиворечивую систему лишь при [5]

 $\chi_{\sigma_n} = \chi_{\sigma_n} = -3$, $\chi_{\sigma_n} = \chi_{\sigma_n} = \chi_{\sigma_n} = -2$, $\chi_{\nu} = \chi_{\nu} = -1$, $\chi_{\nu} = 0$ (2.2) Подставив (1.8). (2.2) в (1.7). (2.1), известным способом найдем рекуррентные формулы для определения коэффициентов разложения (1.8)

$$\sigma^{e(s)} = G^{e} \frac{\partial u^{e(s)}}{\partial \zeta} + G^{e} \frac{\partial w^{e(s-2)}}{\partial \zeta}$$
$$\sigma^{e(s)} = G^{e} \frac{\partial u^{e(s)}}{\partial \zeta} + G^{e} \frac{1}{\xi} \frac{\partial w^{e(s-2)}}{\partial \eta}$$

20

$$\begin{aligned}
\mathbf{\sigma}_{m}^{(i)} &= G\left(\frac{1}{\xi}\frac{\omega}{\partial\eta} + \frac{\partial v_{-}^{(i)-1}}{\partial\xi} - \frac{v_{-}^{(i)-1}}{\xi}\right) \quad (2.3) \\
u^{\epsilon(i)} &= A^{\epsilon(i)}\cos\beta\xi + B^{\epsilon(i)}\sin\beta\xi - \\
&= -\frac{1}{\Omega^{2}h^{2}\rho}\frac{\omega}{\rho} + \frac{1}{\beta}\int_{u}^{R}R_{u}^{\epsilon(i)}\sin\beta(\xi - \tau)d\tau, \\
v^{\epsilon(i)} &= C^{\epsilon(i)}\cos\beta\xi + D^{\epsilon(i)}\sin\beta\xi - \\
&= -\frac{1}{\Omega^{2}h^{2}\rho}\frac{1}{\xi}\frac{\omega}{\partial\eta} + \frac{1}{\beta}\int_{u}^{R}R_{v}^{\epsilon(i)}\sin\beta(\xi - \tau)d\tau, \\
&= -\frac{1}{\Omega^{2}h^{2}\rho}\int_{u}^{\infty}\frac{1}{\xi}\frac{\partial A^{\epsilon(i)}}{\partial\eta} + \frac{A^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{\partial C^{\epsilon(i)}}{\partial\eta}\right) \\
&= -\frac{\sqrt{G}}{\Omega h\sqrt{\rho}}\sin^{\alpha}\xi\left(\frac{\partial A^{\epsilon(i)}}{\partial\xi} + \frac{B^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{\partial C^{\epsilon(i)}}{\partial\eta}\right) \\
&= -\frac{1}{G^{\epsilon}}\left(\frac{\partial \sigma_{m,*}^{\epsilon(i)}}{\partial\xi} + \frac{1}{\xi}\frac{\partial \sigma_{m,*}^{\epsilon(i)-2}}{\partial\xi} + \frac{2G^{\epsilon(i)-2}}{\xi}\right) \\
&= -\frac{1}{G^{\epsilon}}\left(\frac{\partial \sigma_{m,*}^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{\partial \sigma_{m,*}^{\epsilon(i)-2}}{\partial\xi} + \frac{2G^{\epsilon(i)-2}}{\xi}\right) \\
&= -\frac{1}{G^{\epsilon}}\left(\frac{\partial \sigma_{m,*}^{\epsilon(i)}}{\partial\xi} + \frac{2G^{\epsilon}}{2\eta}\left(\frac{1}{\xi}\frac{\partial v^{\epsilon(i-2)}}{\partial\eta} + \frac{u^{\epsilon(i-2)}}{\xi}\right)\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{\partial v^{\epsilon(i-2)}}{\partial\eta}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= \frac{1}{g^{\epsilon}}\Omega h\sqrt{\frac{G}{\xi}} \\
&= -\frac{1}{G^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \cos\beta(\xi - \tau)\right]d\tau \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{\partial R^{\epsilon(i)}}{\partial\xi} + \frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\eta}\right) \left[1 - \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right] \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{1}{\xi}\frac{R^{\epsilon(i)}}{\partial\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi} + \frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right) \\
&= -\frac{1}{g^{\epsilon}}\left(\frac{1}{\xi}\frac{R^{\epsilon(i)}}{\xi}\right)$$

Рекуррентные формулы (1.8), (2.1)-(2.4) позволяют вычислить компоненты тензора напряжений и вектора перемещения круглой кольцевой

пластины из несжимаемого матернала с любой заранее заданной асимптотической точностью, когда на ее лицевых поверхностях заданы неоднородные граничные условия (1.1) (1.4).

а) Удовлетворив граничным условиям (1.1), получим

$$\begin{split} A^{e(s)} &= \frac{1}{2\cos\beta} \left[\frac{2}{\Omega^2 h^2 \rho} \frac{\partial O_{u_1}^{e(s)}}{\partial \xi} + J_{*}^{e(s)} (\zeta = 1) + J_{u}^{e(s)} (\zeta = -1) \right] \\ B^{e(s)} &= \frac{1}{2\sin\beta} \left[J_{*}^{e(s)} (\zeta = 1) - J_{u}^{e(s)} (\zeta = -1) \right] \\ \left(A_{*}B; B, D, u, v; \frac{\partial}{\partial \xi}, \frac{1}{\xi} \frac{\partial}{\partial \eta} \right) \\ J_{u}^{e(s)} (\zeta = \pm 1) &= u_{r}^{e(\tau)} - \frac{1}{\beta} \int_{0}^{t} R_{u}^{e(s)} \sin\beta(\pm 1 - \tau) d\tau, \ \beta = \Omega h_{*} \sqrt{\frac{\rho}{G^{*}}} \quad (r, \phi; u, v) \\ u_{*}^{a(0)} &= u_{*}^{*} / l, \quad u_{r}^{z(s)} = 0 \quad s \neq 0 \quad (r, \phi, z) \\ w_{0}^{e(\tau)} &= \frac{1}{2} \left(u_{*}^{*(s)} + u_{*}^{-(s)} - w_{*}^{e(s)} (\zeta = 1) - w_{*}^{e(s)} (\zeta = -1) \right) - \frac{1}{2\beta} \operatorname{ctg}\beta \times \\ \times \left[\left(\frac{\partial}{\partial \xi} + \frac{1}{\xi} \right) \left(J_{u}^{e(s)} (\zeta = 1) - J_{u}^{e(s)} (\zeta = -1) \right) + \frac{\partial}{\xi \partial \eta} \left(J_{v}^{e(s)} (\zeta = 1) - J_{v}^{e(s)} (\zeta = -1) \right) \right] \\ \nabla^{2} \sigma_{z0}^{e(s)} &= \frac{\Omega^{2} h^{2} \rho \beta}{2(\beta - ig\beta)} \left[u_{2}^{*(s)} - u_{2}^{-(s)} - w_{*}^{e(s)} (\zeta = 1) + w_{*}^{e(s)} (\zeta = -1) + \frac{1}{\beta} \operatorname{tg}\beta \times \\ \times \left(\left(\frac{\partial}{\partial \xi} + \frac{1}{\xi} \right) \left(J_{u}^{e(s)} (\zeta = 1) + J_{u}^{e(s)} (\zeta = -1) \right) \right] + \frac{\partial}{\xi \partial \eta} \left(J_{v}^{e(s)} (\zeta = 1) + J_{v}^{e(s)} (\zeta = -1) \right) \right) \right] \end{split}$$

 $\sin 2\beta \neq 0$ $\beta - \lg \beta \neq 0$

где $\sigma_{\rm min}^{\rm res}$ определяется аналогично [3].

б) Из граничных условий (1.2) функции интегрирования определяются как $\alpha^{e(s)} = (\alpha^{e(s)}) = \alpha^{e(s)} (r = 1)$

$$A^{r(s)} = \frac{\cos\beta}{\cos 2\beta} \left[\frac{1}{\Omega^{-h}\rho} \frac{\partial}{\partial \xi} \left(\sigma_{zz}^{*(s)} - \sigma_{zz*}^{e(s)}(\zeta = 1) \right) + J_{z}^{r(s)}(\zeta = -1) \right] + \frac{\sin\beta}{\beta\cos 2\beta} \left(\frac{1}{\Omega^{-}} \sigma_{zz*}^{*(s)} - \int_{0}^{0} R_{z}^{e(s)} \cos\beta(\zeta - \tau) d\tau - \frac{\partial w^{e(s-2)}}{\partial \xi} \right) \\ B^{c(s)} = \frac{\sin\beta}{\cos 2\beta} \left[\frac{1}{\Omega^{2}h^{2}\rho} \frac{\partial}{\partial \xi} \left(\sigma_{zz*}^{*(s)} - \sigma_{zz*}^{e(s)}(\zeta = 1) \right) + J_{z}^{e(s)}(\zeta = -1) \right] +$$

22

×

$$+\frac{\cos\beta}{\beta\cos 2\beta}\left(\frac{1}{G^{\epsilon}}\sigma_{z}^{*(s)}-\int_{0}^{R_{u}^{\epsilon(s)}}\cos\beta(\zeta-\tau)d\tau-\frac{\partial w^{\epsilon(s-1)}}{\partial\zeta}\right)$$

$$\left(u,\upsilon;A,C;B,D;rz,\varphi z;\frac{1}{\xi},\frac{1}{\xi\partial\eta}\right)$$

$$w^{\epsilon(s)} = u_{z}^{-(s)}+\frac{1}{\Omega}\int_{0}^{L}\nabla^{2}\left(\sigma_{zz}^{*(s)}-\sigma_{zz}^{\epsilon(v)}(\zeta=1)\right)-w_{z}^{\epsilon(s)}(\zeta=-1)-$$

$$-\frac{\sin\beta}{\beta}\left(\frac{\partial A^{\epsilon(s)}}{\xi}+\frac{A^{\epsilon(s)}}{\xi}+\frac{1}{\xi}\frac{\partial C^{\epsilon(s)}}{\partial\eta}\right)-\frac{\cos\beta}{\beta}\left(\frac{\partial B^{\epsilon(s)}}{\partial\xi}+\frac{B^{\epsilon(s)}}{\xi}+\frac{1}{\xi}\frac{\partial D^{\epsilon(s)}}{\partial\eta}\right)$$

$$\sigma_{jz}^{*(0)} = \sigma_{zz}, \quad \sigma_{jz}^{*(s)} = 0 \quad s \neq 0, \quad \cos 2\beta \neq 0.$$

$$(2.6)$$

Удовлетворив смешанным граничным условиям (1.3) и (1.4), нолучаем значения функции интегрирования соответственно: в)

$$A^{res} = \frac{\cos\beta}{\cos 2\beta} \frac{1}{\Omega^2 h^2 \rho} \frac{\partial}{\partial \xi} \sigma_{ee}^{res} + A^{res}$$

$$B^{r(s)} = \frac{\sin\beta}{\cos 2\beta} \frac{1}{\Omega^2 h^2 \rho} \frac{\partial}{\partial \xi} \sigma_{ee}^{r(s)} + B^{res}$$

$$A^{res} = \frac{\cos\beta}{\cos 2\beta} J_{ee}^{r(s)} (\zeta = -1) + \frac{\sin\beta}{\beta \cos 2\beta} \left(\frac{1}{G^r} \sigma_{ee}^{r(s)} - \int_{0}^{s} R_{e}^{r(s)} \cos\beta(\zeta - \tau) d\tau - \frac{\partial w^{r(s-2)}}{\partial \xi} \right)$$

$$= \frac{\sin\beta}{\cos 2\beta} J_{ee}^{r(s)} (\zeta = -1) + \frac{\cos\beta}{\beta \cos 2\beta} \left(\frac{1}{G^r} \sigma_{ee}^{r(s)} - \int_{0}^{s} R_{ee}^{r(s)} \cos\beta(\zeta - \tau) d\tau - \frac{\partial w^{r(s-2)}}{\partial \xi} \right)$$

$$\left(u_{s} \upsilon; A, C; B, D; rz, \varphi z; \frac{\partial}{\partial \xi}, \frac{\partial}{\xi \partial \eta} \right) \qquad (2.7)$$

$$w_{0}^{r(s)} = \frac{1}{2} \left[u_{2}^{r(s)} + u_{2}^{r(s)} - w_{2}^{r(s)} (\zeta = 1) - w_{2}^{r(s)} (\zeta = -1) - \frac{1}{\beta} tg 2\beta \frac{1}{\Omega^2 h^2 \rho} \nabla^2 \sigma \right] - \frac{\cos\beta}{\beta} \left(\frac{\partial B_{2}^{r(s)}}{\partial \xi} + \frac{B_{2}^{r(s)}}{\xi} + \frac{\partial D_{2}^{r(s)}}{\xi \partial \eta} \right)$$

$$\nabla^2 \sigma_{zz0}^{r(s)} = \frac{\beta \Omega^2 h^2 \rho}{2\beta - tg 2\beta} \left[u_{2}^{r(s)} - u_{2}^{r(s)} - u_{2}^{r(s)} (\zeta = -1) + u_{2}^{r(s)}$$

23

$$\sigma_{\pm 0}^{e(s)} = \sigma_{\pm 2}^{e(s)} - \sigma_{\pm 2}^{e(s)}(\zeta = 1)$$

$$A^{e(s)} = \frac{1}{2\cos\beta} \left| \frac{2}{\Omega^2 h^2 \rho} \frac{\partial}{\partial \xi} \left(\sigma_{\pm 2}^{e(s)} - \sigma_{\pm 2}^{e(s)}(\zeta = 1) \right) + J_{\pm}^{e(s)}(\zeta = 1) + J_{\pm}^{e(s)}(\zeta = 1)$$

$$w_0^{r(s)} = u_1^{r(s)} + \frac{1}{\Omega^2 h^2 \rho} \nabla^2 \left(\sigma_{zz}^{r(s)} - \sigma_{zz}^{r(s)} (\zeta = 1) \right) - w_1^{r(s)} (\zeta = -1) - \frac{\sin \beta}{\beta} \left(\frac{\partial A^{r(s)}}{\partial \xi} + \frac{A^{r(s)}}{\xi} + \frac{1}{\xi} \frac{\partial C^{r(s)}}{\partial \eta} \right) - \frac{\cos \beta}{\beta} \left(\frac{\partial B^{r(s)}}{\partial \xi} + \frac{B^{r(s)}}{\xi} + \frac{1}{\xi} \frac{\partial D^{r(s)}}{\partial \eta} \right) - \frac{\sin 2\beta \neq 0}{\sin 2\beta \neq 0} .$$

(2.8)

Значения амплитуд выпужденных колебанин $A^{*trr}, B^{*trr}, C^{*(s)}, D^{*(s)}$ пластии из несжимаемых материалов (2.1)-(2.4) получены при условиях sin $2\beta \neq 0$, cos $2\beta \neq 0$, $lg\beta \neq \beta$, $lg_{-}\beta \neq 2\beta$ Когда же эти условия не выполняются, возникает резонанс. Это происходит, когда частота Ω внешнего воздействия совпадает с главным значением частоты собственных колебаний. Учитывая это, можно получить главные значения частот собственных колебаний пластин из несжимаемых материалов при s = 0, принимая $u^{*101} = 0$, $\sigma_{-}^{*10} = 0$. Такие кинематические и смешанные условия приводят к дисперсионным уравнениям

$$\sin 2\beta = 0$$
, $\cos 2\beta = 0$, $ig\beta = \beta$, $ig2\beta = 2\beta$ (2.9)
спектр собственных значений которых приводит к следующим главным
значениям частот собственных колебаний

$$\Omega_{4} = \frac{\pi}{2h} k \sqrt{\frac{G^{e}}{\rho}}, \qquad \Omega_{k} = \frac{\pi}{4h} (2k+1) \sqrt{\frac{G^{e}}{\rho}}, \qquad k \in \mathbb{N}$$

$$\Omega_{1}^{(*)} = \frac{4.49340946}{h} \sqrt{\frac{G^{e}}{\rho}}, \qquad \Omega_{1}^{(6)} = \frac{2.24670473}{h} \sqrt{\frac{G^{e}}{\rho}}$$
(2.10)

Анализ решений (2.1)-(2.10) показывает, что для пластин из несжимаемых материалов (в отличие от пластин из сжимаемых материалов) тангенциальные (слвиговые) и продольные собственные колебания связаны с исходного шага итерации и имсют одинаховые частоты.

Эти результаты могут быть использованы в расчетах эластомерных сейсмоизоляторов [6]

r)

Авторы выражают признательность Л.А.Агаловяну за обсуждение полученных результатов.

ЛИТЕРАТУРА

- 1. Тимошенко С.П. Теория упругости М.: ОНТИ, 1937.
- Aghalovyan L.A., Gevorgyan R.S., Sahakyan A.V. and Aghalovyan M.L. Asimptotics of Forced Vibrations of Bases, Foundations and Seismoisolators // Journal of Structural Control. 2001. Vol. 8, N2, PP. 249-263.
- Агаловян Л.А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука, 1997. 414с.
- Агаловян Л.А. Асимптотика решений классических и неклассических краевых задач статики и динамики тонких тел // Прикладная механика НАН Украины. 2002, Т. 38. №7. С. 3-24.
- 5. Геворкян Р.С., Вирабян Е.Г. Асимптотические решения краевых задач теории упругости для круговой кольцевой пластины из несжимаемого материала // Докл.НАН Армении. 2001. N3. C. 237-244.
- Kelly J.M. The influence of plate flexibility on the buckling load of elastometric isolators // Report N₀ UCB/EERC- 94/03. 1994. 59p

Институт механики НАН Армении Поступила в редакцию 13.01.2003