Մեխանիկա

55, Nº1, 2002

Механика

VAK 539.3

ЗАДАЧА ДЛЯ УПРУГОЙ ГІЛОСКОСТИ, СОДЕРЖАЩЕЙ КРЕСТООБРАЗНОЕ ВКЛЮЧЕНИЕ Григорян Э.Х., Торосян Д.Р., Шагинян С.С.

է Խ. Գրիգորյան, Դ. Ռ. Թորոսյան, Մ.Ս. Շահինյան Խնդիր առածգական հարթության համար, որը պարունակում է խաչաձև ներդիր

Դրտարկվում է իւնդիր առածվական հարջության համար, որը պարունակում է խաչաձե վերջումա ներդիր Խնդիրը մոդելացվում է որպես կտոր առ կտոր համասեծ անվերջ խաչաձե հերդիր պարունակող առածվական հարթության խնդիր։ Խնդիրը բերվում է Ֆրեդհոլմի երկրորդ սեռի ինտեղրալ հավասուրձան, որը թուղ է ռալիս լուծում հաջորդական մոտավորությունների մեթոգով։

E.K.Grigoryan, D.R.Torosyan, S.S.Shahinyan Problem for Elastic Plane Weakened by Cruciform Insertion

Рассматривоется задача для упругой илоскости, содержащей крестообразион упругов конечное включение. Упругая плоскость деформируется под действием напряжений приложенных на бесконечности по взаимно-перпецдикулярным направлениям (по У и по 17 Лодачи моделируется в виде задачи для упругой плоскости, содержащей бесконечное крестообразное иключение, состоящее из двух кусочно-однородных бесконечных яключении Далее задача сводится к решению фредгольновского интегрального уравнении иторого рода, допускающее решение методом последовательных приближении.

Пусть упругая плоскость содержит две одинаковые взаимно-перпендикулярные включения одинаковой длины, когорые вместе образуют крест, т.е. упругая плоскость содержит крестообразное включение Упругая плоскость деформируется под действием папряжений p и q. приложенных на бесконечности по направлениям Ox и Ov, соответственно. Относительно вкаючения полагается, что оно по линиям X и Vнаходится в одноосном напряженном состоянии т.е. она совпадает с крестообразной линией $|x| \le a$, y = 0 и $|y| \le a$, x = 0, с жесткостью E_1h_1 где E_1 – модуль упругости включения, а h – его толшина. С другой стороны, поскольку вышеуказанная линия имеет конечную жесткость, то в концах $x = \pm a$, $y = \pm a$ оно не может быть в контакте с лициями нуленой жесткости. Поэтому, чтобы учитывать контактные условия на концах включения ($x=\pm a$ и $y=\pm a$), поступим, как в [1], мысление продолжим включение по направлениям х в у материалом упругой плоскости до бесконечности. Далее допустим, что нолученное кусочнооднородное бесконечное крестообразное включение находится в двухосном напряженном состоянии, т.е. совпадает с крестообразной линией, имеющая конечную жесткость (при |x| < a, |y| < a – жесткость E.h. а при |x| > u, |y| > a – жесткость E.h. где E_2 – модуль упругости материала плоскости). Из вышесказанного следует, что задача для упругой плоскости с конечным крестообразным включением, можно моделировать, как задачу для плоскости с бесконечным кусочно-однородным крестообразным включением, конечная часть которого вышеуказациос включение, а полубесконечная часть состоит из материала упругой плоскости.

Приступив к решению модольной задачи, запишем уравнения равновесия включения

$$hE_{1} \frac{d^{2}u^{(1)}(x)}{dx^{2}} + 2\tau^{(1)}(x) = 0; \quad (-\infty < x < -a)$$

$$hE_{1} \frac{d^{2}u^{(1)}(x)}{dx^{2}} + 2\tau^{(1)}(x) = 0; \quad (-a < x < a)$$

$$hE_{2} \frac{d^{2}u^{(1)}(x)}{dx^{2}} + 2\tau^{(1)}(x) = 0; \quad (a < x < \infty)$$

$$(1)$$

a при $-\infty < y < \infty$

$$hE_{2} \frac{d^{2} v^{(1)}(y)}{dv^{2}} + 2\tau^{(2)}(y) = 0; \quad (-\infty < y < -a)$$

$$hE_{1} \frac{d^{2} v^{(1)}(y)}{dy^{2}} + 2\tau^{(2)}(y) = 0; \quad (-a < y < a)$$

$$hE_{2} \frac{d^{2} v^{(1)}(y)}{dy^{2}} + 2\tau^{(2)}(y) = 0; \quad (a < y < \infty)$$

$$(2i)$$

где $\tau^{(1)}(x)$, $\tau^{(1)}(y)$ – контактные касательные напряжения. $u^{(1)}(x)$. $v^{(1)}(y)$ — перемещения включения по Ox и Oy соответственно

В начале рассмотрим уравнения (1) и запишем их одним уравнением Из (1) будем иметь

$$\frac{du^{(1)}(x)}{dx} = -\frac{2}{nE_1} \int \tau^{(1)}(s)ds + \frac{p}{E_2} \qquad (-\infty < x < -a)$$

$$\frac{du^{(1)}(x)}{dx} = -\frac{2}{hE_1} \int_{-a}^{a} \tau^{(1)}(s)ds + C; \qquad (-a < x < a)$$

$$\frac{du^{(1)}(x)}{dx} = \frac{2}{nE_2} \int_{a}^{a} \tau^{(1)}(s)ds + \frac{p}{E_2}; \qquad (a < x < \infty)$$

Выше имеется в виду, что

$$\int_{-\infty}^{\infty} \tau^{(1)}(s) ds = 0.$$

Теперь, имея в виду, что $\tau^{(1)}(-s) = -\tau^{(1)}(s)$, получим

$$\int_{-a}^{x} \tau^{(1)}(s) ds = -\int_{0}^{a} \theta(s-x) \tau^{(1)}(s) ds; \qquad (0 < x < a)$$

где $\theta(x)$ — функция Хевисайда.

Итак, будем иметь

$$\frac{du^{(1)}(x)}{dx} = \frac{2}{hE_1} \int_0^a \Theta(s-x) \tau^{(1)}(s) ds + C, \qquad (0 < x < a)$$
 (3)

$$\frac{du^{(1)}(x)}{dx} = \frac{2}{hE_2} \int_{0}^{\infty} \theta(s-x) \tau^{(1)}(s) ds + \frac{P}{E_2}, \qquad (a < x < \infty)$$
 (4)

Далее, удовлетворив условию контакта

$$E_1 \frac{du^{(1)}(x)}{dx} \bigg|_{x=0.0} = E_2 \frac{du^{(1)}(x)}{dx} \bigg|_{x=0.0}$$

Тогда С определяется в виде

$$C = \frac{2}{hE_1} \int_{a}^{a} \tau^{(1)}(s) ds + \frac{p}{E_1}; \qquad \int_{a}^{a} \tau^{(1)}(s) ds = 0;$$

(3) и (4) можно записать одним уравнением

$$\frac{du^{(1)}(x)}{dx} = \left(\frac{2}{hE_1}\int_0^a \theta(s-x)\tau^{(1)}(s)ds + C\right) (1-\theta(x-a)) + \left(\frac{2}{hE_2}\int_0^\infty \theta(s-x)\tau^{(1)}(s)ds + \frac{p}{E_2}\right) \theta(x-a), \quad (0 < x < \infty)$$

 Δ ля дальнейшего, после замены x на ae^{+} , s на ae^{+} , получим

$$\frac{du^{(1)}(x)}{dx} = \left(\frac{2a}{hE_1}\int_{-\pi}^{0}\theta(u-v)\tau_1(u)e^udu + C_1\right)\theta(-v) +
+ \frac{2a}{hE_2}\int_{0}^{\infty}\theta(u-v)\tau_1(u)e^vdu \theta(v) + \frac{P}{E_2} \qquad (-\infty < v < \infty)$$
(5)

FAC

$$\tau_1(u) = \tau^{(1)}(ae^u);$$
 $C_1 = \frac{2a}{hE_1} \int_0^{\infty} \tau_1(u)e^u du + p\left(\frac{1}{E_1} - \frac{1}{E_2}\right)$

Далес, продифференцировав (5) по v, получим

$$\frac{d}{d\mathbf{v}} \left(\frac{du^{(1)}(\mathbf{x})}{d\mathbf{x}} \right) = -\frac{2a}{hE_1} \tau_1^*(\mathbf{v}) e^{\mathbf{v}} - \frac{2a}{hE_2} \tau_1^*(\mathbf{v}) e^{\mathbf{v}} + A\delta(\mathbf{v})$$
 (6)

rae

$$\tau_1^-(\mathbf{v}) = \theta(-\mathbf{v})\tau_1(\mathbf{v}); \qquad \tau_1^-(\mathbf{v}) = \theta(\mathbf{v})\tau_1(\mathbf{v})$$
$$A = \left(\frac{1}{E_2} - \frac{1}{E_1}\right) \left[p + \frac{2a}{h} \int_0^1 \tau_1(u)c^u du\right]$$

Поступая аналогичным образом, получим

$$\frac{d}{dw}\left(\frac{dN^{(0)}(v)}{dv}\right) = -\frac{2a}{nE_1}\tau_2(w)e^{-v} - \frac{2a}{hE_2}\tau_2^*(w)e^{w} + B\delta(w) \quad (-\infty < w < \infty) \quad (7)$$

rae

$$B = \left(\frac{1}{E_2} - \frac{1}{E_1}\right) \left(q + \frac{2a}{h} \int_{0}^{\infty} \tau_2(w)e^{-u}dw\right)$$

 $\tau_{1}(w) = \tau^{(2)}(ae^{w}); \quad \tau_{2}(w) = \theta(-w)\tau_{2}(w); \quad \tau_{1}(w) = \theta(w)\tau_{2}(w)$ С другой стороны, разрешив уравнения Ламе при условиях

$$\tau_{yx}(x;+0) - \tau_{yx}(x;-0) = 2\tau^{(1)}(x)$$

$$\tau_{xy}(+0; y) - \tau_{xy}(-0; y) = 2\tau^{(2)}(y)$$

и ввиду того, что $\tau^{(1)}(x)$ и $\tau^{(2)}(y)$ печетные функции, будем иметь [2]

$$\frac{du^{(2)}(x,0)}{dx} = -\frac{A_0}{\pi} \int_0^{\infty} \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right)^{\frac{1}{2}} \left(\frac{\xi}{\xi} \right) d\xi + \frac{B_0}{\pi} \int_0^{\infty} \frac{\eta(\eta - x)}{(\eta^2 + x^2)^2} \tau^{(2)}(\eta) d\eta + \frac{(1 - v^2)p}{E_2} - \frac{v(1 + v)q}{E_2} \right) d\xi + \frac{dv^{(2)}(0,y)}{dy} = -\frac{A_0}{\pi} \int_0^{\infty} \left(\frac{1}{\eta - y} + \frac{1}{\eta + y} \right) \tau^{(2)}(\eta) d\eta + \frac{B}{\pi} \int_0^{\infty} \frac{\xi(\xi^2 - y^2)}{(\xi^2 + y^2)^2} \tau^{(1)}(\xi) d\xi + \frac{(1 - v^2)q}{E} - \frac{v(1 + v)p}{E} \right) d\xi + \frac{(1 - v^2)q}{E} - \frac{v(1 + v)p}{E}$$

где $u^{(+)}(x,0)$ — перемещения плоскости по линии y=0, $v^{(+)}(0,v)$ — перемещения плоскости по линии x=0, $A_0=\frac{(1+v)(3-4v)}{2(1-v)E_2}$ $B_0=\frac{1+v}{E_1(1-v)}$

v — коэффициент Пуассона материала плоскости. Отметим, что искомые $\tau^{(1)}(x)$ и $\tau^{(2)}(y)$ ищутся в классе функций

$$\tau^{(1)}(x) \sim A_1 x^{-1-\delta};$$
 $\tau^{(1)}(y) \sim B_1 y^{-1-\delta}$ при $x \to \infty$, $y \to \infty$

$$\tau^{(1)}(x) \sim A_2 x^{\beta}; \ \tau^{(2)}(y) \sim B_2 y^{\beta} \text{ при } x \to 0, \ y \to 0$$

rae $\delta > 0$. $\beta > 0$.

Далее, после замены $\xi = ae^u$, $\eta = ae^u$, $x = ae^v$, $y = ae^u$ для $\frac{d}{dv} \left(\frac{du^{(2)}(x,0)}{dx} \right)$; $\frac{d}{dw} \left(\frac{dv^{(1)}(0,v)}{dy} \right)$ получим

$$\frac{d}{dv} \left(\frac{du^{(3)}(x,0)}{dx} \right) =$$

$$= \frac{d}{dv} \left[-\frac{A_0}{\pi} \int_0^{\infty} \left(\frac{1}{1 - e^{v - u}} + \frac{1}{1 + e^{v - u}} \right) \tau_1(u) du + \frac{B_0}{\pi} \int_0^{\infty} \frac{1 - e^{2(v - u)}}{(1 + e^{2(v - u)})^2} \tau_2(u) du \right]$$

$$\frac{d}{dw} \left(\frac{dv^{(3)}(0,v)}{dv} \right) = \frac{d}{dw} \left[-\frac{A_0}{\pi} \int_0^{\infty} \left(\frac{1}{1 - e^{v - u}} + \frac{1}{1 + e^{v - u}} \right) \tau_2(u) du + \frac{1}{1 + e^{v - u}} \right]$$

$$+\frac{B_0}{\pi} \int_{0}^{\infty} \frac{1 - e^{2(u - u)}}{(1 + e^{2(u - u)})^2} \tau_1(u) du$$
[9]

 $\tau_{Ae} \tau_{a}(u) = \tau^{(1)}(ae^{-t}), \ \tau_{a}(u) = \tau^{(2)}(ae^{-t}).$

Теперь, применив комплексное преобразование Фурье к (6) – (9), получим

$$F\left[\frac{d}{dx}\left(\frac{du^{*}(x)}{dx}\right)\right] = -\frac{2a}{hE_{1}}\tau_{1}(\alpha - i) - \frac{2a}{hE_{2}}\overline{\tau}_{1}(\alpha - i) + A$$

$$F\left[\frac{d}{dx}\left(\frac{dx^{**}(x)}{dx}\right)\right] = -\frac{2a}{hE_{2}}\tau_{2}(\alpha - i) - \frac{2a}{hE_{3}}\overline{\tau}_{2}(\alpha - i) + B \qquad (10)$$

$$(-\delta < 1m\alpha < 1 + \beta)$$

$$r \left[\frac{d}{dv} \left(\frac{du^{(2)}(x)}{dx} \right) \right] = A \arctan \frac{\pi \alpha}{2} \, \tilde{\tau}_{\epsilon}(\alpha) + \frac{B \sin(\alpha + i)}{2 \sinh(\pi \alpha - 2)} \, \tilde{\tau}_{\epsilon}(\alpha)$$

$$= \left[\frac{d}{dw} \left[\frac{du^{(2)}(x)}{dx} \right] \right] = A \arctan \frac{\pi \alpha}{2} \, \tilde{\tau}_{\epsilon}(\alpha) + \frac{B \sin(\alpha + i)}{2 \sinh(\pi \alpha / 2)} \, \tilde{\tau}_{\epsilon}(\alpha) \qquad (11)$$

$$(-1 < \lim \alpha < 0)$$

PAC

$$F[T(x)] = \overline{T}(\alpha) = \int T(x)e^{-\alpha x}dx; \qquad \alpha = \sigma + it \quad (-\infty < \sigma < \infty)$$

Выше имелось в виду, что $\tau_i(\alpha)$ регулярна при $\operatorname{Im} \alpha < \beta$ $\tau_i(\alpha)$ регулярна при $\operatorname{Im} \alpha > -1 - \delta$ $\tau_i(\alpha - i)$ регулярна при $\operatorname{Im} \alpha < 1 + \beta$, $\tau_i(\alpha - i)$ регулярна при $-\delta < \operatorname{Im} \alpha$, $\tau_i(\alpha)$ регулярна при $1 - \delta < \operatorname{Im} \alpha < \beta$, $\tau_i(\alpha - i)$ регулярна при $-\delta < \operatorname{Im} \alpha < 1 + \beta$ (k = 1, 2).

$$\frac{1}{\pi}F\left[\frac{1}{1-e^{v}}\right] = -icth\pi\alpha \qquad (-1 < lm\alpha < 0)$$

$$\frac{1}{\pi}F\left[\frac{1}{1+e^{v}}\right] = -\frac{i}{sh\pi\alpha} \qquad (-1 < lm\alpha < 0)$$

$$\frac{1}{\pi}F\left[\frac{1-e^{2v}}{(1+e^{2v})^{2}}\right] = \frac{\alpha+i}{2sh(\pi\alpha/2)} \qquad (-2 < lm\alpha < 0)$$

Далес, имея в виду условия контакта

$$\frac{du^{(1)}(x)}{dx} = \frac{du^{(2)}(x,0)}{dx} \qquad (0 < x < \infty)$$

$$\frac{d\mathbf{v}^{(t)}(y)}{dy} = \frac{d\mathbf{v}^{(t)}(0, y)}{dy} \qquad (0 < y < \infty)$$

из [10] и (11) получим функциональное уравнение

$$\alpha \operatorname{cth} \frac{\pi \alpha}{2} \overline{\tau}_{1}(\alpha) + \frac{i\alpha(\alpha + i)}{\operatorname{sh}(\pi \alpha / 2)} A_{1} \overline{\tau}_{2}(\alpha) + \lambda_{1} \overline{\tau}_{1}(\alpha - i) + \lambda_{2} \overline{\tau}_{1}(\alpha - i) =
= (\lambda_{2} - \lambda_{1})(p + X) \frac{1}{2\alpha} \qquad (-1 < \operatorname{Im} \alpha < 0)$$

$$\alpha \coth \frac{\pi \alpha}{2} \overline{\tau}_{2}(\alpha) + \frac{i\alpha(\alpha+i)}{\sinh(\pi\alpha/2)} A_{1} \overline{\tau}_{1}(\alpha) + \lambda_{1} \overline{\tau}_{2}(\alpha-i) + \lambda_{2} \overline{\tau}_{1}(\alpha-i) =$$

$$= (\lambda_{2} - \lambda_{1})(\alpha+Y) \frac{h}{2\alpha} \qquad (-1 < \text{Im}\,\alpha < 0)$$

Зметь δ фиксировалось в области δ≥1 где

$$A_{1} = \frac{B}{2A_{0}} = \frac{1}{3 - 4v}; \qquad \lambda_{1} = \frac{2a}{hE_{1}A_{0}}; \qquad \lambda_{2} = \frac{2a}{hE_{2}A_{0}}$$

$$X = \frac{2a}{h}\bar{\tau}_{1}(-i); \qquad Y = \frac{2a}{h}\bar{\tau}_{2}(-i).$$
(14)

Теперь заметим, что (12) и (13) можно представить в виде

$$K_1(\alpha)\phi(\alpha) + \lambda_2\phi(\alpha - i) = (\lambda_2 - \lambda_1)\phi_1(\alpha - i) + (\lambda_2 - \lambda_1)d$$
 (15)

$$\overline{K}_{2}(\alpha)\overline{\psi}(\alpha) + \lambda_{2}\overline{\psi}(\alpha - t) = (\lambda_{1} - \lambda_{1})\overline{\psi}(\alpha - t) + (\lambda_{2} - \lambda_{1})\overline{\psi}(\alpha - t) + (\lambda_{2} - \lambda_{2})\overline{\psi}(\alpha) + (\lambda_{3} - \lambda_{3})\overline{\psi}(\alpha) + (\lambda_{3} - \lambda_{3})\overline{\psi}(\alpha$$

rae

$$\overline{K}_{1}(\alpha) = \frac{\alpha \left(\cosh(\pi \alpha/2) + i(\alpha + i)A_{1} \right)}{\sinh(\pi \alpha/2)}; \ \overline{K}_{2}(\alpha) = \frac{\alpha \left(\cosh(\pi \alpha/2) - i(\alpha + i)A_{1} \right)}{\sinh(\pi \alpha/2)}$$

$$(-1 < \text{Im } \alpha < 0)$$

$$d_1 = h(X + Y + p + q)/2a;$$
 $d_2 = h(X - Y + p - q)/2a$
 $\phi(\alpha) = \overline{\tau}_1(\alpha) + \overline{\tau}_2(\alpha);$ $\overline{\psi}(\alpha) = \overline{\tau}_1(\alpha) - \overline{\tau}_2(\alpha)$
 $\overline{\phi}^-(\alpha - i) = \overline{\tau}_1^-(\alpha - i) + \overline{\tau}_2^-(\alpha - i);$ $\overline{\psi}^-(\alpha - i) = \overline{\tau}_1^-(\alpha - i) - \overline{\tau}_2^-(\alpha - i)$
В случае $p = q$

$$\overline{\phi}(\alpha) = 2\overline{\tau}, (\alpha); \quad \overline{\psi}(\alpha) = 0.$$

Итак, задача свелась к решению функциональных уравнений (15) и (16), поскольку

$$\overline{\tau}_1(\alpha) = \frac{\overline{\phi}(\alpha) + \overline{\psi}(\alpha)}{2}; \ \tau_2(\alpha) = \frac{\overline{\phi}(\alpha) - \overline{\psi}(\alpha)}{2}.$$

До того, как перейти к решению функциональных уравнений (15), (16), определим значения постоянных δ и β , т.е. определим поведение функций $\tau^{(1)}(x)$ и $\tau^{(1)}(y)$ в окрестности точек нуля и бесконечности. Для этого рассмотрим уравнение (15). Поскольку $\phi(-i)$ конечное число (11) а K, (-i) = 0, то из (15) следует, что $\phi(-2i)$ — конечное число. Далее, поскольку $\phi(-2i)$ — конечное число, то из (15) следует, что $\alpha = -5i$ является первым простым полюсом аналитического продолжения

функции $\mathfrak{G}(\alpha)$ при $\mathrm{Im}\,\alpha<0$. Аналогичным сбразом можно показать, что для аналитического продолжения функции $\Psi(\alpha)$ первым полюсом при $\mathrm{Im}\,\alpha<0$ является опять точка $\alpha=-3i$. Из сказанного следует, что $\delta=2$, т.е. $\tau^{(1)}(x)\sim A_1x^{-3}$, $\tau^{(1)}(y)\sim A_2y^{-3}$ при $x\to\infty$, $y\to\infty$. Теперь приступим к определению поведения функции $\tau^{(1)}(x)$, $\tau^{(2)}(y)$ при $x\to0$, $y\to0$ соответственно. Для этого опять рассмотрим уравнение (15). Пусть β такова, что первый положительный корень $K_1(\alpha)$ попадает в область регулярности $-2<\mathrm{Im}\,\alpha_1<\mathrm{I}+\beta$ функции $\phi(\alpha-i)$ В таком случае, как нетрудно видеть, $\alpha=\alpha_1$ может быть первым простым полюсом аналитического продолжения функции $\overline{\phi}(\alpha)$, при $\mathrm{Im}\,\alpha>0$. Отсюда можно заключить, что $\beta=\mathrm{Im}\,\alpha_1$, так как $\overline{\phi}(\alpha)=2\overline{\tau}_1(\alpha)=2\overline{\tau}_2(\alpha)$ при p=q, а показатель β не зависит от нагрузки. Итак, при $x\to0$, $y\to0$ имеем

$$\tau^{(1)}(x) \sim A_2 x^{\omega}, \ \tau^{(2)}(y) \sim B_2 y^{\omega}, \ \text{Im} \, \alpha_1 = \omega.$$

Теперь перейдем спачала к решению уравнения (15). Полагая правую часть уравнения (15) известной, разрешим функциональные уравнения +1 относительно $\phi(\alpha)$. Для этого $\phi(\alpha)$ ищем в виде |2|

$$\varphi(\alpha) = \frac{\Gamma(i\alpha)}{\cosh(\pi\alpha/2)} \, \overline{T}_i(\alpha) \qquad (-1 < \text{Im}\,\alpha < 0) \tag{17}$$

где $\bar{T}_i(-i)=0$, $\Gamma(z)$ — известная гамма-функция

Подставив $\phi(\alpha)$ в уравнение (15), для $T_1(\alpha)$ получим функциональное уравнение

$$\bar{B}_{1}(\alpha)T_{1}(\alpha) - \lambda_{n}T_{n}(\alpha - i) = \frac{\sin \frac{\pi \alpha}{2}}{\Gamma(1 + i\alpha)}\tilde{f}_{1}(\alpha) \quad (-1 < \text{Im } \alpha < 0)$$
 (18)

при условии

$$\overline{T}_1(-i) = 0$$

Здесь

$$\overline{B}_{i}(\alpha) = \frac{\operatorname{ch}(\pi\alpha/2) + i(\alpha + i)A_{1}}{\operatorname{ch}(\pi\alpha/2)}, \quad \overline{f}_{i}(\alpha) = (\lambda_{2} - \lambda_{3})(\varphi_{i}(\alpha - i) + d_{1})$$

Теперь функциональное уравнение (18) решим методом, изложенным в [1]. Поэтому, необходимо $B_{\rm i}(\alpha)$ представить в виде [1].

$$B_1(\alpha) = \frac{Y_1(\alpha)}{Y_1(\alpha - i)}, \qquad (-1 < \operatorname{Im} \alpha < 0)$$
 (19)

LAG

$$Y_1(\alpha) = \exp \left[\int \left(\operatorname{cth} \pi(\alpha - s) + \operatorname{cth} \pi s \right) \ln B_1(s) ds \right]$$

$$Y_1(-i) = 1 \qquad (-1 < \operatorname{Im} \alpha < t < 0)$$

Причем, при $|\alpha| \to \infty$ (-1 < lm α < 0) $Y_i(\alpha)$ принимает консчвое значение.

Заметим что согласно формуле Стирлинга

 $\Gamma(\alpha) \sim e^{-\alpha} \alpha^{-\frac{1}{2}} \sqrt{2\pi} \Big[1 + (12\alpha) + ... \Big]$ при $\alpha \to \infty$, $\arg \alpha | < \pi$, можно получить оценку

$$\frac{|\operatorname{sh}(\pi\alpha/2)|}{\Gamma(1+i\alpha)} = \frac{e^{\pi\sigma}}{2\sqrt{2\pi|\sigma|^{1/2-t}}} \quad \text{при} \quad \sigma' \to \infty, \ t = 1 \text{m r.}$$

Это говорит о том, что к (18) нет смысла применять обратное вреобразование Фурье Поэтому разделив обе части равенства на shисt и использовав (19), будем иметь

$$\frac{Y_1(\alpha)T_1(\alpha)}{\sinh\alpha} + \frac{Y_1(\alpha - i)\overline{T_1}(\alpha - i)}{\sinh\alpha(\alpha - i)} = \frac{f_1(\alpha)Y_1(\alpha - i)}{2\Gamma(1 + i\alpha)\cosh(\pi\alpha/2)}$$

Применив к [20] обратное преобразование Фурье и потребовав, чтобы

$$\frac{Y_1(\alpha)T_1(\alpha)}{\sinh\alpha} \to 0$$
 в полосе $-2 < \text{Im}\,\alpha < 0$, при $\sigma \to 4$ ж получим

$$\frac{Y_1(\alpha)T_2(\alpha)}{\sinh \alpha} = \frac{Y_1(\alpha - t)}{2\Gamma(1 + t\alpha)\cosh(\pi\alpha/2)} f_1(\alpha)$$

Примении к (21) преобразования Фурье, получим

$$\frac{Y_i(\alpha)\overline{F_i}(\alpha)}{\sinh \alpha} = \int_{-1}^{\infty} \frac{\ell(u)e^{\alpha u}}{1 - \lambda_{\alpha}e^{u}} Iu \qquad -1 < \text{Im } \alpha < 0 \qquad (22)$$

Где

$$\ell(u) = F \left[\frac{Y_1(\alpha - i)}{2\Gamma(1 + i\alpha)\operatorname{ch}(\pi\alpha/2)} f_1(\alpha) \right] = \frac{1}{2} \int t_1(u - w) f_1(w) dw$$

$$\ell(u) = \frac{1}{2\pi} \int \frac{Y_1(\alpha - i)}{\Gamma(1 + i\alpha)\operatorname{ch}(\pi\alpha/2)} e^{-\frac{i\pi}{2}} d\alpha \quad (-1 < t < 0)$$

Определив из (22) $\overline{T}_i(\alpha)$ и подставив в (17), для $\overline{\phi}(\alpha)$ будем иметь

$$\varphi(\alpha) = \frac{i\Gamma(i\alpha) \operatorname{sh} \frac{\pi \alpha}{2}}{Y_{i}(\alpha)} \int_{-\alpha}^{\alpha} \frac{I(u)e^{-u}}{1 + \lambda_{2}e^{u}} du \qquad 1 < \operatorname{Im} \alpha < 0$$

Теперь применив к $\phi(\alpha)$ обратное преобразование Фурье и использовав теорему о свертке получим

$$\varphi(v) = 2 \int_{-1}^{\ell_2} \frac{(v-u)\ell(u)}{1+\lambda_2 e} du$$

где

$$\ell_{\pm}(\mathbf{v} - \mathbf{u}) = \frac{1}{2\pi} \int_{-\infty}^{v-\kappa} \frac{i\mathbf{1}(i\alpha) \operatorname{sh}(\pi\alpha \cdot 2)}{Y_{i}(\alpha)} e^{-\kappa i(\mathbf{v} - \mathbf{u})} d\alpha \qquad (-1 < t < 0)$$

Если генерь иметь в виду (23)

$$\ell(u): \frac{\lambda_{\pm} - \lambda_{\pm}}{2} \int \ell_{\pm}(u - w) \psi_{\pm}(w) e^{\pm} dw + (\lambda_{\pm} - \lambda_{\pm}) d_{\pm} \ell_{\pm}(u)$$

подучим

$$\varphi(v) = (\lambda_{+} - \lambda_{+}) \int_{0}^{0} e^{w} \varphi(w) dw \int_{0}^{\infty} \frac{\ell_{+}(v - u)\ell_{+}(u - w)}{1 + \lambda_{+}e^{w}} du + (\lambda_{+} - \lambda_{+})d_{+} \int_{0}^{\infty} \frac{\ell_{+}(v - u)\ell_{+}(u)}{1 + \lambda_{+}e^{w}} du$$

Таким образом, получили равенства

$$\varphi(\mathbf{v}) = (\lambda \cdot -\lambda_1) \int_{-\infty}^{0} K_1(\mathbf{v}, \mathbf{u}) e^{\mathbf{v}} \varphi(\mathbf{u}) d\mathbf{u} + (\lambda_2 - \lambda_1) d_1 \varphi_0(\mathbf{v}) \quad (-\infty < \mathbf{v} < \infty)$$

PAC

$$\phi_0(v) = \int_{-\infty}^{\infty} \frac{\ell_2(v - u)\ell_1(u)}{1 + \lambda_2 e^u} du$$

$$K_*(v, w) = \int_{-\infty}^{\infty} \frac{\ell_2(v - u)\ell_1(u - w)}{1 + \lambda_2 e^u} du$$

Переходя к переменным $x = e^x$, $s = e^w$, $y = e^{-u}$, получим

$$\varphi(ax) = (\bar{\lambda}_2 - \bar{\lambda}_1) \int_0^1 K_1(x, s) \varphi(as) ds - (\bar{\lambda}_2 - \bar{\lambda}_1) d_1 K_1(x, 1) \quad 0 < x < \infty$$
 (24)

LAG

$$K_1(x,s) = \int_0^{\ell_2(\ln xy)\ell_1(-\ln ys)} dy$$
 (25)

Генерь, потребовав в {24}, чтобы 0 < x < 1, для определения искомого $\varphi(\alpha x)$ голучим Фредгольмовское интегральное уравнение второго рода

$$\varphi(ax) = (\lambda_2 - \lambda_1) \int_0^1 K_1(x, s) \varphi(as) ds + (\lambda_1 - \lambda_1) d_1 K_1(x, l)$$
 (26)

Отметим, что неизвестные постоянные X, Y определяются из (14)

После определения $\tau(ax)$ при 0 < x < 1 ее эпачения при x > 1 определяются из (24). Отметим гакже, что $K_*(x,1)$ является решением задачи для бесконечного крестообразного включения, когда в точках $x = \pm a$, $y = \pm a$ приложена сила с единичной интенсивностью [2]

Исследуем свойства ядра $K_1(x,s)$. Для этого запишем его в виде

$$K_1(x, s) = \int_0^{\ell_1(\ln xy)\ell_1(-\ln sy)} dy - \lambda_2 \int_0^{\ell_2(\ln xy)\ell_1(-\ln sy)} dy$$

Далее, в силу георомы о свертке получим

$$\int_{0}^{\ell} \frac{f(\ln xy)\ell_{1}(-\ln sy)}{y} dy = \frac{1}{2\pi} \int_{0}^{s} \frac{\sinh(\pi\sigma/2)}{\sigma} \left(\frac{x}{s}\right)^{-i\sigma} d\sigma + R_{1}(x,s)$$

rae

$$R(x,s) = \frac{A_s}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{\sigma+i}{\sigma}\right) \frac{\sinh(\pi\sigma/2)}{\cosh(\pi\sigma/2) + i(\sigma+i)A_s} \left(\frac{x}{s}\right) d\sigma$$

Отсюда следует, что

$$\int \frac{\ell_1(\ln xy)\ell_1(-\ln sy)}{y} \, dy = \frac{1}{\pi} \ln \frac{x-s}{x-s} + R_1(x,s)$$

где $R_{c}(x,s)$, в силу абсолютной интегрируемости подынтегрального выражения при $(x/s)^{-10}$, равияется нулю при x=0 и s=0, а при x=s принимает конечное значение. Теперь, если учесть, что

$$\frac{1}{\pi} \ln \left| \frac{x+s}{x-s} \right| = \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin(xy)\sin(sy)}{y} \, dy$$

то $K_{\cdot}(x,s)$ можно записать в виде

$$K_1(x,s) = \frac{1}{\pi} \ln \frac{x+s}{x-s} \left| -\frac{2\lambda_2}{\pi} \int_0^s \frac{\sin(xy)\sin(sy)}{y(\lambda_2 + y)} dy + \int_0^{\infty} \frac{A(x,s,y)}{\lambda_2 + y} dy \right|$$
 (27)

941

$$A(x,s,y) = \ell_{\gamma}(xy)\ell_{\gamma}(sy) - \sin(xy)\sin(xy)$$

$$A(x,s,y) = \ell_{\gamma}(xy)\ell_{\gamma}(sy) - \sin(xy)\sin(xy)$$

$$\int_{0}^{\infty} \frac{A(x,s,y)}{y} \, dy = R_{1}(x,s)$$

Из представления (27) следует, что $K_1(x,s)$ при x=s имеет логарифмическую особенность, а в остальном пепрерывная функция Отсюда следует, что $K_1(x,s)$ при x=1 имеет логарифмическую особенность, а из (26) следует, что искомые $\tau^{(1)}(x)$ и $\tau^{(1)}(y)$ при x=a и y=a имеют логарифмическую особенность. Из вышеуказанного следует читогральное уравнение (26) можно решать методом последовательных приближений и $L_1(0.1)$ при

$$|\lambda_1 - \lambda_1| \max_{s} \int_0^1 K_1(x,s) |dx < 1|$$

В случае одного конечного включения $(Y_1(\alpha) \equiv 1)$

$$K_{\bullet}(x,s) = \frac{2}{\pi} \int_{0}^{s} \frac{\sin(xy)\sin(sx)}{x-y} dy$$

поскольку в силу того, что [3]

$$\frac{1}{2\pi} \int_{0-\infty}^{\pi} \frac{1}{\Gamma(1+i\alpha) \cosh(\pi\alpha/2)} (sy)^{-\alpha} d\alpha = \frac{1}{\pi} \sin(sy), \qquad -1 < t < 0$$

$$\frac{1}{2\pi} \int_{0-\infty}^{\pi} i\Gamma(i\alpha) \sinh(\pi\alpha/2) (xy)^{-i\alpha} d\alpha = \sin(xy), \qquad -1 < t < 0$$

$$A(x,s,y) = 0$$

Аналогичным образом получается решение функционального уравшения [16].

Следует отметить, что $\tau^{(1)}(x)\equiv 0$, $\tau^{(2)}(y)\equiv 0$ при $\lambda_1=\lambda_2$, которое

соответствует решению задачи без включения.

ЛИТЕРАТУРА

- 1 Григорян Э.Х. Решение задачи упругого конечного включения, пходящего на границу полуплоскости. // Уч. записки ЕГУ, Ест. н. 1981 №3.
- 2 Григорян Э.Х., Торосян Д.Р. Задача для упругой бесконечной илистины, усиленной крестообразным бесконечным стрингером. // Изи ПАН РА. Механика 1994 Т 47 №1-2. С. 3-13.
- 3 Прудников А.П., Брычков Ю А., Маричев О И. Интегралы и ряды. М.:. Паука, 1984, 799с.

Ізреванский госуниверситет Поступнав в редакцию 22.05.2001