ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԽԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մնիսանիկա

54, №1, 2001

Механика

УДК 539.3 ОБ УСТОЙЧИВОСТИ МНОГОСЛОЙНОЙ ПЛАСТИНКИ Мовисян Л.А., Нерсисян Г.Г.

L.U. Մովսիսյան, Գ.Գ. Ներսիսյան Քազմաշերտ սալերի կայունության մասին

Դիտարկվում է միջին հարթության նկատմամբ սիմնարիկ և անտիսիմնարիկ ղասավորված անիզոտրոպ բազմաշնրտ սալնրի կայումությունը։ Շերտերի հաստության ընտրությամբ և առաձգականության գլխավոր ուղղությունների պտաումով հնարավոր է ղառնում կայունության հավասարումը բերել տեսքի, որը բույլ է տալիս փոփոխականների անջատում։ Տարբեր եզրային պայմանների համար դիտալսկված խնդիրներում լուծվել է մեծագույն կրիտիկական ճիգեր ստանալու հարցը

L.A. Movsisyan, G.G. Nersisyan About Stability of Laminated Plates

Слоистую пластинку можно получить различными способами. В зависимости от строения слоев различными будут и разрешающая система уравнений. В общем случае уравнения многослойных анизотропных пластии [1] мало доступны для исследования, если не более.Поэтому часто, но не только из этих соображений, бывает целесообразным рассматривать частные виды строения [2, 3 и др.]. В настоящей работе изучается устойчквость анизотропной слоистой пластинки в предположении, что относительно координатной плоскости слок расположены симметрично в геометрическом отношении, о в физическом – симметрично и антисимистрично [3].

1. Слоистую пластинку, каждый монослой которой ортотролен, получим следующим образом. Она состоит из 2n слоев, так что относительно координатной (срединной) плоскости слои с одинаховым номером (находящиеся в разных сторонах от координатной плоскости), имеют одинаковые толщины (геометрическая симметрия). Что касается ориентации главных упругих направлений, то каждый слой имеет свой угол поворота относительно координатных линий, но так, что в одном случае слои с одинаковыми номерами повернуты на одинаковый угол ϕ_k (симметричное строение), а в другом – на $\pm \phi_k$ (антисимметричное строение).

Если обозначить упругие постоянные относительно главных направлений упругости в плоскости пластинки через A_{11} , A_{12} , A_{22} , A_{22} , A_{33} , то при повороте этих направлений относительно координатных на некоторый угол φ_{4} (свой для каждого слоя) закон упругости запишется

$$\sigma_{x}^{(k)} = B_{11}^{(k)} e_{x} + B_{12}^{(k)} e_{y} + B_{11}^{(k)} e_{xy}$$

$$\sigma_{y}^{(k)} = B_{12}^{(k)} e_{x} + B_{22}^{(k)} e_{y} + B_{26}^{(k)} e_{xy}$$

$$(1.1)$$

$$\sigma_{y}^{(k)} = B_{12}^{(k)} e_{x} + B_{26}^{(k)} e_{y} + B_{26}^{(k)} e_{xy}$$

где новые постоянные выражаются через старые следующим образом:

$$B_{11}^{(k)} = A + B\cos 2\varphi_{k} + C\cos^{2} 2\varphi_{k}, \quad B_{12}^{(k)} = A - B\cos 2\varphi_{k} + C\cos^{2} 2\varphi_{k}$$

$$B_{12}^{(k)} = A_{12} + C\sin^{2} 2\varphi_{k}, \quad B_{66}^{(k)} = A_{66} + C\sin^{2} 2\varphi_{k}$$

$$B_{16}^{(k)} = \frac{1}{2} (B\sin 2\varphi_{k} + C\sin 4\varphi_{k}), \quad B_{14}^{(k)} = \frac{1}{2} (B\sin 2\varphi_{k} + C\sin 4\varphi_{k})$$

$$3Aecb$$

$$A = \frac{1}{4} (A_{2} + A_{3}), \quad B = \frac{1}{2} (A_{11} - A_{22}), \quad C = \frac{1}{4} (A_{1} - A_{1})$$

$$D = \frac{1}{4} (3A_{2} - A_{3}), \quad A_{2} = A_{11} + A_{22}, \quad A_{3} = 2(A_{12} + 2A_{66})$$
(1.2)

Как видно из (1.2), часть упругих коэффициентов относительно φ_s четная, а другая часть нечетная. В связи с этим, совершенно различными будут структуры соотношений упругости (усилия и моменты для пакета в целом) для симметричного и антисимметричного случаев. В пределах классической теории для упругих соотношений будем иметь

$$T_{1} = C_{11}\varepsilon_{1} + C_{12}\varepsilon_{2} + C_{16}\varepsilon_{12}, M_{1} = D_{11}\chi_{1} + D_{12}\chi_{2} + D_{16}\chi_{12}$$

$$T_{2} = C_{12}\varepsilon_{1} + C_{22}\varepsilon_{2} + C_{26}\varepsilon_{12}, M_{2} = D_{12}\chi_{1} + D_{22}\chi_{2} + D_{26}\chi_{12}$$

$$T_{12} = C_{16}\varepsilon_{1} + C_{26}\varepsilon_{2} + C_{66}\varepsilon_{12}, M_{12} = D_{16}\chi_{1} + D_{26}\chi_{2} + D_{66}\chi_{12}$$
(1.3)

при симметричном расположении слоев и

$$T_{1} = C_{11}\varepsilon_{1} + C_{12}\varepsilon_{2} + K_{16}\chi_{12}, \quad M_{1} = D_{11}\chi_{1} + D_{12}\chi_{2} + K_{16}\varepsilon_{12}$$

$$T_{2} = C_{12}\varepsilon_{1} + C_{22}\varepsilon_{2} + K_{26}\chi_{12}, \quad M_{2} = D_{12}\chi_{1} + D_{22}\chi_{2} + K_{26}\varepsilon_{12}$$

$$T_{12} = C_{66}\varepsilon_{12} + K_{16}\chi_{1} + K_{26}\chi_{2}, \quad M_{12} = D_{66}\chi_{12} + K_{16}\varepsilon_{1} + K_{26}\varepsilon_{2}$$
(1.4)

для антисимметричного случая.

Здесь

$$\varepsilon_{1} = \frac{\partial u}{\partial x}, \quad \varepsilon_{2} = \frac{\partial v}{\partial y}, \quad \varepsilon_{11} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\chi_{1} = -\frac{\partial^{2} w}{\partial x^{2}}, \quad \chi_{2} = -\frac{\partial^{2} w}{\partial y^{2}}, \quad \chi_{12} = -2\frac{\partial^{2} w}{\partial x \partial y}$$
(1.5)

u, v, w — компоненты перемещения соответственно по осям x, y, z. а для приведенных жесткостей имеем

$$C_{k=1} = 2\sum_{k=1}^{k} B_{y}^{(k)} (h_{k} - h_{k-1}), K_{y} = \sum_{k=1}^{k} B^{(k)} (h_{k}^{2} - h_{k-1}^{2}), D_{y} = \frac{2}{3} \sum_{k=1}^{k} B_{y}^{(k)} (h_{k}^{3} - h_{k-1}^{3})$$
(1.6)

где $h_k - h_{k-1}$ - толщина k -того слоя, $h_n = h$.

В предположении, что прямоутольная пластина равномерно сжата в направлении одной из сторон, уравнениями устойчивости в общем случае будут:

$$\frac{\partial T_1}{\partial x} + \frac{\partial T_{12}}{\partial y} = 0, \quad \frac{\partial T_{12}}{\partial x} + \frac{\partial T_2}{\partial y} = 0$$

$$\frac{\partial^2 M_1}{\partial x^2} + 2 \frac{\partial^2 M_{12}}{\partial x \partial y} + \frac{\partial^2 M_2}{\partial y^2} - P \frac{\partial^2 w}{\partial x^2} = 0$$
(1.7)

43

Как видно из (1.3), (1.4) и (1.7), в симметричном случае для изучения устойчивости из (1.7) достаточно только третье уравнение, в то время как в антисимметричном случае необходима система полностью. В последнем случае слоистая пластинка ведет себя как оболочка, когда плоская задача и задача изгиба не разделяются. Кстати, с этой точки зрения интересен такой факт. Антисимметричная пластинка, как и оболочка, небезразлична относительно граничных условий начального состояния, то есть критическая сила существенно зависит от того, на кромках заданы усилия или перемещение? Покажем это на примере несимметрично собранной пластинки из ототропных слоев [1], уравнения устойчивости которой будут (цилиндрический изгиб)

$$C_{11} \frac{d^2 u}{dx^2} - K_{11} \frac{d^3 w}{dx^3} = 0$$

$$K_{11} \frac{d^3 u}{dx^2} - D_{11} \frac{d^4 w}{dx^4} - P \frac{d^2 w}{dx^2} = 0$$
(1.8)

Так вот, при условиях свободного шарнирного опирания (w = M, = T, = 0) критическое усилие определится

$$P_{sp} = K \frac{\pi^2}{l^2}, \quad K = D_{11} - \frac{K_{11}^2}{C_{11}}$$
 (1.9)

когда пластинка сжимается усилием Р.

Для шарнирно-закрепленного случая ($u = w = M_1 = 0$) при условии, что на одном конце задано начальное перемещение u_0 , критическое усилие определяется из уравнения

$$pl\sin pl + \frac{2K_{11}^2}{KC_{11}} \left(1 - \cos pl\right) = 0 \tag{1.10}$$

где

$$p^2 = \frac{C_{11}u_0}{D_{11}l}, \quad P = Kp^2$$

Аля симметричной же пластинки в обоих случаях критическое усилие byдет

$$P_{sp} = D_{11} \frac{\pi^2}{l^2}, \quad P = \frac{C_{11}u_0}{l}$$
 (1.11)

которое получается из $\sin pl = 0$. Из (1.10), в частности, получится это условие при $K_{ij} = 0$.

2.Подставляя (1.3) в (1.7), для симметричного случая получим

$$D_{11} \frac{\partial^4 w}{\partial x^4} + 4D_{16} \frac{\partial^4 w}{\partial x^3 \partial y} + 2D_3 \frac{\partial^4 w}{\partial x^2 \partial y^2} + 4D_{26} \frac{\partial^4 w}{\partial x \partial y^3} + D_{22} \frac{\partial^4 w}{\partial y^4} + P \frac{\partial^2 w}{\partial x^2} = 0$$
$$D_1 = D_{12} + 2D_{66}$$
(2.1)

Уравнение (2.1), которое не допускает разделения переменных, для однослойной пластинки решалось численно или методом последовательных приближений [4], но здесь его будем изучать, исходя из других позиций.

44

Вопрос будем ставить таким образом. Как подобрать величины толщин слоев и перевернуть главные направления упругости каждого слоя так. чтобы члены с D_{16} и D_{26} равнялись нулю. На основании (1.2) и (1.6) это будет при

$$B\sum_{k=1}^{n} a_k \sin 2\varphi_k \pm C \sum_{k=1}^{n} a_k \sin 4\varphi_k = 0, \ a_k = h_k^3 - h_{k-1}^3$$

то есть эти члены исчезнут, если

$$\sum_{k=1}^{n} a_k \sin 2\phi_k = \sum_{k=1}^{n} a_k \sin 4\phi_k = 0$$
 (2.2)

К ним добавим еще очевидное условие

$$\sum_{k=1}^{k} \alpha_{k} = 1, \ \alpha_{k} = a_{k} h^{-3}, \ 0 < \alpha_{k} < 1$$
(2.3)

Для прямоугольной пластинки (*a* × *b*) с свободно опертыми кромками критическое усилие определяется [2]

$$P_{\mu p} = \frac{\pi}{b^2} \left(D_{11} c^2 + 2D_3 + 2D_{22} c^{-2} \right), \quad c = \frac{mb}{a}, \quad m = 1, 2, \dots$$
 (2.4)

которое принимает минимальное значение при $c = \sqrt[4]{D_{22}} / D_{11}$ и оно равно

$$P_{mun} = \frac{2\pi^2}{\dot{b}^2} \left(\sqrt{D_{11}D_{22}} + D_5 \right)$$
(2.5)

Так вот вопрос будем ставить следующим образом. Подобрать толщины слоев и углы поворотов каждого из них, удовлетворяющих условиям (2.2) и (2.3) так. чтобы (2.4) и (2.5) получили максимальное значение.

В [3] такой вопрос был рассмотрен для случая $A_{11} = A_{22}$, когда из (2.2) только последнее равенство является условием.

Этот же вопрос ставится и для пластинки, края x = 0 и x = aкоторой свободно оперты, а $y = \pm b/2$ жестко заделаны. Тогда критическое усилие определится из

$$s_1 th s_1 + s_2 t g s_2 = 0$$
 (2.6)

$$s_{1} = \frac{\pi c}{2} \left(\sqrt{S} + \frac{D_{3}}{D_{22}} \right)^{1/2}, \ s_{2} = \frac{\pi c}{2} \left(\sqrt{S} - \frac{D_{3}}{D_{22}} \right)^{1/2}, \ S = \frac{D_{3}^{2} - D_{11}D_{22}}{D_{22}^{2}} + \frac{Pb^{2}}{D_{22}c^{2}}$$

З.Для антисимметрично собранной пластинки, подставляя (1.3) в (1.7). получим систему, которая, правда, в одном случае допускает разделение переменных ($u = w = M_1 = T_{12} = 0$ при x = 0, a), но эдесь поступим, как и в предыдущем пункте, то есть слои и их расположение подберем так. чтобы исчезли члены K_{16} и K_{26} . И для этого случая уравнение устойчивости будет то же самое, но вместо (2.2) и (2.3) будем иметь

$$\sum_{k=1}^{n} \beta_k \sin 2\varphi_k = \sum_{k=1}^{n} \beta_k \sin 4\varphi_k = 0, \quad \sum_{k=1}^{n} \beta_k = 1, \quad \beta_k = a_k h^{-2}$$
(3.1)

45

Тогда формулы (2.4)-(2.6) останутся в силе. только другими будут h, и

Ф, по сравнению с п.2.

4. Численное исследование проводилось для материалов углепластика и боропластика с данными [5]

Углепластик	Боропластик
A = 182,2	201,9
A=2,915	3,635
A=10.35	21,77
A = 6.9	5,4
D	F

Значение упругих постоянных в Гпа.

Ниже приводятся таблицы для безразмерного усилия

$$\lambda = 3Pb^2 / 4\pi^2 h^3 A_{11} \tag{4.1}$$

для случаев n = 2 и 3 (фактически четыре и шесть слоев) и геометрических размеров a/b = 1; 2.

Для толщин выбраны также отношения

I
$$\alpha_k = 1/n$$

II $\alpha_k = [k^3 - (k-1)^2]/n^3$ (постоянные толщины – $h_k - h_{k-1} = \text{const}$)

В табл.1 приведены минимальные и максимальные значения λ для обоих материалов по (2.5). Рядом с значением λ в скобках указаны углы в градусах, при которых достигаются максимальные и минимальные значения, при этом, если углы равные (т.е. по сути однослой), то указывается только одно значение. В следующих таблицах помимо углов указывается еще число полуволн потери устойчивости – первое число в скобках. Чтобы не загромождать таблицы цифрами, при одинаковых с предыдущими клетками значениях и углов ставятся черточки, причем одна, если сходство по вертикали, и две – по горизонтали.

В табл.2 и 3 приведены значения λ , определенные по (2.4) и (2.6) соответственно для углепластика и боропластика, при этом, первых два столбца — по (2.4), а два оставшихся — по (2.6).

Расчеты показывают, что λ своего максимального и минимального значений может достичь (не всегда) при различных сочетаниях углов поворога.

Были вычислены max, min также по (2.4), но при условиях (3.1) – $\beta_k = 1/n, \ \beta_k = \left[k^2 - (k-1)^2\right]/n^2$.

Нужно отметить, что полученные значения незначительно отличаются от приведенных в табл.2 и З. Наибольшие отличия следующие: вместо 0,9291 в табл.2 здесь получается 1,005, а вместо 0,9113 в табл.3-0,9728.

Приведенные данные позволяют сделать следующие общие выводы.

 Получаемые значения λ максимум и минимум существенно отличаются друг от друга, порою почти в три раза.

2) Вопрое Подбора числа слоев и углов их поворота при каждых геометрических размерах и видах граничных условий, для получения наибольшего критического усилия в каждом случае должен быть решен в отдельности: то, что хорошо в одном случае, может не быть таковым при других случаях.

Таблица і

	n	материал №	Углепластик	Боропластик
-	2	1	0.3462 (180) 1.108 (135.45)	0.3301 (180) 1.057 (135.45)
	2	11	- (-) 0.4593 (180.50)	- (~) 0.4844 (180.90)
	2	I	- (-) 0.9067 (49.131.180)	(-) 0.8586 (140.40.90)
	3	11	- (-) 0.5457 (165.2.90)	() 0.5874 (165.2.90)

Таблица 2

Л	a/b	i	2	1	2
	Nº.				
	I	0.3585 (2.90)	= (=)	0.7927 (3.90)	= (2.180)
	-	1.108 (1.135.45)	= (=)	2.091 (2.180)	1.626 (3.133.47)
	TT	- (-)	= (2.180)	- (-)	- (-)
	11	0.5763 (1.173.1)	= (=)	- (-)	1.289 (3.97.89)
		- (-)	- (1.180)	- (-)	- (-)
3	I	0.9291	$= \{2, =\}$	- (-)	1.528 (3.134.46.90)
		(1.180.135.45)			
		- (-)	- (1.180)	= (-)	- (~)
	II	0.5774	= (2. =)	- (2.173.1.180)	1.289 (3.105.88.90)
		(1.75.92.90)			

Таблица З

n	a/b №	1	2	1	2
2	I	0.3304 (2.90) 1.057 (1.35.45)	= (1.180) = (2.=)	0.6544 (3.90) 2.1453 (2.180)	0.7584 (2.180) 1.596 (3.132.48)
	П	(-) 0.6239 (1.173.1)	(-) = (2 =)	- (-) - (-)	- (-) 1.3225 (3.97.89)
3	I	- (-) 0.9113 (1.180.135.45)	- (-) = (=)	- (-) - (-)	(-) 5.515 (3.134 46.90)
	11	- (-) 0.6248 (1.165.2.180)	-(-) = (2. =)	- (-) - (-)	- (-) 1.323 (3.105.88.90)

ЛИТЕРАТУРА

- 1. Кристенсен Р. Введение в механику. М.: Мир, 1982. 336 с.
- 2. Лехницкий С.Г. Анизотропные пластинки. М.: ГИТТА, 1957. 463 с.
- 3. Мовсисян Л.А. К устойчивости упругой и вязкоупругой анизотропной многослойной пластинки //Изв.АН Арм.ССР, Механика. 1990. Т.43. №2. С.3-12.
- Саркисян В.С., Мовсисян Л.А. Об одном способе определения критических нагрузок анизотропных пластинок //Инж. ж-л. 1965. Т.5. Вып.4. С.777-782.
- 5. Феодосьев В.И. Сопротивление материалов. М.: Наука, 1986. 512 с.

Институт механики НАН Армении Поступила в редакцию 17.03.2000