ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НЛУК АРМЕНИИ

Մեխանիկա

53, Nº4, 2000

Механика

УДК 539.1+532.5 СТАЦИОНАРНАЯ АККРЕЦИЯ ИДЕАЛЬНОГО ГАЗА С КОНИЧЕСКОЙ УДАРНОЙ ВОЛНОЙ Григорян С.Д.

Ս Դ. Գրիկորյան

Իդեալանչան գազի ստացիոնար ակրեցիան կոնական հարվածային ալիթի հետ Սաացված են ուժեռ կոնական հարվածային ալիքներով ստացիոնառ լուծուսներ, որոնը նկարաօրում են իդեալական գազի ակրեցիան կենտրոնական ձգուլության դաշտում Յույս են արված իդեալական գուգը կոնական հոսանքների առաջին ինտեգրալները Հետազոտված են ամբողջ տարածության մեջ լուծումների գոյության պայմանները։

S.D. Grigoryan

Stationary accretion of an ideal gas under a strong conical shock wave

Наядены стационарные решения с сильной конической ударцой волной, описывающие аккрецию идеального газа на притягивоющий центр Указаны первые интегралы конических течений пдеального газа. Исследованы условия существования решоний, определенных во неем пространстве

В многочисленных астрофизических явлениях возникает задача о стационарном обтекании массивной звезды потоком газа. В данной работе мы рассматриваем эту задачу при следующих предположениях: 1) масса звезды М много больше массы газа, расположениой в ее окрестности; 2] газ является идеальным; 3] радиус звезды R много больше ее гравитационного радиуса $R >> r_g = 2GM/c^2$; 4] скорости движения газа V << c где C = скорость света.

При такой идеализации задача сводится к исследованию стационарного движения идеального газа в поле притягивающего центра в классической пьютоновской теории, причем самогравитацией газа можно пренебречь. Мы предположим также, что движение газа обладает осевой симметрией и относится к классу так называемых конических решений. лля которых в цилиндрических координатах *г*, ф. все параметры газа

существенно зависят только от одной переменной $\lambda = z/r$.

Стационарная аккреция газа при других предноложениях изучалась в большом числе работ, обзор которых содержится в книге Зельдовича и Новикова 1971г и в работе Сюняева 1978г Конические течения газа без гравитации рассматривались внервые в классической работе Тейлора и Маккола 1944г при изучении движения тела конической формы в воздухе. Эти решения применялись также Рудерманом и Шпигелем в 1971г для моделирования движения газа в кильватерном следе, возникающем позади звезды движущейся с постоянной скоростью через однородный газ. Исследование конических потоков газа в поле притягивающего центра впервые было начато в работе Бисноватого-Когана и др в 1979г. где задача исследовалась. главным образом, численными методами В данной работе стационарная аккреция газа с конической ударной волной научается с помощью строгих аналитических и геометрических методов

§1. Стационарные конические течения газа в поле притягивающего центра.

Уравнения газовой динамики для стационарных решений с осевой симметрией в цилиндрических координатах Г, Ф, Z имеют следующий вид

$$\mathbf{v}\frac{\partial \mathbf{v}}{\partial r} + u\frac{\partial \mathbf{v}}{\partial z} - \frac{w^{*}}{r} = -\frac{1}{\rho}\frac{\partial n}{\partial r} + F_{-}, \quad \mathbf{v}\frac{\partial u}{\partial r} + u\frac{\partial w}{\partial z} + \frac{\mathbf{v}w}{r} = 0$$

$$\mathbf{v}\frac{\partial u}{\partial r} + u\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + F_{-}, \qquad \frac{\partial(\rho \mathbf{v})}{\partial r} + \frac{\partial(\rho u)}{\partial z} + \frac{\rho \mathbf{v}}{r} = 0 \quad (1.1)$$

$$\frac{\partial(\rho \mathbf{v})}{\partial r} + \frac{\partial(\rho \mathbf{v})}{\partial z} = 0$$

Здесь и, v, w -радиальная, вертикальная и вращательная компоненты скорости газа. p – давление, ρ – плотность, $\gamma > 1$ – показатель адиабаты В рассматриваемой задаче F_{e} и F_{e} радиальная и вертикальная составляющие силы гравитационного притяжения массы M, расположенной в точке r = 0, z = 0:

$$F_r = -\frac{rGM}{\left(r^2 + z^2\right)^{\frac{3}{2}}}, \quad F_z = -\frac{zGM}{\left(r^2 + z^2\right)^{\frac{3}{2}}} \tag{1.2}$$

где G - гравитационная постоянная $[G] = L^{*}M^{-}T^{-}$.

Конические решения системы уравнений (1.1) имеют следующий вид.

$$\rho = \frac{a}{r^s} R(\lambda), \quad p = \frac{ab^s}{r^s} r^{2k} P(\lambda), \quad \mathbf{v} = br^k V(\lambda)$$
(1.3)

$$u = br^{*}U(\lambda), w = br^{*}\Omega(\lambda), \ \lambda = -\frac{1}{r}$$

где константы a и b имеют размерности $[a] = ML^{s-1}, [b] = L^{s-1}T^{s-1}, k$ и s = 6езразмерные константы; из условия конечности массы газа в окрестности центра получаем s < 3 Конические решения вида (1.3) при k = 0 изучались впервые Тейлором и Макколом в качестве модели обтехания потоком газа тела конической формы.

Система уравнений (1.1) при условиях (1.2) имеют решения вида (1.3) только при одном значении k = -1/2 В этом случае из констант задачи G. M и b формируется одна безразмерная константа $m = GM/b^2$ Для исследования решений вида (1.3) удобно ввести угол $\theta = \operatorname{arctg} \lambda$ и использовать компоненту скорости V_i , направленную по лучу $\lambda = z/r = \operatorname{const}$ и компоненту скорости V_i , направленную по нормали к V_i

$$V_{i} = \frac{\lambda U + V}{(1 + \lambda^{2})^{V_{2}}}, \qquad V_{s} = \frac{U - \lambda V}{(1 + \lambda^{2})^{V_{2}}}$$
(1.4)

39

Система уравнений (1.1) - (1.2) для решений вида (1.3) при преобразовании координат

$$x = \frac{1}{(2m)^{\frac{1}{2}}} V_n (1 + \lambda^2)^{\frac{1}{4}}, \quad y = \frac{1}{(2m)^{\frac{1}{2}}} V_n (1 + \lambda^2)^{\frac{1}{4}}$$
$$\psi = \frac{1}{(2m)^{\frac{1}{2}}} \Omega (1 + \lambda^2)^{\frac{1}{4}}, \quad z_0 = \frac{\gamma P}{m(\gamma - 1)R} (1 + \lambda^2)^{\frac{1}{2}}$$
(1.5)

 $\theta = \operatorname{arctg} \lambda, R$

переходит в следующую систему обыкновенных дифференциальных уравнений по θ :

$$\frac{dx}{d\theta} = x' = -\frac{y\left(\frac{1}{2}x^2 - \frac{\gamma - 1}{2}z_0\right) + x tg\theta\left(\psi^2 + \frac{\gamma - 1}{2}z_0\right)}{x^2 - \frac{\gamma - 1}{2}z_0}$$

$$y' = \frac{1}{x}\left(x^2 + \frac{1}{2}y^2 + \psi^2 + \left(\frac{3}{2} - \kappa\right)\frac{\gamma - 1}{2}z_0 - \frac{1}{2}\right)$$

$$\psi' = \frac{\psi}{x}\left(x tg\theta - \frac{1}{2}y\right)$$

$$\frac{\pi}{z_0} = -(\gamma - 1)\frac{x'}{x} + \frac{1}{2x}\left[(s - 3\gamma)y + 2(\gamma - 1)x tg\theta\right]$$
(1.6)

уравнение для функции R отделяется

$$\frac{R'}{R} = -\frac{x'}{x} + \frac{1}{x} \left[\left(s - \frac{3}{2} \right) y + (1 - s) x \lg \theta \right]$$
(1.7)

Здесь параметр $\alpha = 3/2 - (s+1)/\gamma$. Замкнутая система уравнений (1.6) полностью определяет стационарные конические течения газа в поле притягивающего центра.

§2. Первые интегралы конических течений газа

Ряд первых интегралов системы (1.6) (1.7) можно получить путем простых вычислений. Из уравнений для и *R'* непосредственно следует закон сохранения

 $F_1 = (z_0 (x \cos \theta)^{-1})^{-1} (Rx (\cos \theta)^{-1})^{-1} = \text{const}$ (2.1) Этот интеграл аналогичен известному интегралу адиабатичности для автомедельных решений уравнений газовой динамики [6]. Интеграл (2.1) при $\gamma \neq \frac{5}{3}$ позволяет выразить в явном виде функцию R через решение системы (1.6).

Из уравнений (1.6) для 📰 и 🌵 получаем

$$F_2 = z_0 (x \cos \theta)^{\gamma - 1} (\psi \cos \theta)^{\beta - 1} = \text{const}$$
(2.2)

В силу интеграла F_2 функция ψ при $\gamma \neq 5/3$ выражается через z_0, x, θ и поэтому система (1.6) сводится к системе трех уравнений для функции

Случай одноатомного газа $\gamma = 5/3$ для рассматриваемых решений является исключительным: при $\gamma = 5/3$ интегралы (2.1) и (2.2) сводятся к интегралу

$$F_3 = z_0 (x \cos \theta)^{2/3} = \text{const}$$
 (2.3)

Интеграл F_3 также позволяет понизить порядок системы (1.6) на единицу.

Для нахождения более сложных интегралов системы (1.6) необходимо привлечь энергетические соображения¹¹. Оценим полное изменение энергии газа, заключенного в коническом секторе λ. <λ < λ₂. в единицу времени

Поток энергии в единицу времени через конус λ =const равен

$$2\pi\int_{0}^{\infty}\varepsilon v_{\kappa}r(1+\lambda^{2})^{r_{2}}dr$$

где $v_{\mu} = (u - \lambda v)/(1 + \lambda^2)^{1/2}$ — компонента скорости газа, ортогональная к поверхности копуса, є — энергия единицы объема газа:

$$\varepsilon = \frac{\rho}{\gamma - 1} + \rho \frac{v^2 + u^2 + w^2}{2} - \frac{GM\rho}{(r^2 + z^2)^{1/2}}$$

Работа, совершаемая газом против сил давления, равна

$$2\pi \int p \nabla_n r \left(1 + \lambda^2\right)^{\frac{1}{2}} dr$$

Полное изменение энергии газа *E* внутри конического сектора λ₃<λ<λ₂ имеет вид :

$$\frac{dE}{dt} = 2\pi \int_{0}^{m} (\varepsilon + p) v_{n} r (1 + \lambda^{2})^{\frac{1}{2}} dr \Big|_{\lambda_{1}}^{\lambda_{2}} = 2\pi a b^{2} \int_{0}^{\pi} R \left[\frac{\gamma p}{(1 - \gamma)R} + \frac{V_{n}^{2} + V_{1}^{2} + \Omega^{2}}{2} - \frac{m}{(1 + \lambda^{2})^{\frac{1}{2}}} \right] V_{n} r^{-s - \frac{1}{2}} dr \Big|_{\lambda_{1}}^{\lambda_{2}}$$
(2.1)

Для стационарного течения газа dE/dt = 0; отсюда следует сохранение интеграла (2.4), вычисленного при различных значениях λ . Однако интеграл в (2.4) в общем случае равен $\pm \infty$; только в специальном

¹¹ Закон сохранения энергии для исследования автомодельных решений впервые был применен Седовым [6] новые применения этого закона, позволившие обнаружить автомодельные пульсации газа в звездах, были найдены Богоявленским [2,3].

случае, когда подынтегральное выражение в (2.4) равно нулю, проведенное рассуждение доказывает сохранение нулевого уровня функции

$$H = \frac{\gamma P}{(\gamma - 1)R} + \frac{V_n^2 + V_t^2 + \Omega^2}{2} + \frac{m}{(1 + \lambda^2)^{1/2}}$$
(2.5)

После преобразования в переменные (1.5) функция Н принимает вид

$$H = m(\cos \theta)H_{\theta}, \qquad H = z_{\theta} + x^{2} + y^{2} + y^{2} - 1 \qquad (2.6)$$

Дифференцирование функции H_0 в силу системы (1.6) приводит к уравнению

$$H_0' = \frac{y}{x}H \tag{2.7}$$

Отсюда следует прямое доказательство сохранения траскториями системы (1.6) уровня $H = H_0 = 0$.

Из уравнения (2.7) и уравнения (1.6) для Z₀ получаем первый интеграл

$$F_{x} = 2_{0} (x \cos \theta)^{-1} H_{0}^{-1 - T_{2}} = \text{const}$$
(2.8)

Из уравнения (2.7) и уравнения (1.6) для 🖞 получаем первый интеграл

$$=H_{\rm o}\psi^2\cos^2\theta={\rm const}$$
(2.9)

который при у ≠ 5/3 выражается через предыдущие интегралы

$$F_{5} = (F_{1} / F_{4})^{2 / (5 - 1\gamma)}$$

В силу интегралов (2.2) и (2.8) функции z_c и ψ при $\gamma \neq 5/3$ выражаются через x, y, θ и поэтому система четырех уравнений (1.6) сводится к системе двух обыкновенных дифференциальных уравнений на функции x, y При $\gamma = 5/3$ такое же понижение порядка системы (1.6) достигается с помощью интегралов (2.3) и (2.9).

При значениях параметров ү 🛎 , удовлетворяющих условию

$$\left(\frac{3}{2} - \alpha \right) \left(\frac{\gamma - 1}{2}\right) = \frac{1}{2\gamma} \left(s + 1\right) \left(\gamma - 1\right) = 1$$
(2.10)

или $s = (\gamma + 1)/(\gamma - 1)$ система (1.6) имеет еще один интеграл

 $F_{\rm e} = H_0 (H_0 + 1 - y^2) = (z_0 + x^2 + \psi^2) (z_0 + x^2 + y^2 + \psi^2 - 1) = \text{const} (2.11)$ При выполнении условия (2.10) и $H \neq 0$ три первых интеграла (2.8), (2.9) и (2.11) вместе с выражением H_0 (2.6) позволяет выразить x, y, z_0, ψ через H_0 . 0. В результате этого система четырех уравнений (1.6) сводится к одному уравнению (2.7) после подстановки полученных выражений для x и y через H_0, θ .

§3. Стационарная аккреция газа с конической ударной волной

I. Поверхность $L = x^2 - \frac{\gamma - 1}{2} z_0 = 0$ является поверхностью непродолжимости решений для системы (1.6). Действительно, с двух сторон производная x обращается в $\pm \infty$ и меняет знак поэтому траектории. 42 втыкающиеся в поверхность L = 0. могут быть продолжены при всех $\theta(-\pi/2 < \theta < \pi/2)$ только с введением разрыва Наличие у системы (1.6) поверхности непродолжимости решений L = 0 является формальной причиной возникновения в стационарных конических течениях газа ударной волны на которой $\lambda = z/r = \text{COISI}$. Фронт ударной волны в -тих решениях имеет форму конуса Поверхность L = 0 делит пространство переменных x, y, z_0, ψ на "сверхзвуковую" область L > 0, где скорость газа V (ортогональная к поверхности конуса $\lambda = \text{COISI}$) больше скорости звуха $V_0 = (dp/dp)^3$ -и дозвуковую" область L < 0. где $V_0 < V_0$

Условня Гюгонно сшивки решений на фронте ударнои колны имеют. как известно, следующий вид

$$\frac{\gamma p_1}{(\gamma - 1)\rho_1} + \frac{v_1^2}{2} = \frac{\gamma p_2}{(\gamma - 1)\rho_2} + \frac{v_2^2}{2}$$

Здесь индексы 1 и 2 определяют параметры газа по разные стороны от поверхности разрыва, величины V означают компоненты скорости, ортогональные к разрыву; касательные к разрыву компоненты скорости V, не меняются.

После подстановки в (3.1) выражений (1.3) — (1.5) получаем условия на скачке:

Отметим, что при преобразовании Гюгонио (3.2) величина

 $H_0 = z_0 + x^2 + y^2 + \psi^2 - 1$ сохраняется

II. Проведем построение стационарных решений, описывающих следующее явление. Пусть на массивное гравитирующее телю набегает поток холодного газа, в этом потоке возникает сильная коническая ударная волна, за которой температура газа существенно отлична от нуля. за фронтом ударной волны происходит аккреция газа на центр.

В случае сильной ударной волны можно считать, что газ неред фронтом ударной волны имеет нулевую температуру, то есть $z_{01} = 0$ Величины z_{01} и x_2 за фронтом ударной волны в силу (3.2) при $z_{01} = 0$ связаны условием

$$z_{02} = 4\gamma x_1 / (\gamma - 1)$$
(3.3)

В дальнейшем предположим, что в потоке газа отсутствует вращение ($\psi = 0$) и величина $H_0 = 0$. В этом случае система (1.6) после подстановки $z_0 = 1 - x^2 - y^2$ (в силу инвариантности условия $H_0 = 0$) сиодится к системе двух дифференциальных уравнений на функции x и y определенной внутри единичного круга $D^2: z_0 = 1 - x^2 - y^2 \ge 0$ (фиг.1).

Система (1.6) при $z_0 = 0$ описывает стационарное движение холодного газа (пыли) и интегрируется в явном виде:

$$x = \sin\left(\frac{1}{2}(\theta - \theta_{o})\right), \quad y = -\cos\left(\frac{1}{2}(\theta - \theta_{o})\right)$$
(3.4)

Соответствующее гочное решение имеет следующий вид:

$$v = -\frac{(2GM)^{1/2} \cos[(\theta + \theta_0)/2]}{(r^2 + z^2)^{\frac{1}{4}}} \quad u = -\frac{(2GM)^{1/2} \sin[(\theta + \theta_0)/2]}{(r^2 + z^2)^{\frac{1}{4}}}$$

$$\rho = \frac{a \sin^{2(1-s)}[(\theta + \theta_0)/2]}{r(r^2 + z^2)^{-1/2}}, \quad w = 0, \quad p = 0$$
(3.5)

В решении (3.5) плотность ρ и скорости *и*, V стремятся к нулю при $(r^2 + z^2) \rightarrow \infty$

Путем прямого вычисления нетрудно убедиться, что система (1.6) при $\Theta \to \pi/2$, $H_0 = 0$ имеет решение *S* со следующей асимптотикой при $\Theta \to \pi/2$:

$$x = \alpha \cos\theta, y = -1 + \beta x^2, z_0 = \frac{2}{k(\gamma - 1)} x^2$$
(3.6)

где константы α, β, k выражаются через параметры γ, к

$$\alpha = \frac{5 - 3\gamma}{4\gamma}, \quad \beta = \gamma \frac{4 + (\gamma - 1)(2\alpha - 3)}{2(5 + \gamma)(2\alpha - 3)(\gamma - 1)}, \quad k = 2 \frac{5 + \gamma(2\alpha - 3)}{5 - \gamma}$$
(3.7)

Асимтотика (3.6) имеет физический смысл при k > 0, что в силу (3.7) и $\kappa = 3/2 - (s+1) \gamma$ при $\gamma < 5$ означает s < 3/2. Асимптотика (3.6) при $\alpha > 0(\gamma < 5/3)$ описывает аккрецию на центр. При этом параметры газа при $\theta \to \pi/2$ ($\lambda = z/r \to \infty$) имеют следующий асимптотический вид:

$$v = -(2GM)^{1/2} \frac{5+\gamma}{4\gamma} \frac{r}{z^{1/2}}, \quad u = -(2GM)^{1/2} \frac{1}{z^{1/2}}, \quad w = 0$$

$$\rho = ac_0 \frac{1}{r^*} \left(\frac{z}{r}\right)^{10-(5+\gamma)s}, \quad p = 2a \frac{GM\alpha^*}{\gamma k} c_0 \frac{1}{r^{1+s}} \left(\frac{z}{r}\right)^{2-(5+\gamma)s}$$
(3.8)

Частицы газа в асимптотике (3.8) падают в центр 1 = z = 0 по кривым

$$z = c_1 r^{-\gamma r (3-\gamma)}$$
 (3.9)

которые при $\gamma < 5/3$ касаются оси z В асимптотике (3.9) при $\gamma < 5/3$, s < 3/2 плотность газа $\rho \rightarrow \infty$ при $\lambda \rightarrow \infty$; при $s < 7/(5 + \gamma)$ давление газа $p \rightarrow \infty$ при $\lambda \rightarrow \infty$

Траектория (3.4) (граница круга D^2) при преобразовании Гюгонио на ударной волне (3.2) переходит, в силу (3.3), в эллипс E_1

$$\left(\frac{\gamma+1}{\gamma-1}\right)^2 x^3 + y^3 = 1 \tag{3.10}$$

Поверхность непродолжимости решений $L = x^2 - (\gamma - 1)z_0/2 = 0$ в рассматриваемом случае проектируется в эллипс E_0 :

$$\frac{\gamma + 1}{\gamma - 1}x^2 + y^2 = 1 \tag{3.11}$$

Очевидно, что при $\gamma > 1$ эллипс E_1 лежит внутри эллипса E_2 (фиг. 1).

Траектория *S*, имеющая асимптотику (3.6). находится (в окрестности точки $Y_1(x = 0, y = -1)$) в дозвуковой области L < 0 или внутри эллипса E_0 (3.11), при k < 1, что в силу (3.7) и $\kappa = 3/2 - (s + 1) \gamma$ означает $s > (1 + \gamma)/4$. Траектория S находится (в окрестности точки Y_1) внутри эллипса *E* при $\beta > \beta_0 = \frac{1}{2} ((\gamma + 1)/(\gamma - 1))^2$ и вне эллипса *E* при $\beta < \beta_0$. Условие $\beta = \beta_0$ в силу (3.7) означает

$$s = s_0 = \frac{\gamma^2 + 6\gamma + 5}{8\gamma}$$
 (3.12)

При $1 < \gamma < 5/3$ имеем $3/2 > s_n > 4/3$, то есть значение s_0 находится в области физической применимости асимптотики (3.6) (k > 0 или s < 3/2). При изменении в окрестности траектория S, имеющая асимптотику (3.6), переходит с одной стороны оллипса E, на другую Поэтому при всех s в некоторой окрестности заведомо существует пересечение траектории S с эллипсом E_1 Пусть это пересечение происходит при $0 = \theta_1$ в точке $Y(\theta_1)$ с координатами (x_2, y_3) и пусть X_1 – точка с координатами (x_1, y_2), переходящая в точку $Y(\theta_1)$ при преобразовании Гюгонио (3.2). Проведенные предварительные построения позволяют теперь перейти к конструкции искомого решения.

Стационарное днижение газа с конической ударной волной в поле притягивающего центра описывается следующими двумя решениями Фронт ударной волны является конусом $\theta = \theta_1$.

В области перед ударной волной при – $\pi/2 < 0 < \theta_0$ решение имеет вид (3.4)- (3.5), где $\theta_0 = (\theta - 2 \arccos x_1)$ и соответствует дуге L (от гочки X_0 до) на окружности $x^2 + y^2 = 1$ (фиг.1). Это решение описывает стационарное движение газа (холодного газа). В области за ударной волной при $\theta < \theta < \pi/2$ решение описывается отрезком траектории S от точки $Y(\theta_1)$ до точки Y_1 (фиг.1). Траектория S, являющаяся решением системы (1.6) при $H_0 = 0$, = 0 имеет при $\theta \to \pi/2$ асимптотику (3.6) Соответствующее стационарное решение имеет при $\Lambda = z/r \to \infty$

45

асимптотику (3.8) и описывает аккрецию газа на притягивающий центр z = r = 0 касаясь линии (3.9), и плотность газа ρ на оси r = 0 равна ∞ Траектории частиц в построенном решении показаны на фиг. 2

Полученное решение допускает обобщение при $H_{0} \neq 0$, $\psi = 0$. При этом асимптотика решения при $\theta \to \pi/2$ по-прежнему имеет вид (3.6), из уравнения (2.7) находим асимптотику $H_{0} = c(\cos \phi)^{4/(12-3)} \to 0$ при $\theta \to \pi/2$.

III. Отметим, что при $H \le 0$ и $\gamma \le 5/3$ все стационарные решения вида (1.3) при наличии вращения газа ($\psi \ne 0$) существуют только на отрезке $|\Theta| < \Theta_0 < \pi/2$ и не продолжимы при $|\Theta| \rightarrow \pi/2$ Действительно, в силу $z_0 \ge 0$ из условия $H_0 = z_0 + x^2 + y^2 + \psi^2 - 1 \le 0$ следует $\{2_0, |x|, |y|, |\psi|\} \le 1$. Поэтому в силу наличия первого интеграла (2.2) решение с $\psi = 0$, $H_0 \le 0$ при $\gamma < 5/3$ не может существовать при $|\Theta| \rightarrow \pi/2$. При $\gamma < 5/3$ в силу наличия интеграла (2.3) имеем

$$H_{0} = \frac{F_{3}}{(x\cos\theta)^{2/3}} + x^{2} + y^{2} + \psi^{2} - 1 > \frac{4(F_{3}-3)^{3/4}}{(\cos\theta)^{1/2}} - 1$$
(3.13)

Поэтому при $\gamma = 5/3$ все стационарные решения вида (1.3) при $H_0 \le 0$ (включая случай $\psi = 0$) не могут быть продолжены при $|\theta| \to \pi/2$

При $\psi = 0$ и $H_0 > 0$ существуют решения, продолжимые при $|\theta| \to \pi/2$. Для всех таких решении в силу существования первого интеграла (2.9) имеем $H_n \to \infty$ при $|\theta| \to \pi/2$

При $\gamma = 5/3$ существуют решения, имеющие следующую асимптотику при $\theta \to \pi/2$:

$$x = \frac{(kF_3/3)^{3/3}}{(\cos\theta)^{1/4}}, \quad y = \frac{5x}{2\cos\theta}, \quad z_0 = \frac{F_2}{(x\cos\theta)^{2/3}}, \quad \psi = c_1(\cos\theta)^{2/4} \quad (3.14)$$

где k = 1 - s. Решения с асимптотикой (3.14) при 0 < s < 1 могут быть использованы для моделирования стационарных движений газа в поле притягивающего центра, в которых частицы газа при $I \rightarrow \pm \infty$ уходят на бесконечность.

АИТЕРАТУРА

- Бисноватый-Коган Г.С., Каждан Я.М., Клыпин А.А., Луцкий А.Е., Шакура Н.И. Аккреция на быстродвижущийся гравитирующий центр — Астрономический журнал, 1979, т.56, вып.2. с.359-367.
- Ботоявленский О.И. Автомодельные пульсации газа в звездах Письма в АЖ, 1978, 4, с.397.
- 3 Богоявленский О.И. Методы качественной теории динамических систем в астрофизике и газовой динамике. — М. Наука, 1980. 319с
- 4. Зельдович Я.Б., Новиков И.Д. Теория и эволюция звёзд М. Наука, 1971. 484с.
- Ruderman M.A., Spiegel E.A. Astrophys. J. 1971, vol.65, 1
- 6. Седов Л.И. Методы подобия и размерности в механике М Наука. 1977. 438с.
- 7. Сюняев Р.А. В сб. "Physics and Astrophysics of Neutron Stars and Black Holes". 1978. LXV Corso Soc. Italiana di Fisica. Bologna.

Институт механихи НАН Армении Поступила в редакцию 19.01 2000