ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

53, №2, 2000

Механика

УДК 539.3

О ВЫСШИХ ПРИБЛИЖЕНИЯХ АСИМПТОТИЧЕСКОГО ПРЕДСТАВЛЕНИЯ И РЕШЕНИИ ПОГРАНИЧНОГО СЛОЯ В ЗАДАЧЕ О СОБСТВЕ НЫХ КОЛЕБАНИЯХ ДВУХСЛОЙНОЙ ПОЛОСЫ Гулгазарян Л.Г.

Լ.Գ. Ղուլդազաբյան

Օրբոտյտպ երկչերտի սնփական տատանումների խնդրում ասիմպտոտիկ ներկայացման բարձբ մոտավորությունների և սահմանային շերտի լուծման մասին

Դիտարկվում են շերտերի միջև ոչ լրիվ կոնտակտի դեպքում օրթոտրոպ երկշերտի սեփական տատանումների խնդրում ասիմպտոտիկ ներկայացման բարձր մոտավորությունները։ Ապացուցված է, որ բարձր մոտավորությունները չեն ազդում սեփական տատանումների հաճախությունների վրա, այլ ազդում են միայն այդ տատանման ամպլիտուղների վրա։ Գտնվում է սահմանային շերտի լուծումը, դուրս է բերված բնութագրիչ հավասարում, որի արմատները բնութագրում են սահմանային շերտի արժեքների մարման արագությունը։ Հաշված են այդ հավասարման առաջին մի քանի արմատներ։

L. G. Ghulghazaryan

About higher approximations of asymptotic presentation and solution of houndary layer in the problem of free vibrations of two-layered orthotropic strip

Рассмотрены высшие приближения асимптотического представления решения задачи а собственных колебаниях двухслойной ортотропной полосы при неполном контакте между слоями. Доказано, что высшие приближения не влияют на частоты собственных колебаний, а оказывают влияние только на амплитуды этих колебаний. Определено решение пограничного слоя для этой полосы, выяедено характеристическое уравнение, корни которого характеризуют скорость затухания величия пограничного слоя. Найдены первые некоторые корни этого уравнения.

Собственным колебаниям полосы посвящены работы [1-4]. Найдены частоты собственных колебаний и установлены связи между ними и скоростями распространения сейсмических сдвиговых и продольных волн Собственные колебания двухслойной полосы при полном контакте между слоями рассмотрены в работах [5,6,7]. В этом случае нет непосредственной связи между частотами собственных колебаний и скоростями распространения сейсмических волн. В работе [8] рассмотрены собственные колебания двухслойной ортотропной полосы при неполном контакте между слоями. Доказано, что в полосе возникают сдвиговые и продольные собственные колебания. Асимптотическим методом выведены трансцендентные уравнения для определения частот собственных колебаний. Показано, что собственные функции, соответствующие этим частотам, составляют оргогональную систему.

В данной работе рассмотрены высшие приближения асимптотического представления решения задачи о собственных колебаниях двухслойной ортотропной полосы при неполном контакте между слоями. Доказано, что высшие приближения не влияют на частоты собственных колебаний, а оказывают влияние только на амплитуды этих колебаний. Определено решение пограничного слоя для этой полосы, выведено характеристическое уравнение, корни которого характеризуют скорость затухания величин пограничного слоя.

1. Определение частот собственных колебаний двухслойной ортотропной полосы $\Omega = \{(x, y) : x \in [0, l], -h_2 \le y \le h_1, \max(h_1, h_2) << l\}$ при неполном контакте между слоями, когда на лицевых поверхностях заданы условия

$$\sigma'_{22} = 0, \ \sigma'_{32} = 0 \ \text{при} \ y = h_1$$
 (1.1)

$$u'' = 0, \quad v'' = 0 \quad \text{при} \quad y = -h_2 \tag{1.2}$$

и условия неполного контакта между слоями при у = 0

$$\mathbf{v}^{\dagger} = \mathbf{v}^{\dagger \dagger}, \ \sigma_{22}^{\prime} = \sigma_{22}^{\prime \prime}, \ \sigma_{12}^{\prime} = \sigma_{12}^{\prime \prime} = 0$$
 (1.3)

асимтотическим методом [9,10] можно свести к решению системы из двух уравнений относительно компонентов вектора перемещения [8]

$$\frac{\partial^2 u^{(j,i)}}{\partial \zeta^2} + a^{(j)}_{66} \omega_*^2 \rho^{(j)} u^{(j,i)} = -\frac{\partial^2 v^{(j,i-1)}}{\partial \xi \partial \zeta} - a^{(j)}_{66} \frac{\partial \sigma^{(j,i-1)}_{11}}{\partial \xi}$$
$$\frac{\partial^2 v^{(j,i)}}{\partial \zeta^2} + A^{(j)}_{11} \omega_*^2 \rho^{(j)} v^{(j,i)} = \frac{a^{(j)}_{12}}{a^{(j)}_{11}} \frac{\partial^2 u^{(j,i-1)}}{\partial \xi \partial \zeta} - A^{(j)}_{11} \frac{\partial \sigma^{(j,i-1)}_{12}}{\partial \xi}$$
(1.4)

где $\xi = x/l, \zeta = y/h, j = I, II$. $\omega_*^2 = \omega^2 h^2, \omega - частота собственных колебаний. Для исходного приближения эти уравнения независимы, после их решения и удовлетворения граничным условиям (1.1).(1.2) и условиям контакта (1.3) получаются трансцендентные уравнения$

$$\sin \sqrt{\rho'/G'} \omega_* \zeta_1 = 0, \qquad \omega_*^{(1)} = \pi n \sqrt{G'/\rho'}/\zeta_1, \quad n \in \mathbb{N}$$
(1.5)

$$\cos \sqrt{\rho'' / G''} \omega_* \zeta_2 = 0, \qquad \omega_*^{(2)} = \pi (2n-1) \sqrt{G'' / \rho''} / (2\zeta_2), \quad n \in \mathbb{N}$$
 (1.6)

$$a\cos(b\omega_*) = c\cos(d\omega_*)$$

$$a = 1 + \sqrt{\frac{\rho'' \overline{E}_{2}''}{\rho' \overline{E}_{2}'}}, \quad c = 1 - \sqrt{\frac{\rho'' \overline{E}_{2}''}{\rho' \overline{E}_{2}'}}, \quad b = \sqrt{\frac{\rho'}{\overline{E}_{2}'}} \zeta_{1} + \sqrt{\frac{\rho''}{\overline{E}_{2}''}} \zeta_{2}$$

$$d = \sqrt{\frac{\rho'}{\overline{E}_{2}'}} \zeta_{1} - \sqrt{\frac{\rho''}{\overline{E}_{2}''}} \zeta_{2}, \quad \overline{E}_{2}^{(j)} = \frac{E_{2}^{(j)}}{(1 - v_{12}^{(j)} v_{21}^{(j)})}, \quad j = I, II$$

$$\zeta_{1} = h_{1} / h, \quad \zeta_{2} = h_{2} / h, \quad h = \max\{h_{1}, h_{2}\}$$

$$\sigma_{22}^{(j,i)} = \frac{1}{A_{11}^{(j)}} \frac{\partial v^{(j,i)}}{\partial \zeta} - \frac{1}{A_{12}^{(j)}} \frac{\partial u^{(j,i-1)}}{\partial \xi}, \quad \sigma_{11}^{(j,i-1)} = -\frac{1}{A_{12}^{(j)}} \frac{\partial v^{(j,i)}}{\partial \zeta} + \frac{1}{A_{22}^{(j)}} \frac{\partial u^{(j,i-1)}}{\partial \xi}, \quad \sigma_{11}^{(j,i-1)} = -\frac{1}{A_{12}^{(j)}} \frac{\partial v^{(j,i-1)}}{\partial \zeta} + \frac{1}{A_{22}^{(j)}} \frac{\partial u^{(j,i-1)}}{\partial \xi}, \quad \sigma_{11}^{(j,i-1)} = \frac{1}{A_{12}^{(j)}} \frac{\partial v^{(j,i-1)}}{\partial \zeta} + \frac{1}{A_{22}^{(j)}} \frac{\partial u^{(j,i-1)}}{\partial \xi}, \quad \sigma_{11}^{(j)} = \left(a_{11}^{(j)}a_{22}^{(j)} - \left(a_{12}^{(j)}\right)^{2}\right) / a_{11}^{(j)}, \quad A_{12}^{(j)} = \left(a_{11}^{(j)}a_{22}^{(j)} - \left(a_{12}^{(j)}\right)^{2}\right) / a_{22}^{(j)}, \quad A_{22}^{(j)} = \left(a_{11}^{(j)}a_{22}^{(j)} - \left(a_{12}^{(j)}\right)^{2}\right) / a_{22}^{(j)}$$

31

(1.7)

Решение системы (1.4) при s>0 будет зависеть от того, какое значение ∞. взято за основу вычислений, надо рассмотреть как частоты сдвиговых колебаний (1.5),(1.6) так и частоты продольных колебаний (1.7). Поэтому решение системы (1.4) при s ≥ 1 будет иметь вид:

$$u^{(j,s)} = u_{1}^{(j,s)}(\xi)(c_{11}^{(j,s)}\sin\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(l)}\zeta + c_{11}^{(j,s)}\cos\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(l)}\zeta) +$$

$$+ u_{1}^{(j,s)}(\xi)(c_{12}^{(j,s)}\sin\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(2)}\zeta + c_{22}^{(j,1)}\cos\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(2)}\zeta) +$$

$$+ u_{1}^{(j,s)}(\xi)(c_{1p}^{(j,s)}\sin\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(2)}\zeta + c_{22}^{(j,1)}\cos\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(2)}\zeta) +$$

$$+ u_{1}^{(j,s)}(\xi)(c_{1p}^{(j,s)}\sin\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta + c_{12}^{(j,s)}\cos\sqrt{a_{66}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta) +$$

$$+ v_{1}^{(j,s)}(\xi)(c_{11}^{(j,s)}\sin\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta + c_{12}^{(j,s)}\cos\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta) +$$

$$+ v_{1}^{(j,s)}(\xi)(c_{3p}^{(j,s)}\sin\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta + c_{4p}^{(j,s)}\cos\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta) +$$

$$+ v_{1}^{(j,s)}(\xi)(c_{3p}^{(j,s)}\sin\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{(j)}\zeta + c_{4p}^{(j,s)}\cos\sqrt{A_{11}^{(j)}\rho^{(j)}}\omega_{*}^{p}\zeta) + \overline{v}_{1}^{(j,s)} + \overline{v}_{2}^{(j,s)} + \overline{v}_{p}^{(j,s)}$$

где $\mathbf{u}_{1}^{(j,s)}, \mathbf{u}_{2}^{(j,s)}, \mathbf{u}_{p}^{(j,s)}, \mathbf{v}_{2}^{(j,s)}, \mathbf{v}_{p}^{(j,s)}$ являются частными решениями системы {1.4}, а $C_{\mathbf{x}_{1}}^{(j,s)}$ - неизвестные постоянные. Определив по формулам (1.8) компоненты тензора напряжения и удовлетворив граничным условиям (1.1), (1.2) и условиям контакта (1.3], учитывая данные для исходного приближения, получатся системы алгебранческих уравнений относительно козффициентов $C_{ik}^{(j,i)}$. Исходя из того, что общее решение при s=0 должно совпасть с нулевым приближением [8], коэффициенты $C_{11}^{(I,i,0)}, C_{21}^{(I,0)}, C_{12}^{(I,0)}, C_{31}^{(H,0)}, C_{41}^{(H,0)}$ обратятся в ноль, а для остальных коэффициентов получим выражения:

$$C_{1,p}^{(H,0)}(\xi) = \frac{\sin\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(2)}\zeta_{2}\sqrt{\rho^{(H)}A_{1}^{(H)}}\omega_{*}^{(H)}(f^{(H)})\sin\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(H)}\zeta_{1} - \theta^{(2,H)})}{\Delta}$$

$$C_{41}^{(I,J)}(\xi) = \frac{\sqrt{\rho^{(I)}A_{11}^{(H)}}\omega_{*}^{(I)}[\theta^{(2,H)}\cos\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{2} + \varphi^{(2,H)}\sin\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{1}]}{\Delta}$$

$$C_{41}^{(I,J)}(\xi) = \frac{\sqrt{\rho^{(I)}A_{11}^{(H)}}\omega_{*}^{(I)}(f^{(2,H)}\cos\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{2} + \varphi^{(2,H)}\sin\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{1}]}{\Delta}$$

$$C_{41}^{(I,J)}(\xi) = \psi^{(1,J)}, \quad C_{1,p}^{(I,J)}(\xi) = \frac{\psi^{(1,J)}\omega_{*}^{(I)}\cos\sqrt{A_{11}^{(I)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{1} - f^{(I,J)}\cos\sqrt{A_{11}^{(I)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{1}]}{\omega_{*}^{P}\sin\sqrt{a_{66}^{(I)}\rho^{(H)}}\omega_{*}^{P}\zeta_{1}}$$

$$C_{1,p}^{(II,J)}(\xi) = \psi^{(1,J)}, \quad C_{1,p}^{(II,J)}(\xi) = \frac{\psi^{(1,J)}}{\omega_{*}^{P}\sin\sqrt{a_{66}^{(I)}\rho^{(H)}}\omega_{*}^{P}\zeta_{2}}{\cos\sqrt{a_{66}^{(H)}\rho^{(H)}}\omega_{*}^{P}\zeta_{2}}}$$

$$C_{42}^{(II,J)}(\xi) = \frac{\cos\sqrt{A_{11}^{(I)}\rho^{(H)}}\omega_{*}^{(I)}\zeta_{1}[\psi^{(2,J)}\sqrt{\rho^{(H)}A_{11}^{(H)}}\omega_{*}^{(2)} + f^{(1,J)}\sin\sqrt{A_{11}^{(H)}\rho^{(H)}}\omega_{*}^{(2)}\zeta_{2}]}{\Delta}$$

$$(1.10)$$

32

$$\begin{split} &+ \frac{\sqrt{p^{T}} A_{11}^{T} \omega_{*}^{(0)} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} [\theta^{(2,i)} - f^{(2,i)} \sin \sqrt{A_{11}^{T} p^{T}} \omega_{*}^{(0)} \zeta_{1}]}{\Delta} \\ &- C_{12}^{(\mu_{3})} (\xi) = \frac{\sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} [f^{(1,i)} \cos \sqrt{A_{11}^{T} p^{T}} \omega_{*}^{(0)} \zeta_{1} + \theta^{(2,i)} \sqrt{p^{T}} A_{11}^{T} \omega_{*}^{(0)}]}{\Delta} \\ &- \sqrt{p^{H}} A_{11}^{H} \omega_{*}^{(2)} \cos \sqrt{A_{11}^{T} p^{T}} \omega_{*}^{(0)} \zeta_{1} [f^{(2,i)} \cos \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{T} p^{T}} \omega_{*}^{(0)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{T} p^{T}} \omega_{*}^{(0)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{H} p^{T}} \omega_{*}^{(2)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{H} p^{T}} \omega_{*}^{(2)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{H} p^{T}} \omega_{*}^{(2)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{H} p^{T}} \omega_{*}^{(2)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(1)} \sin \sqrt{A_{11}^{H} p^{T}} \omega_{*}^{(2)} \zeta_{1} \sin \sqrt{A_{11}^{H} p^{H}} \omega_{*}^{(2)} \zeta_{2} - \\ &- \sqrt{p^{T}} A_{11}^{H} \sum_{i=1,2,2}^{2} \frac{\partial \overline{\omega}_{i}^{(i,i)}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}_{i}^{(i,i-1)}}{\partial \zeta_{i}} \int \zeta_{i} - \\ &- C_{12}^{(i,i)} (\xi) \omega_{*}^{(2)} \cos \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(2)} \zeta_{1} + C_{22}^{(i,i)} (\xi) \omega_{*}^{(2)} \sin \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(2)} \zeta_{1} \end{bmatrix} \\ &- C_{12}^{(i,i)} (\xi) \omega_{*}^{(2)} (\zeta_{i}) \cos \sqrt{p^{T}} A_{11}^{H} \omega_{*}^{(2)} \zeta_{1} + \frac{\partial \overline{\omega}_{i}^{(i,i-1)}}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}_{i}^{(i,i-1)}}{\partial \zeta_{i}} \int \zeta_{i} - \\ &- \frac{1}{\omega_{*}^{2}} \sqrt{p^{T}} A_{i}^{H}} \sum_{i=1,2,p}^{2} \frac{\partial \overline{\omega}_{i}^{(i,i+1)}}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}_{i}^{(i,i+1)}}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}_{i}^{(i,i+1)}}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}_{i}^{(i,i+1)}}}{\partial \zeta_{i}} \int \zeta_{i} - \\ &- C_{11}^{(i,i+1)} (\zeta_{i}) - C_{11}^{(i,i+1)} (\zeta_{i}) \cos \sqrt{\omega_{i}^{H}} \sum_{i=1,2,p}^{2} \frac{\partial \overline{\omega}_{i}}}{\partial \zeta_{i}} + \frac{\partial \overline{\omega}$$

Общее решение внутренней задачи будет содержать шесть неизвестных постоянных (функций от ξ), которые определятся из условий взаимодействия пограничного слоя с решением внутренней задачи. Таким образом высшие приближения асимптотического представления влияют лишь на амплитуды собственных колебаний. 2. Как и в статических задачах, при изучении собственных колебаний одним из узловых вопросов является изучение характера пограничного слоя. Для построения решения пограничного слоя, в динамических уравнениях для двухслойной ортотропной полосы введем новые переменные $\eta = x/h$, $\zeta = y/h$. $h = \max \{h_1, h_2\}$ и решение будем искать в виде $Q_{d}^{(1)} = Q_{d}^{(1)}(\eta, \zeta)e^{i\theta}$. В результате получим систему уравнений

$$\varepsilon^{-1} \frac{\partial \sigma_{11p}^{(j)}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{12p}^{(j)}}{\partial \zeta} + \varepsilon^{-2} \rho^{(j)} \alpha^* u^{(j)} = 0$$

$$\varepsilon^{-1} \frac{\partial \sigma_{12}^{(j)}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{22}^{(j)}}{\partial \zeta} + \varepsilon^{-2} \rho^{(j)} \omega^2 v^{(j)} = 0$$

$$\varepsilon^{-1} \frac{\partial u^{(j)}}{\partial \eta} = a_{11}^{(j)} \sigma_{11}^{(j)} + a_{12}^{(j)} \sigma_{22p}^{(j)}, \qquad \varepsilon^{-1} \frac{\partial u^{(j)}}{\partial \zeta} = a_{12}^{(j)} \sigma_{11}^{(j)} + a_{22}^{(j)} \sigma_{22p}^{(j)}, \qquad (2.1)$$

$$\varepsilon^{-1} \frac{\partial u^{(j)}}{\partial \zeta} + \varepsilon^{-1} \frac{\partial v^{(j)}}{\partial \eta} = a_{12}^{(j)} \sigma_{12p}^{(j)}, \qquad j = I, II$$

где $p^{(j)}$ – плотность слоев, а $a_{k}^{(j)}$ – упругие козффициенты, $\varepsilon = h/l$, $\omega_{*}^{2} = \omega^{2}h^{2}$, $u_{p}^{(j)} = u_{*}^{(j)}/l$, $v_{p}^{(j)} = v_{p}^{(j)}/l$ – безразмерные компоненты вектора перемещения. Решение системы (2.1) будем искать в виде

$$Q_{i}^{(j)} = \sum_{j=0}^{N} \varepsilon^{q_{ij}+j} Q_{ij}^{(j-j)}(\zeta) e^{-\lambda \eta}$$
(2.2)

где $Q_{ik}^{(j)}$ - любая из искомых величин системы (2.1), q_{ik} характеризуют асимптотические порядки искомых величин. Считается, что $Q_{ik}^{(j)} = 0$, если m < 0. Подставляя (2.2) в (2.1), получим непротиворечивую систему относительно $Q_{ik}^{(j)}$, если принять $q_{ik} = -1$ для напряжений. $q_{ik} = 0$ для перемещений. В результате имеем

$$-\lambda \sigma_{11}^{(j,1)} + \frac{d\sigma_{12}^{(j,1)}}{d\zeta} + \rho^{(j)} \omega_{11}^{(j,1)} = 0, \quad -\lambda \sigma_{12\rho}^{(j,1)} + \frac{d\sigma_{12\rho}^{(j,1)}}{d\zeta} + \rho^{(j)} \omega_{12\rho}^{2} \mathbf{v}_{\rho}^{(j,1)} = 0$$

$$-\lambda u_{\rho}^{(j,1)} = a_{11}^{(j)} \sigma_{11\rho}^{(j,1)} + a_{12}^{(j)} \sigma_{12\rho}^{(j,1)}, \quad \frac{d\omega_{\rho}^{(j,1)}}{d\zeta} = a_{12}^{(j)} \sigma_{11\rho}^{(j,1)} + a_{22}^{2} \sigma_{22\rho}^{(j,1)}$$

$$\frac{du_{\rho}^{(j,1)}}{d\zeta} - \lambda \mathbf{v}^{(j,1)} = a_{66}^{(j)} \sigma_{12\rho}^{(j)}, \qquad j = I, II \qquad (2.3)$$

Из этой системы напряжения выражаются через компоненты перемещения следующим образом:

$$\sigma_{12p}^{(j,j)} = \frac{1}{a_{66}^{(j)}} \left[\frac{du_{p}^{(j)}}{d\zeta} - \lambda v_{p}^{(j,i)} \right]_{i} \sigma_{11p}^{(j,i)} = -\frac{1}{\Delta^{(j)}} \left[a_{22}^{(j)} \lambda u_{p}^{(j,i)} + a_{12}^{(j)} \frac{dv_{p}^{(j,i)}}{d\zeta} \right]$$

$$\sigma_{22p}^{(j,j)} = \frac{1}{\Delta^{(j)}} \left[a_{11}^{(j)} \frac{dv_{p}^{(j,i)}}{d\zeta} + a_{12}^{(j)} \lambda u_{p}^{(j,i)} \right]_{i} \Delta^{(j)} = a_{11}^{(j)} a_{22}^{(j)} - \left(a_{12}^{(j)} \right)^{2} .$$
(2.4)

а для определения перемещений $u_{a}^{(j,j)}, v_{a}^{(j,j)}$ получается система

$$I_{11}^{(j)}u_{p}^{(j,s)} - I_{12}^{(j)}v_{p}^{(j,s)} = 0, \quad I_{22}^{(j)}v_{p}^{(j,s)} - I_{12}^{(j)}u_{p}^{(j,s)} = 0$$
(2.5)

где операторы $l^{(c)}_{\mu}$ имеют вид

$$l_{12}^{(j)} = \lambda (\Delta^{(j)} - a_{12}^{(j)} a_{66}^{(j)}) \frac{d}{d\zeta}, \quad l_{22}^{(j)} = a_{11}^{(j)} a_{66}^{(j)} \frac{d^2}{d\zeta^2} + \Delta^{(j)} (\lambda^2 + a_{66}^{(j)} \omega^2 \rho^{(j)})$$

$$l_{11}^{(j)} = \Delta^{(j)} \frac{d^2}{d\zeta^2} + (\lambda^2 a_{22}^{(j)} + \omega^2 \rho^{(j)} \Delta^{(j)}) a_{66}^{(j)}$$
(2.6)

Из системы (2.5) следует уравнение $(l_{11}^{(j)}l_{12}^{(j)} - (l_{12}^{(j)})^*)u_p^{(j,j)} = 0$, которое в развернутом виде имеет вид

$$a_{11}^{(j)} \frac{d^4 u^{(j,s)}}{ds} + [(\Delta^{(j)} + a_{10}^{(j,s)}) \alpha_{10} \beta_{10}^{(j,s)} + (a_{66}^{(j)} + 2a_{11}^{(j,s)})\lambda^2] \frac{d^2 u^{(j,s)}}{ds} + (\lambda^2 a_{22}^{(j)} + \omega_* \rho^{(j)} \Delta^{(j,s)}) (\lambda^2 + a_{66}^{(j)} \omega_*^2 \rho^{(j)}) u_p^{(j,s)} = 0$$
(2.7)

а для V_р, на системы (2.5) получим

$$= \frac{1}{\lambda(\Delta^{(f)} - a_{12}^{(f)}a_{66}^{(f)})(\lambda^{2} + a_{66}^{(f)}\omega_{s}^{2}\rho^{(f)})} \times \left[a_{10}^{(f)}a_{11}^{(f)} + (((a_{10}^{(f)} + a_{12}^{(f)})^{2} - a_{11}^{(f)}a_{22}^{(f)}) + \omega_{s}^{2}\rho^{(f)}a_{11}^{(f)}(a_{66}^{(f)})^{2})\frac{a_{10}^{(f)}}{a_{11}^{(f)}}\right]^{2}$$

$$(2.8)$$

Из-за объемности вычислений решение уравнения (2.7) приведем для изотропной полосы

$$u^{(j,i)} = C_1^{(j)} \cos\beta_1^{(j)} \lambda \zeta + C_2^{(j)} \sin\beta_1^{(j)} \lambda \zeta + C_2^{(j)} \cos\beta_2^{(j)} \lambda \zeta + C_2^{(j)} \sin\beta_2^{(j)} \lambda \zeta \quad (2.9)$$

$$\beta_1^{(j)\,2} = 1 + \mu^2 \rho^{(j)} \frac{(1 - \nu^{(j)\,2})}{F_2^{(j)}}, \quad \beta_2^{(j)\,2} = 1 + 2\mu^2 \rho^{(j)} \frac{(1 + \nu^{(j)})}{F_2^{(j)}}, \quad \mu = \frac{\omega}{\lambda} \quad (2.10)$$

Подставляя (2.9) в (2.8), (2.4) и в граничные условия (1.1), (1.2) и в условия контакта (1.3), получим однородную систему уравнений относительно неизвестных $C^{(i)}$, $C_{1}^{(i)}$, $C_{4}^{(i)}$, j = l, ll решения (2.9). Для существования нетривиальных решений системы необходимо, чтобы ее определитель равнялся нулю, вследствие чего получим трансцендентное уравнение (2.11), откуда определяется показатель экспоненты λ

$$(A_{1} + A_{2}) \sin \lambda ((\beta_{1}^{''} - \beta_{2}^{''})\zeta_{2} - (\beta_{1}^{'} - \beta_{2}^{'})\zeta_{1}) + + (A_{1} - A_{2}) \sin \lambda ((\beta_{1}^{''} - \beta_{2}^{''})\zeta_{2} + (\beta_{1}^{'} - \beta_{2}^{'})\zeta_{1}) + + (A_{3} + A_{4}) \sin \lambda ((\beta_{1}^{''} - \beta_{1}^{''})\zeta_{2} - (\beta_{1}^{'} + \beta_{2}^{'})\zeta_{1}) + + (A_{3} - A_{4}) \sin \lambda ((\beta_{1}^{''} - \beta_{2}^{''})\zeta_{2} + (\beta_{1}^{'} + \beta_{2}^{'})\zeta_{1}) + + (A_{5} + A_{6}) \sin \lambda ((\beta_{1}^{''} + \beta_{1}^{''})\zeta_{2} - (\beta_{1}^{'} - \beta_{2}^{'})\zeta_{1}) + + (A_{5} - A_{6}) \sin \lambda ((\beta_{1}^{''} + \beta_{1}^{''})\zeta_{2} - (\beta_{1}^{'} - \beta_{2}^{'})\zeta_{1}) + + (A_{7} + A_{8}) \sin \lambda ((\beta_{1}^{''} + \beta_{2}^{''})\zeta_{2} - (\beta_{1}^{'} + \beta_{2}^{''})\zeta_{1}) +$$
(2.11)

$$\begin{aligned} &+ (A_{7} - A_{8}) \sin \lambda ((\beta_{1}^{H} + \beta_{1}^{H})\zeta_{2} + (\beta_{1}^{I} + \beta_{2}^{I})\zeta_{1}) + \\ &+ B_{1} \sin \lambda (\beta_{1}^{I} - \beta_{1}^{I})\zeta_{2} + B_{4} \sin \lambda (\beta_{1}^{H} + \beta_{2}^{I})\zeta_{2} = 0 \end{aligned}$$

$$A_{1} = \frac{E^{I} \beta_{1}^{H} (\beta_{2}^{H^{2}} - 1)(\beta_{1}^{H} \beta_{2}^{H} + 1)(4\beta_{1}^{I} \beta_{2}^{I} + (\beta_{2}^{I^{2}} + 1)^{2})^{2}}{32E^{H} \beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})} \end{aligned}$$

$$A_{2} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} + (\beta_{2}^{I^{2}} + 1)^{2})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})^{2}}{32E^{H} \beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})} \end{aligned}$$

$$A_{2} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})^{2}}{32E^{H} \beta_{1}^{H^{2}} \beta_{1}^{I^{2}} (1 + v^{I})} \end{aligned}$$

$$A_{4} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})^{2}}{32E^{H} \beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})} \end{aligned}$$

$$A_{4} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(4\beta_{1}^{H} \beta_{2}^{I^{2}} + (\beta_{2}^{I^{2}} + 1)^{2})^{2}}{32E^{H} \beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})} \end{aligned}$$

$$A_{4} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(\beta_{1}^{H} \beta_{2}^{H^{2}} + (\beta_{2}^{I^{2}} + 1)^{2})}{32\beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})}$$

$$A_{5} = \frac{\beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(4\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})}{32\beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{I})}$$

$$A_{7} = \frac{E^{I} \beta_{1}^{H} (1 - \beta_{2}^{I^{2}})(\beta_{1}^{H} \beta_{2}^{I} - (\beta_{2}^{I^{2}} + 1)^{2})(\beta_{1}^{H} \beta_{1}^{H} (4 + (\beta_{2}^{H^{2}} + 1)^{2}) - 4\beta_{1}^{H^{2}} \beta_{2}^{H^{2}} - (\beta_{2}^{H^{2}} + 1)^{2})}{32\beta_{1}^{H^{2}} \beta_{2}^{I^{2}} (1 + v^{H})}$$

$$B_{1} = \frac{\beta_{1}^{H} \beta_{1}^{I} (1 - \beta_{2}^{I^{2}})(\beta_{1}^{H} \beta_{2}^{I} + 1)(4\beta_{1}^{I} \beta_{2}^{I} + (\beta_{2}^{I^{2}} + 1)^{2})}{2\beta_{2}^{I^{2}} \beta_{2}^{H^{2}} (1 + v^{H})}$$

$$B_{1} = \frac{E^{I} \beta_{1}^{H} \beta_{1}^{I} (1 + \beta_{2}^{I^{2}})^{2} (1 - \beta_{2}^{$$

$$B_{2} = \frac{\beta_{1}^{''}\beta_{1}^{''}(1-\beta_{2}^{''2})(\beta_{2}^{''2}+1)(4\beta_{1}^{'}\beta_{2}^{'}-(\beta_{2}^{''2}+1)^{2})}{2\beta_{2}^{''2}\beta_{2}^{''}(1+\nu^{''})}$$

$$B_{4} = \frac{E^{'}\beta_{1}^{''}\beta_{1}^{'}(1+\beta_{2}^{''2})^{2}(1-\beta_{2}^{''2})(\beta_{1}^{''}\beta_{2}^{''}-1)}{E^{''}\beta_{2}^{'}\beta_{2}^{''2}(1+\nu^{''})}$$

Учитывая, что $\mu = \omega$. / λ , каждому значению ω , из (1.5).(1.6).(1.7) будет соответствовать счетное множество λ . В силу свойства пограничного слоя вблизи $\eta = 0$ мы должны ограничиться теми значениями λ , у которых $\text{Re}\lambda > 0$ В табл. 1.2.3 приведены первые некоторые значения λ для двухслойной изотропной полосы, когда первый слой состоит из тяжелого бетона с характеристиками $E^1 = 196 \cdot 10^8 \, \Pi a$, $\upsilon^1 = 0.3$, $h_1 = 0.03$ м.

 $\rho^{1} = 2400 \, \text{кг/m}^{3}$, а второй — из железобетона с характеристиками $h_2 = 0.6 \text{м}$. $\upsilon^{11} = 0.2$, $E^{11} = 206 \cdot 10^8 \, \text{Па}$, $\rho^{11} = 2200 \, \text{кг/m}^3$.

Таблица 1

$\omega_{**}^{(1)} = \pi n / (\zeta_1 \sqrt{a_{66}' \rho'})$				
n = 1	λ	11.231456 13.487823	18.920971 24.448687 + 0.2355103 1	
n=2	λ	12.387022 20.882498	24.523329 33.551855 + 0.7924845 1	
n=3	λ	11.0936352 27.3267775 + 1.53846 I	40.1139696 40.6994379	
n = 4	λ	23.0237454 32.0225267	36.7539113 46.670785	
n=5	λ	29.80660013 36.47462594	44.339271 55.3226502	

Таблица 2

$\omega_{*}^{(2)} = \pi (2n-1)/(2\zeta_2 \sqrt{a_{66}^{''} p^{''}})$					
n = 1	λ	2.104068 + 1.203435 1 5.7704567 + 2.108102 I	9.07220246 + 2.547567 1 12.3182246 + 3.00151026 1		
n ≈ 2	λ	4.2890312 + 2.1684009 I 8.20217813 + 2.593663 I	11.6654749 + 2.87538291 I 15.00433354 + 3.1008088 I		
n=3	λ	6.193174658 + 2.6124861 10.33199346 + 2.9141261	13.984356 + 3.1388689 I 17.464418 + 3.33117572 I		
n=4	λ	7.974184355 + 2.754236I 12.30682041 + 3.076101I	16.1353757 + 3.3059543 I 19.7630214 + 3.50240105I		
n=5	λ	9.68349061 + 2.5960632I 14.1845929 + 3.061566 I	18.17721105 + 3.3590596 1 21.959411713 + 3.600637 1		

Таблица 3_

@ ***		λ
7754.16	4.846649 + 2.158747 1 8.50490976 + 2.5750361	11.88085478 + 2.860747 I 15.173127618 + 3.089056 I
23281.1	7.1306774 + 2.6138796 1 11.753377 + 3.0184353 1	15.70979007 + 3.27505408 I 19.41202119 + 3.4855837 I
38859.3	5.18447775 5.38472638	13.79258332 + 1.39933227 1 18.38701516 + 2.58080239 1
54510	9.7543847 + 1.6917353 1 16.1643678 + 1.734139 1	21.44805373 + 1.4887937 I 25.3320794
70242	6.3119455 + 1.649942 I 12.0015308	17.115737099 + 3.2033831 I 22.912442009 + 3.2033831 I

Из вышеуказанной алгебраической системы все постоянные можно выразить через одну, тогда решение (2.9) будет содержать одну группу комплексных или две группы вещественных постоянных, что позволяет удовлетворить двум условиям на кромке *x* = 0. Сопряжение решений пограничного слоя и внутренней задачи можно осуществить методом наименьших квадратов или граничной коллокации [9,11].

ЛИТЕРАТУРА

- Агаловян Л.А. О частотах собственных колебаний анизотронной полосы. – В сб.: Юбил. научн. конф. к 60-летию ГТПИ, Гюмри, 1994. с. 23-26.
- 2. Агаловян М.А. Об одной задаче на собственные значения, возникающей в сейсмологии. – Докл. НАНА, 1996, т. 96, №2-4, с.23-28.
- Халатян Л.М. О собственных колебаниях анизотропной полосы при смешанных граничных условиях. – В сб.: Вопросы оптимального управления, устойчивости и прочности механических систем, Ереван, 1997, с. 167-170.
- Агаловян М.А. О собственных значениях и собственных функциях одного дифференциального оператора. — Уч. записки ЕГУ, 1997. № 2(187), с. 8-14.
- 5 Агаловян Л.А. Саркисян Л.С. О собственных колебаниях двухслойной ортотропной полосы. — В сб.: Тр. XVIII Международной конф. по теории оболочек и пластин, РФ, Саратов, 1997, т.1, с. 30-38.
- 6. Саркисян А.С. О частотах собственных колебаний двухслойной ортотропной полосы. Дока НАНА. 1997. № 3, с. 19-25.
- 7 Саркисян Л.С. О высших приближениях в задаче о собственных колебаниях двухслойной ортотропной полосы. – Изв. НАНА, Механика, 1998, т.51, №1, с. 32-36.
- Гулгазарян Л.Г. О характере собственных колебаний двухслойной ортотропной полосы при неполном контакте между слоями. – Материалы республиканской конференции молодых ученых, Еренан, 1999, с. 39-44.
- Агаловян Л.А. Асимптотическая теория анизотропных пластин и оболочек. М.:Наука, 1997. 415 с.
- 10. Найфе А.Х. Методы возмущений М.:Мир, 1976. 455 с.
- П. Ахрье А.И. Теория упругости. М.:Наука, 1970. 939 с.

Институт механики НАН Армении Поступила в редакцию 19.10.1999