ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ АРМЕНИИ

Մոյուսնիկա

50, N 1, 1997

Механика

ДИНАМИЧЕСКАЯ ЗАДАЧА ПРОНИКАНИЯ ТВЕРДОГО ИНДЕНТОРА В АНИЗОТРОПНУЮ СРЕДУ ПО ГИПОТЕЗЕ ПОРМАЛЬНЫХ СЕЧЕНИЙ

Багдоев А.Г., Ванцян А.А., Хачатрян Б.К., Хачатрян Л.А.

Ա. Գ. Բազդոն , Ա. Ա. Վանցյան, Բ. Կ. Խաչատրյան, Լ. Ա. Խաչատրյան Անիզոտրոպ միջավայր պինդ մարմնի ներթափանցման դինամիկ խնդրի (ուծումը ըստ նորմալ կտրվածըների վարկածի

Թվային եղանակով լուծված է պինդ մարձնի անիզոտրոպ միջավայր ներթափանցման դինամիկ խնդիրը օգտագործելով նորմալ կտրվածքների վարկածը՝ Ուսումնասիրված է լարումների վարջը ինչպես մարձնին մոտ պլաստիկ տիրույթում, այնպես էլ մարձնի վրա կախված միջավայրի անիզոտրոպ հատկությունից

A. G. Bagdoev, A. A. Vantslan, B. K. Khachatrian, L. A. Khachatrian

The penetration of rigid indentor into anisotropic medium on hypothesis of normal cross sections

На основе гипотелы пормальных сечении численно решена динамическая задача произкания твердого тела в анизотронную среду. Научено поведение напряжений как в пластической области, так и на теле в зависимости от своиств анизотронни среды.

Задачи проникания твердых инденторов в изотроиную среду в предноложении, что имеет место пдеально-пластическое течение вблизи индентора, сопрягающееся с линейно упругим решением, и при допущении о применимости гипотезы плоских сечений, рассмотрены в [1-5].

Аналогичная по математической постановке задача о взрыве в среде с цилиндрической и сферической симметриями рассмотрена в [5-7]. При тех же предположениях задача пропикания узкого индентора в анизотропную среду рассмотрена в работе [8]. Показано, что [9] при наличии трансверсальной изотропии, для которой предел текучести для плоскости изотропии вдвое больше осевого, имеет место резкое возрастание напряжений на инденторе. Этот результат проверен эксперементально [9].

В настоящей статье рассматривается задача проникания не слишком тонкого индентора в форме конуса, переходящего в цилиндр, в

анизотронную среду. Как и в [40, 41] сделано предноложение, подтвер жденное экспериментально в [4, 9], о том, что скорости частиц вблизи от индентора направлены по его нормали.

В цилиндрических координатах ось ох выбрана по направлению проникация индентора, ось ог по радпусу, тогда, записан связь компонент тензора скоростей деформации и напряжений в иластической области, а также условие текучести Мизеса, для девнаторов напряжений можно найти [8]

$$\sigma_{in}' = -\frac{\dot{\varepsilon}_{\theta\theta}(2F+G) + \dot{\varepsilon}_{in}(2F+H)}{a\alpha}$$

$$\sigma_{in}' = -\frac{\dot{\varepsilon}_{\theta\theta}(F-G) + \dot{\varepsilon}_{in}(F+2H)}{a\alpha}$$

$$\sigma_{\theta\theta}' = -\frac{\dot{\varepsilon}_{\theta\theta}(2G+F) + \dot{\varepsilon}_{in}(F-H)}{a\alpha}, \quad \alpha = 3(FH+FG+GH)$$
(1)

Используя условие Мизеса и (1), для множителя а имеем

$$a^{2} = \frac{9H}{\alpha^{2}} \left[\dot{\varepsilon}_{\theta\theta} (F+G) + \dot{\varepsilon}_{\mu} F \right]^{2} + \frac{G}{\alpha^{2}} \left[\dot{\varepsilon}_{\theta\theta} (3F+2G) + \dot{\varepsilon}_{\alpha} (F+H) \right]^{2} + \frac{9F}{\alpha^{2}} \left[\dot{\varepsilon}_{\theta\theta} G + \dot{\varepsilon}_{\mu} H \right]^{2} + \frac{2}{M} \dot{\varepsilon}_{\mu}^{2}$$
(2)

Как и в [1-5], удовлетворяются уравнения движения в раднальном направлении, в то время, как для определения касательной индентору компонент скорости частиц, можно использовать уравнение движения в осевом направлении, причем для σ_{in} с номощью соотношения $\sigma_{in} = \sigma_{in} + \sigma'_{in} - \sigma'_{in}$ и (1) можно записать

$$\sigma_{ii} = \sigma_{ii} + \frac{3F\frac{f-x}{r^2}\delta f' - 3H\frac{\delta g'}{r}}{\alpha \alpha}$$
(3)

С учетом равенства

$$\sigma_{ii}' - \sigma_{iii}' = -\frac{3F(2\hat{\varepsilon}_{iii} + \hat{\varepsilon}_{ii})}{a\alpha}$$
(4)

и условий $\mathbf{v}_{1} = \gamma \mathbf{v}_{1}, \quad \gamma = \mathrm{tg}\boldsymbol{\beta},$ где $\boldsymbol{\beta}$ полуугол в вершине конуса уравнения радиального движения примет вид

$$\frac{\partial \sigma_{u}}{\partial r} - \frac{3F(2\varepsilon_{w} + \varepsilon_{u})}{a\alpha_{r}} + \frac{1}{aM} \frac{\partial \varepsilon_{u}}{\partial x} = \rho \delta \left[\frac{f'^{2}}{r} + \frac{f - x}{r} f'' + \gamma f'' - \frac{(f - x)^{2}}{r^{3}} \delta f'^{2} - \frac{f - x}{r^{2}} \delta \gamma f'^{2} \right]$$
(5)

45

где уравнение конической части индептора $r_t = \gamma(f-x), f(t)$ есть глубина пропикания. ρ - илотность среды

Учитывая соотношения [8]

$$\varepsilon_{in} = -\frac{\delta\gamma f'}{r}, \quad \varepsilon_{a0} = \left\{\frac{f-x}{r^2} + \frac{\gamma}{r}\right\}\delta f', \quad \varepsilon_{r_1} = -\frac{\delta}{r^2}(r+f-x)f' \quad (6)$$

и интегрируя уравнение (5), можно получить

$$\sigma_{n} = \left(3F\gamma - \frac{\alpha}{M}\right) \frac{1}{\sqrt{a_{1}}} \ln \left|\frac{2a_{1}r + a_{2}}{2\sqrt{a_{1}}} + \sqrt{a_{1}r^{2} + a_{2}r + a_{3}}\right| - 6F(f - x) \frac{1}{\sqrt{a_{3}}} \operatorname{Arth} \frac{2a_{3} + a_{2}r}{2\sqrt{a_{3}}\sqrt{a_{1}r^{2} + a_{2}r + a_{3}}} + \frac{\rho\delta^{2}f'^{2}(f - x)^{2}}{2r^{2}} + (7) + \frac{1}{r}\rho\delta^{2}\gamma f'^{2}(f - x) + \rho\delta[f'^{2} + (f - x)f'']\ln r + \rho\delta\gamma f''r + \frac{c(x,t)}{\cos^{2}\beta}$$

где c(x,t) определяется из условий равенства пормальных компонент неремещений и напряжений на поверхности $r = r_x \xi_0$, определяемая из условия Мизеса. В (7) введены следующие обозначения

$$a_{1} = 9HG^{2}\gamma^{2} + G(2F + 2G - H)^{2}\gamma^{2} + 9F(G - H)^{2}\gamma^{2} + \frac{2\alpha^{2}}{M} = a_{1}'$$

$$a_{2} = 9HG(F + G)\gamma(f - x) + G(3F + 2G)(2F + 2G - H)\gamma(f - x) +$$

$$+ 9FG(G - H)\gamma(f - x) + \frac{2\alpha^{2}}{M}(f - x) = a_{2}'\xi, \quad \xi = (f - x)$$

$$a_{3} = \left[9H(F + G)^{2} + G(3F + 2G)^{2} + 9FG^{2} + \frac{2\alpha^{2}}{M}\right](f - x)^{2} = a_{3}'\xi^{2}$$

Распространяя гипотезу пормальных сечений также на упругую об ласть, с учетом закона Гука для напряжений, в упругой области можно записать

$$\sigma_{rr} = a_{11} \left[\frac{f - y}{r} \gamma - \frac{(f - y)^2}{2r^2} \right] \delta + a_{12} \frac{(f - y)^2}{2r^2} \delta$$

$$\sigma_{\theta\theta} = a_{12} \left[\frac{f - y}{r} \gamma - \frac{(f - y)^2}{2r^2} \right] \delta + a_{22} \frac{(f - y)^2}{2r^2} \delta$$

$$\sigma_{rr} = a_{13} \left[\frac{f - y}{r} \gamma - \frac{(f - y)^2}{2r^2} \right] \delta + a_{22} \frac{(f - y)^2}{2r^2} \delta$$

$$\sigma_{rr} = a_{55} \frac{f - y}{r} \delta \left(\gamma - \frac{f - y}{2r} \gamma - 1 \right)$$
(8)

Используя непрерывность нормальных компонент напряжений при $r=r_k\xi_0$ и с учетом

$$\sigma_{nn} = \sigma_{rr} \sin^2(nr) + \sigma_{rr} \cos^2(nr) + 2\sigma_{rr} \cos(nr) \sin(nr)$$

для определения постоянной интегрирования c(x,t) можно получить соотношение

$$\begin{bmatrix} \frac{f - x + \gamma_{t}\xi_{0}}{r_{t}\xi_{0}}\gamma - \frac{(f - x + \gamma_{t}\xi_{0})^{2}}{2r_{s}^{2}\xi_{0}^{2}}\end{bmatrix}\delta(a_{11}\cos^{2}\beta + a_{11}\sin^{2}\beta) + \\ + \frac{(f - x + \gamma_{t}\xi_{0})^{2}}{2r_{s}^{2}\xi_{0}^{2}}\delta(a_{23}\sin^{2}\beta + a_{32}\cos^{2}\beta) + \qquad (9) \\ + a_{ss}\frac{f - x + \gamma_{t}\xi_{0}}{r_{s}\xi_{0}}\delta\left(\gamma - \frac{f - x + \gamma_{t}\xi_{0}}{2r_{s}\xi_{0}}\gamma - 1\right)\sin^{2}\beta = \\ = \left(3F\gamma - \frac{\alpha}{M}\right)\frac{1}{\sqrt{a_{1}}}\ln\left|\frac{2a_{1}r_{t}\xi_{0} + a_{2}}{2\sqrt{a_{1}}} + \sqrt{a_{1}r_{s}}\xi_{0}^{2} + a_{2}r_{s}\xi_{0} + a_{3}}\right| - \\ - 6F(f - x)\frac{1}{\sqrt{a_{s}}}\operatorname{Arth}\frac{2a_{3} + a_{3}r_{s}\xi_{0}}{2\sqrt{a_{3}}\sqrt{a_{1}r_{s}^{2}}\xi_{0}^{2} + a_{2}r_{s}\xi_{0} + a_{3}} + \frac{\rho\delta^{2}f'^{2}(f - x)^{2}}{2r_{s}^{2}}\xi_{0}^{2}} + \\ + \frac{\rho\delta^{2}\gamma f'^{2}(f - x)}{r_{s}\xi_{0}} + \rho\delta[f'^{2} + (f - x)f'']\ln r_{s}\xi_{0} + +\rho\delta\gamma f''r_{s}\xi_{0} + c(x,t) \end{aligned}$$

Нодставляя значение c(x,t) из (9) в (7) на инденторе для σ_{rr} с учетом того, что $r_{k} = \gamma(f-x)$, после группировки получается значение $\sigma_{rr} = A_{1}f^{\prime 2}(t) + A_{2}\xi f''(t) + A_{3}$ (10)

гле введены следующие обозначения:

$$\begin{split} A_{1} &= \rho \delta \Biggl[\frac{\delta(\xi^{2} - 1)}{2\xi_{0}^{2}\gamma^{2}} + \frac{\delta(\xi_{0} - 1)}{\xi_{0}} - \ln \xi_{0} \Biggr], \quad A_{2} &= -\rho \delta \Bigl[\ln \xi_{0} + \gamma^{2}(\xi_{0} - 1) \Bigr], \\ A_{3} &= \Bigl(3F\gamma - \frac{\alpha}{M} \Bigr) \frac{1}{\sqrt{a_{1}^{\prime}}} \ln \Biggl[\frac{2a_{1}^{\prime}\gamma + a_{2}^{\prime} + 2\sqrt{a_{1}^{\prime}}\sqrt{a_{1}^{\prime}\gamma^{2} + a_{2}^{\prime}\gamma + a_{3}^{\prime}}}{2a_{1}^{\prime}\gamma\xi_{0} + a_{2}^{\prime} + 2\sqrt{a_{1}^{\prime}}\sqrt{a_{1}^{\prime}\gamma^{2}\xi_{0}^{2}} + a_{2}^{\prime}\gamma\xi_{0}^{2} + a_{3}^{\prime} \Biggr] - \\ &- \frac{6F}{\sqrt{a_{3}^{\prime}}} \Biggl[\operatorname{Arth} \frac{2a_{3}^{\prime} + a_{2}^{\prime}\gamma}{2\sqrt{a_{3}^{\prime}}\sqrt{a_{1}^{\prime}\gamma^{2} + a_{2}^{\prime}\gamma + a_{3}^{\prime}}} - \operatorname{Arth} \frac{2a_{3}^{\prime} + a_{2}^{\prime}\xi_{0}^{0}\gamma}{2\sqrt{a_{3}^{\prime}}\sqrt{a_{1}^{\prime}\xi_{0}^{2}\gamma^{2}}} \Biggr] + \\ &+ \Biggl[\frac{1}{\xi_{0}} + \gamma^{2} - \frac{(1 + \gamma^{2}\xi_{0})^{2}}{2\xi_{0}^{2}\gamma^{2}} \Biggr] \delta(a_{11}\cos^{2}\beta + a_{11}\sin^{2}\beta) + \frac{\delta(1 + \gamma^{2}\xi_{0})}{2\xi_{0}^{2}\gamma^{2}}} \times \\ &\times (a_{23}\sin^{2}\beta + a_{12}\cos^{2}\beta) + a_{33}\frac{1 + \gamma^{2}\xi_{0}}{\xi_{0}\gamma}\delta \Biggl[\gamma - \frac{1 + \gamma^{2}\xi_{0}}{2\xi_{0}} - 1 \Biggr] \sin^{2}\beta \end{split}$$

47

Для σ_n в пластической области можно получить выражение

$$\sigma_{ii} = -\frac{\alpha \delta}{M} \frac{(r+f-x)f'}{\sqrt{a_1 r^2 + a_2 r + a_3}}$$
(11)

Нодставляя упругое решение (8) при $r = r_k \xi_0$ в условие текучести Мизеса для определения ξ_0 , имеет место формула

$$4k^{2}\delta^{2} \left\{ H[(\gamma - k)(a_{11} - a_{12}) + k(a_{12} - a_{22})]^{2} + G[(\gamma - k)(a_{11} - a_{13}) + k(a_{12} - a_{22})]^{2} + F[(\gamma - k)(a_{13} - a_{12}) + k(a_{23} - a_{22})]^{2} + Ma_{33}^{2}(1 - k)^{2} = 1 \right\}$$
(12)

где

$$k = \frac{1}{2\gamma\xi_0} + \frac{\gamma}{2}$$

Для определения максимальной глубниы проникания исобходимо вычислить силу сопротивления P, где

$$P = 2\pi \int_{0}^{f} r_{k} \left(-\frac{\partial r_{k}}{\partial x} + k_{1} \right) \sigma_{nn} \cos\beta dx \quad \text{при} \quad f < \zeta$$
(13)

 k_1 - коэффициент трения между средой и индентором. Для σ_{nn} с уче том формулы

 $\sigma_{nr} = \sigma_n \sin^2(n\hat{r}) + \sigma_n \cos^2(n\hat{r}) + 2\sigma_n \cos(n\hat{r}) \sin(n\hat{r})$ можно записать при $r = r_k = \gamma\xi$

$$\sigma_{nn} = \sigma_{nr} \sin^{2} \beta + \left[\sigma_{nr} + \frac{3F(f-x)}{a\alpha r^{2}}\delta f' - \frac{3H\delta g'}{a\alpha r}\right](1 - \sin^{2} \beta) + + \sigma_{nr} \sin 2\beta = \sigma_{nr} + \left[\frac{3F(f-x)\delta}{a\alpha r^{2}} - \frac{3H\delta \gamma}{a\alpha r}\right]f' \cos^{2} \beta - - \frac{\alpha\delta}{M}\frac{\gamma + 1}{\sqrt{a_{1}'\gamma^{2} + a_{2}'\gamma + a_{2}'}}f' \sin 2\beta$$

или в новых обозначениях

$$\sigma_{nn} = A_1 f^{\prime 3}(t) + A_2 \xi f^{\prime\prime}(t) + A_1 + B_1 - B_2 f^{\prime\prime}(t)$$
(14)
rge $B_1 = \frac{3\delta(F - \gamma^2 H)}{\overline{a}\alpha\gamma^2} \cos^2\beta, \quad \overline{a} = a\frac{\xi}{f^\prime}, \quad B_2 = \frac{\alpha\delta}{M} \frac{(\gamma + 1)\sin 2\beta}{\sqrt{a_1^\prime \gamma^2 + a_2^\prime \gamma + a_3^\prime}}$

С учетом (13) и (14) для силы сопротивления можно записать для $f < \zeta$ (ζ высота конусной части индентора)

$$P = -2\pi\gamma(\gamma + k_1) \int_{0}^{1} \xi (A_1 f'^2 + A_2 \xi f'' - B_2 f' + B_1 + A_3) \cos\beta d\xi \qquad (15)$$

48

носле интегрирования и обозначения $2\pi\gamma(\gamma + k_1)\cos\beta / m = \chi$

уравнение движения mf'' = -P (где m - масса индентора)

$$f''\left(1-\chi A_2\frac{f^3}{3}\right) = \chi A_1\frac{f^2}{2}f'^2 - \chi B_2\frac{f^3}{2}f' + \chi B_1\frac{f^2}{2} + \chi A_3\frac{f^2}{2}$$
(16)

вводя обозначения f' = p(f), f'' = p'p (16) примет вид

$$p'p\left(1-\chi A_2 \frac{f^3}{3}\right) = \chi \frac{f^2}{2} (A_1 p^2 - B_2 p + B_1 + A_3)$$
(17)

Численно решая (17), при f = 0 $p = v_0$, можно определить $p = v_1$ скорость индентора в момент $f = \zeta$ и можно вычислить $\frac{dp}{df} = \frac{f''}{p}$ (для

любых ().

При дальнейшем проникании, то есть для $f>\zeta$, интеграл (15) после интегрирования от 0 до ζ примет вид

$$P = -2\pi\gamma(\gamma + k_1) \left(A_1 f'^2 \frac{\zeta}{2} + A_2 \frac{\zeta^3}{3} f'' - B_3 \frac{\zeta^3}{2} f + B_1 \frac{\zeta^3}{2} + A_3 \frac{\zeta^3}{2} \right)$$

после чего уравнение движения примет вид

$$p'p\left(1-\chi A,\frac{\zeta^{2}}{3}\right)=\frac{\zeta^{2}}{2}\chi(A_{1}p^{2}-B_{2}p+B_{1}+A_{3})$$

откуда

$$f - \zeta = \frac{1 - \chi A_2 \frac{5}{3}}{\frac{\zeta^2}{2} \chi} \int \frac{p dp}{A_1 p^2 - B_2 p + B_1 + A_3} = \frac{2(3 - \chi A_2 \zeta^3)}{\frac{1}{2} \sqrt{\frac{1}{2} \ln(A_2 p^2 - B_2 p + B_1 + A_3)}}$$
(18)

$$=\frac{2(3-\chi A_{2}\varsigma)}{3\zeta^{2}\chi}\left|\frac{1}{2A_{1}}\ln(A_{1}p^{2}-B_{2}p+B_{1}+A_{3})+\right|$$
(18)

$$\frac{B_2}{A_1} \frac{1}{\sqrt{4A_1(B_1 + A_3) - B_2^2}} \operatorname{arctg} \frac{2A_1p - B_2}{\sqrt{4A_1(B_1 + A_3) - B_2^2}} \right\|_{a_1}$$

или

$$f - \zeta = \frac{2(3 - \chi A_2 \zeta^3)}{3\zeta^2 \chi} \left\{ \frac{1}{2A_1} \ln \frac{A_1 f'^2 - B_2 f' + B_1 + A_1}{A_1 v_1^2 - B_2 v_1 + B_1 + A_1} + \right\}$$

$$+\frac{B_{2}}{A_{1}}\frac{1}{\sqrt{4A_{1}(B+A_{3})-B_{2}^{2}}}\left(\arctan\frac{2A_{1}f'-B_{2}}{\sqrt{4A_{1}(B_{1}+A_{3})-B_{2}}}-\frac{1}{\sqrt{4A_{1}(B_{1}+A_{3})-B_{2}}}\right)$$

$$-\arctan\frac{2A_{1}v_{1}-B_{2}}{\sqrt{4A_{1}(B_{1}+A_{3})-B_{2}^{2}}}\right)$$
(19)
$$B(19) f = f_{\max} \text{ ири } f'=0$$

$$Begin chemis 3 начения f_{\max}, \sigma_{ii}(r,x,f), \sigma_{ii}(r,x,f), \sigma_{ii}(r,x,f)$$

$$npi 3 agamulax 3 начениях постоянных
v_{0} = 800M / сек; m = 10^{-3} \text{ кг, } \tau_{ii} = \tau_{ii} = 3 \cdot 10^{8} \text{ Ha;}$$

$$\begin{aligned} r_{0} &= 4 \quad 10 \quad M; \quad \tau_{x_{1}} = (0.55; \ 0.6; \ 0.7; \ 0.99)\tau_{x_{1}}, \\ \rho &= 2700 \kappa v! \ M^{3}; \quad k_{1} = 0.15; \quad \beta = 0.2; \quad 0.3; \quad 0.4; \\ a_{11} &= a_{22} = 7^{-1} \cdot 10^{-10}; \quad a_{12} = -25^{-1} \cdot 10^{-10}; \quad a_{23} = a_{13} = -7^{-1} \cdot 10^{-11}; \\ a_{33} &= 4.5^{-1} \cdot 10^{-10}; \quad \tau_{x_{1}} = 10^{8} \Pi a; \quad \xi = 1.7 \cdot 10^{-2} M \\ 0 &< x < f, \quad r_{k} < r < 2r_{k}\xi_{0}, \quad r_{k} = \gamma(f - x) \\ \mu &= a_{13} = a_{14} = \gamma(f - x) \\ \mu &= a_{14} = \alpha_{14} = \gamma(f - x). \end{aligned}$$

С целью подробного изучения влияния основного параметра анизотронни $k = \tau_{\alpha} / \tau_{\alpha}$ на поведение особенности, имеющей место в выражениях напряжений и на слубниу проникания индентора, проведен тщательный численный анализ. **6** τ_{α}

Изучено влияние нараметра k на σ_{ij} как в пластической области, так и на индепторе при разных β . Вычислены также значения $v(k,\beta)$ и $f_{nwx}(k,\beta)$. Указанные величниы вычислены на десяти разных глу

бинах проникания индентора. На фиг. 1.6 приведены зависимости указанных величии лишь для двух значений f и x, хотя результаты численных расчетов позволяют проследить за всем процессом проника

Фиг.4 Фиг.5 Фиг.6 ния. На фиг. 1.2 приведены значения $\sigma_n(k,\beta)$ и $\sigma_-(k,\beta)$ в момент, когда $f = 8 \cdot 10^{-4} M$ и $x = 3.7 \cdot 10^{-6} M$, т.е. для средних сечений конической части индентора, а на фиг. 4.5 в момент, когда $f = 1.5 \cdot 10^{-2} M$, т.е. когда индентор проник на величниу конусной части и $x = 1.2 \cdot 10^{-2} M$. Из графиков видно, что всегда наблюдается резкое увеличение σ_+ ири $k \rightarrow 0.5$. Для острых инденторов (кривые 1), где $\beta = 0.2$, влияние эффекта анизотронии более существенно, чем для кривых 2.3, где $\beta = 0.3$ и $\beta = 0.4$, соответственно. Наблюдается зависимость эффекта от координаты x: около веринны индентора σ_n и σ_{ii} при $k \rightarrow 0.5$ приобретают порядок 10^{10} Па, когда около цилии дрической части индентора σ_n и $\sigma_{ii} \sim 10^+ \div 10^+$ Па

На фиг.6 приведена зависимость $f_{\max}(k)$ для разных β . Как и следовало ожидать, из поведения напряжений на индеиторе эффект умень цения глубины проникания для острых индеиторов намного больше.

Таким образом, применение гипотезы пормальных сечений, как и при применении гипотезы плоских сечений, показывает, что за счет подходящего выбора анизотропии среды можно существению уменьшить глубицу проникания підентора.

ЛИТЕРАТУРА

 Backman M.E., Goldsmith W. The Mechanics of Penetration Projectiles into targets. Int. T. Eng. Sci. 1978, v. 16, N1, pp. 1-100.

- 2. Сагомонян А.Я. Проникание. М.: Изд-во МГУ, 1974
- Вагдоев А.Г., Ванцян А. А. Проникание тонких тел в упругие среды – Нля, АН Арм ССР, Механика, 1981. г. 34, N1, с. 344.
- Forrestal M.J., Okojima K., Luk V.K. Penetration of 6061 T651 Aluminum Targets With Rigid Long Rods. Journal of Applied Mechanics, December, 1988, vol. 55, N 4, pp. 755 760
- Баум Ф.А., Орленко Л. П., Станокович К. П., Чельниев В. П., Шехтер Б.И. Физика взрыва. – М.: Над. Наука, 1975. 704 с.
- Бригорян С.С. Некоторые вопросы математической теории дефор мации горных пород. - ПММ, 1967, т. 31, N 4, с. 643 669.
- Черенанов Г.П. Механика хрупкого разрушения М.: Паука, 1974. 640 с.
- Багдоев А.Г., Ванцян А.А. Проникание тонкого тела в упругие анизотронные среды. – Изв. АН Арм ССР, Механика, 1983, г. 36, N 6, с. 23-30.
- Багдоев А.Г., Ваниян А.А., Григорян М.С. Влияние анизотронных свойств металлических образцов на проникание – Изв. АН Арм. ССР, Механика, 1988, т. 41, N 6, с. 28-34.
- Сагомонян А. Я. Динамика пробывания преград. М.: Изд. МГУ. 1988.
- Нонов В.Н., Огибалов П.М. Напряжения в телах при импульсном нагружении. М.: Высшая школа, 1975. 463 с.
- Хилл Р. Математическая теория пластичности. М.: Гостехиздат, 1956. 407 с.
- 13. Ванцян А.А. Проникание тупого конуса, переходящего в цилиндр. в первоначально упругую среду. Проблемы динамики взаимо действия деформируемых сред. 1987.

Институт механики ПАН Армении Поступила в редакцию 3.05.1995