ՎԵՄՎՄԵՐՄԻՄ ՄՎԵՄՔԸՍ ՎԴԵՄ-ՄՈԵԹՎՈՏՎՔ ՎՄՍՏՍՍԵՄ ԴՎՔՄԻԺՐԵ

ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАЛЕМИИ НАУК АРМЕНИИ

Մեխանիկա

49, N° 1, 1996

Механика

О ВЛИЯНИИ ГРАНИЧНЫХ УСЛОВИЙ ЗАДАЧИ ИЗГИБА ПРЯМОУГОЛЬНЫХ ПЛАСТИН С УЧЕТОМ ПОПЕРЕЧНЫХ СДВИГОВ

Ананян А.К.

Ա.Կ. Անանյան

Եզրային պայմանների ազդնցությունը ուղղանկյուն սալի ծոման խնդրում ընդլայնական սահքերի հաշվառմամր

Աշխապանըում դիդարկվում է ուղղանկյուն կւրրվածքով իզուրրուղ սայի ծոման խնդիրը, որը լուծված է Ս.Ա.Տամբարձումյանի սալերի ճշգրւրված զոնսությամբ։ Տրված է խնդրի ընդհանուր լուծումը սայի սինու-

սոիդային բնոնավորման ժամանակ, երկու փարբեր եզրային պայմանների դեպքում։

Մփացված են առավելագույն ձկվածքների արդահայգությունները այդ դեպքերի համար։ Կապարված է թվային վերյուծություն, որի արդյունքները ցույց են փայիս, որ եզրային պայմանների ճշգրդվան հնգնանիցով սպացված առավերոգույն ճկվածքի արժեքը էսայես դրարբերվում է այն այժեքից, որը ուրացվել էր մինչեւ ճշգրդումը։ Իսկ սայերի դասական դեսությամբ առավելագույն ձկվածքների արժեքները այդ երկու դեպքերի համար համընկնում են։

A.K. Ananian

On the Influence of Boundary Conditions in the Problem of Rectangular Plate Bending with the Account of Shear Strains

Уточненная теория С.А.Амбарцумяна широко применяется в задачах по изгибу анизотропных пластин при различных граничных условиях [1]. Эта теория использована А.П.Мелконяном и А.А.Хачатряном при решении задачи изгиба прямоугольной, трансверсально-изотропной пластинки, равномерно распределенной нагрузкой q = COTISt при следующих граничных условиях: 1) пластинка свободно оперта по всем краям; 2) пластинка свободно оперта по двум противоположным краям, а по двум другим - защемлена [2].

В настоящей работе рассматривается задача по изгибу изотропной пластинки прямоугольного сечения с применением уточненной теории [1]. Приводится общее решение задачи при синусоидальной нагрузке с двумя вариантами граничных условий. Целью настоящей работы является вычисление значений максимальных прогибов в задачах изгиба пластинки с уточненными граничными усло-

виями при помощи уточненной теории пластин С.А.Амбарцумяна [1].

1. Рассмотрим шарнирно опертую по всему контуру изотропную прямоугольную пластинку $(a \times b)$, которая изгибается нормально приложенной нагрузкой Z = Z(x,y). Не нарушая общности задачи, можно представить Z в виде $Z = q_0 \sin \frac{\pi x}{a}$.

Для изотропной пластинки задача изгиба по уточненной теории приводится к решению следующих уравнений:

$$D\Delta\Delta W + \frac{2I_1}{(1-v)I_0}\Delta Z = Z \tag{1.1}$$

где
$$I_1 = \int_{-\Lambda}^{\Lambda} z I(z) dz$$
; $I_0 = \int_{-\Lambda}^{\Lambda} f(z) dz$; $I(z) = \int_{0}^{\pi} f(z) dz$

f(z)- функция, характеризующая закон изменения касательных напряжений $au_{_{
m TZ}}$ и $au_{_{
m YZ}}$ по толщине пластинки, причем f(-h)=f(h)=0 [1,3]

$$\Delta F = -\frac{1+\nu}{EI_0}Z\tag{1.2}$$

где
$$\phi(x,y) = \frac{\partial F(x,y)}{\partial x}$$
 и $\psi(x,y) = \frac{\partial F(x,y)}{\partial y}$.

- искомые функции, входящие в выражения касательных напряжений τ_{xz} , τ_{yz} :

$$\tau_{xz} = f(z)\phi(x,y), \ \tau_{yz} = f(z)\psi(x,y)$$

Граничные условия рассматриваемой задачи представляют условия Навье и запишутся следующим образом:

$$x = \text{const:} \quad \sigma_{11} = 0; \quad u_2 = 0; \quad u_3 = 0$$

 $y = \text{const:} \quad \sigma_{22} = 0; \quad u_1 = 0; \quad u_3 = 0$ (1.3)

После интегрирования условий Навье по Z, в пределах -h до h, получаются следующие осредненные граничные условия:

$$x = 0$$
; a. $W = 0$; $\frac{\partial^2 W}{\partial x^2} - \frac{3I_1}{h^3} \frac{\partial^2 F}{\partial x^2} = 0$; $F = 0$
 $y = 0$; b. $W = 0$; $\frac{\partial^2 W}{\partial y^2} - \frac{3I_1}{h^3} \frac{\partial^2 F}{\partial y^2} = 0$; $F = 0$

Полагая функцию прогиба
$$W(x,y) = J(y) \sin \frac{\pi x}{a}$$
 (1.4)

и функцию
$$F(x,y) = \Phi(y) \sin \frac{\pi x}{a}$$
 (1.5)

удовлетворяются поставленные условия шарнирной опоры.

Подставляя значение прогиба W(x,y) из (1.4) в уравнение (1.1), получим

$$J(y) = A_1 \operatorname{sh} \alpha y + A_2 \operatorname{ch} \alpha y + A_3 y \operatorname{sh} \alpha y + A_4 y \operatorname{ch} \alpha y + \frac{q_0 R_0}{D \alpha^4}$$
(1.6)

где
$$R_0 = 1 + \frac{2I_1\alpha^2}{(1-\nu)I_0}$$
; $\alpha = \frac{\pi}{a}$

Принимая во внимание выражение (1.6), для функции прогиба B'(x,y) нетрудно получить:

$$W(x,y) = \left\{ A_1 \operatorname{sh} \alpha y + A_2 \operatorname{ch} \alpha y + A_3 y \operatorname{sh} \alpha y + A_4 y \operatorname{ch} \alpha y + \frac{\widehat{q}_0 R_0}{D\alpha^4} \right\} \operatorname{sin} \alpha x \quad (1.7)$$

На основании выражения (1.5), из уравнения (1.2) получим:

$$\Phi(y) = C_1 \sinh \alpha y + C_2 \cosh \alpha y + \frac{1+v}{\alpha^2 E I_0} q_0$$
 (1.8)

$$F(x,y) = \left\{ C_1 \operatorname{sh} \alpha y + C_2 \operatorname{ch} \alpha y + \frac{1+v}{\alpha^2 E I_0} q_0 \right\} \operatorname{sin} \alpha x \tag{1.9}$$

С помощью функций J(y) и $\Phi(y)$ граничные условия запишутся следующим образом:

$$y = 0$$
: $J(0) = 0$; $J''(0) - \frac{3I_1}{h^3} \Phi''(0) = 0$; $\Phi(0) = 0$
 $y = b$: $J(b) = 0$; $J''(b) - \frac{3I_1}{h^3} \Phi''(b) = 0$; $\Phi(b) = 0$ (1.10)

Удовлетворяя граничным условиям, получаем систему из шести алгебраических уравнений с шестью неизвестными. Определяя эти неизвестные, получаются выражения для функций прогиба W(x,y) и F(x,y). Имея функцию F(x,y), можно получить значения неизвестных функций $\phi(x,y)$ и $\psi(x,y)$, которые входят в выражения касательных напряжений, и следовательно, можно получить значения этих касательных напряжений.

Для функций прогиба W(x,y) и функций F(x,y) получаются следующие выражения:

$$W(x,y) = \frac{q_0}{D\alpha^4} \left\{ -2\left(1 + \frac{2I_1\alpha^2}{(1-v)I_0}\right) \frac{\sin\alpha(v-b)/2\sin\alpha v/2}{\cot\alpha b/2} + \frac{\alpha}{2} \left[\frac{\sin\alpha(v-b/2)}{\cot\alpha b/2} y - \frac{\sin\alpha v}{\sin\alpha b} b \tan b/2 \right] \right\} \sin\alpha x$$
(1.11)

$$F(x,y) = -\frac{2(1+v)}{\alpha^2 E I_0} q_0 \frac{\operatorname{sh}\alpha(y-b)/2 \operatorname{sh}\alpha y/2}{\operatorname{ch}\alpha b/2} \sin \alpha x \tag{1.12}$$

Теперь подсчитаем максимальный прогиб, который находится в точке $\left(a/2;b/2\right)$

$$W_{\text{max}} = W^{(1)} = \frac{q_0 u^4}{D\pi^4} \left\{ 1 - \frac{2 + \beta \, \text{th} \, \beta}{2 \, \text{ch} \, \beta} + \frac{4 I_1 \pi^2}{(1 - \nu) I_0 a^2} \frac{\text{sh}^2 \, \beta \, / \, 2}{\text{ch} \, \beta} \right\}$$
(1.13)

где $\beta = \frac{\pi b}{2a} = \frac{\alpha b}{2}$ - безразмерная величина.

2. Решим предыдущую задачу при других граничных условиях на краях $u = \mathrm{const}\,.$

Пусть на краях $x = \mathrm{const}$ даны граничные условия Навье, а на краях $y = \mathrm{const}$ следующие условия:

$$x = \text{const:}$$
 $\sigma_{11} = 0$, $u_2 = 0$, $u_3 = 0$
 $y = \text{const:}$ $\sigma_{22} = 0$, $\sigma_{12} = 0$, $u_3 = 0$ (2.1)

Интегрируя (2.1) по z в пределах от -h до h, получаются следующие осредненные граничные условия:

$$x = 0; a. W = 0; \frac{\partial^2 W}{\partial x^2} - \frac{3I_1}{h^3} \frac{\partial^2 F}{\partial x^2} = 0; F = 0$$

$$y = -\frac{b}{2}; \frac{b}{2}. W = 0; \frac{\partial^2 W}{\partial y^2} - \frac{3I_1}{h^3} \left(\frac{\partial^2 F}{\partial y^2} + v \frac{\partial^2 F}{\partial x^2}\right) = 0$$

$$\frac{\partial W}{\partial y} - \frac{3I_1}{h^3} \frac{\partial F}{\partial y} = 0$$

Граничные условия, написанные с помощью функций J(v) и $\Phi(v)$, будут

$$y = -\frac{b}{2}: J(-b/2) = 0; J''(-b/2) - \frac{3I_1}{h^3} (\Phi''(-b/2) - \alpha^2 v \Phi(-b/2)) = 0$$
$$J'(-b/2) - \frac{3I_1}{h^3} \Phi'(-b/2) = 0$$
$$y = \frac{b}{2}: J(b/2) = 0; J''(b/2) - \frac{3I_1}{h^3} (\Phi''(b/2) - \alpha^2 v \Phi(b/2)) = 0$$
$$J'(b/2) - \frac{3I_1}{h^3} \Phi'(b/2) = 0$$

Удовлетворяя граничным условиям, получается система из шести алгебраических уравнений с шестью неизвестными. Определяя эти неизвестные, получаются выражения для функции прогиба W(x,y) и F(x,y)

$$W(x,y) = \frac{q_0}{D\alpha^4} \left\{ \frac{\alpha b v \sinh^2 \alpha b / 2 \cosh \alpha y}{\alpha b - \sinh \alpha b - v(\alpha b + \sinh \alpha b) \cosh \alpha b / 2} - \left(1 + \frac{2I_1\alpha^2}{(1-v)I_0} \right) \left(\frac{\cosh \alpha y}{\cosh \alpha b / 2} - 1 \right) - \frac{2\alpha v \sinh \alpha b / 2}{\alpha b - \sinh \alpha b - v(\alpha b + \sinh \alpha b)} \times (2.2) \times y \sinh \alpha y \right\} \sin \alpha x$$

$$F(x,y) = \left\{ \frac{q_0 h^3}{3 D\alpha^4 I_1} \left(1 + \frac{2I_1 \alpha^2}{(1-\nu)I_0} - \frac{\nu(\alpha b + \sin \alpha b)}{\alpha b - \sin \alpha b - \nu(\alpha b + \sin \alpha b)} \right) \times \frac{\cosh \alpha y}{\cosh \alpha b / 2} - \frac{1+\nu}{\alpha^2 E I_0} q_0 \right\} \sin \alpha x$$
(2.3)

Имея (2.3), можно легко найти функции $\varphi(x,y)$ и $\psi(x,y)$. Теперь подсчитаем максимальный прогиб, который находится в точке (a/2;0).

$$W_{\text{max}} = W^{(2)} = \frac{q_0 a^4}{D \pi^4} \left\{ 1 - \frac{1}{\cosh \beta} + \frac{2 \nu \beta \sinh^2 \beta}{2\beta - \sinh 2\beta - \nu (2\beta + \sinh 2\beta) \cosh \beta} + \frac{4 I_1 \pi^2}{(1 - \nu) I_0 a^2} \frac{\sinh^2 \beta / 2}{\cosh \beta} \right\}$$
(2.4)

где $\beta = \frac{\pi b}{2a} = \frac{\alpha b}{2}$ - безразмерная величина.

Для сравнения значений максимальных прогибов, при $\beta=1$ и $\beta=1/2$ приведена следующая таблица, где $\nu=1/3$ и при $f(z)=1-z^2/h^2$ имеем $I_1/I_0=\frac{2}{5}h^2$.

Таблица

	β=1		β=1/2	
	2h/a = 1/10	2h/a=1/3	2h/a = 1/10	2h/a=1/3
Ψ	0,1053	-	0,0108	-
Ψ(1)	0,1158	0,2225	0,0142	0,0485
Ψ ⁽²⁾	0,1589	0,2656	0,0254	0,0597

где $\Psi = W \, rac{D \pi^4}{q_0 a^4}$ - максимальный прогиб вычислений по классической теории,

$$\Psi^{(1)} = W^{(1)} \frac{D\pi^4}{q_0 a^4}, \quad \Psi^{(2)} = W^{(2)} \frac{D\pi^4}{q_0 a^4}$$

Из таблицы видно, что при уточнении граничных условий максимальный прогиб в задаче с граничными условиями Навье существенно отличается от максимального прогиба в задаче с граничными условиями (2.1).

По классической теории же Кирхгофа эти результаты одинаковы, так как при осреднении граничных условий (1.3) и (2.1), получаются уравнения шарнирно-опертого края.

ЛИТЕРАТУРА

- 1. Амбарцумян С.А. Теория анизотропных пластин.-М.: Физматгиз, 1987.
- Мелконян А.П., Хачатрян А.А. Об изгибе прямоугольных трансверсальноизотропных пластинок. - Изв. АН Арм.ССР, сер. физ-мат. наук, 1965, т. 18, № 1.
- 3. Белубекян В.М. Канд.дисс. "Определение коэффициентов особенностей в некоторых задачах теории упругости для секториальных тел". ЕГУ, 1991.

Институт механики НАН Армении

Поступила в редакцию 22.06.1994