ՎԵՄՎԱԳՐՈՒՄ ՀՎԵՍՔԱՍ ՎՎԵՐՆՎԵՐԻ ՎՀԱՏԱՍԵՍՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

известия национальной академии наук армении

Մեխանիկա

47, N° 5-6, 1994

Механика

КОНТАКТНАЯ ЗАДАЧА ДЛЯ УПРУГОЙ БЕСКОНЕЧНОЙ ПЛАСТИНЫ, УСИЛЕННОЙ КРЕСТООБРАЗНЫМ КОНЕЧНЫМ СТРИНГЕРОМ

Григорян Э.Х., Торосян Д.Р.

է. Խ. Գրիգորյան, Դ. Ռ. Թորոսյան

Վերջավոր խաչաձել վերադիրով ուժեղացված անվերջ սայի հասար կոնցակցային խնդիր

Դիրարկված է վերջավոր խաչաձև վերադիրով ուժեղացված անվերջ սալի համար կոնդակ-դային ինդիր։ Մայր դեֆորմազվում է անվերջում կիրառված ուժերի ազդեցության լումբ։ Ֆակրորիզագիայի մերադի չրկանի ինդիրը բերված է հանրահաշվական հավասարումների քվագիլիովին օեցույստ անվերջ համակարգի։

Grigorian E. Kh., Torosian D.R.

The Contact Problem for Elastic Infinite Plate, Reinforced by Crestwise Finite Stringer

В работе рассматривается контактная задача для бесконечной упругой пластины, усиленной крестообразным конечным стрингером, состоящей из двух в-амимо перпендикулярных, одинаковых стрингеров.Пластина деформируется под действием сил, приложенных на бесконечности по горизонтальным и вертикальным направлениям. Задача сводится к решению сингулярных интегральных уравнений с неподвижной особенностью, а затем - к решению функциональных уравнений Винера-Хопфа. Решение функциональных уравнений строится сведением их к квазивполне рагулярной совокупности бесконечных систем иннейсивностей контактных усилий.

Пусть упругая бесконечная пластина толщины h **усилена** крестообразным конечным стрингером с модулем упругости $oldsymbol{E}_-$ и с площадью поперечного сечения F_{\cdot} . Ширина креста равна $2a_{\cdot}$ Пластина деформируется под действием СИЛ р и ц, приложенных на бесконечности направленных no x и по у, соответственно. Относительно крестообразного стрингера принимается модель контакта по линии, то есть предполагается, что касательные контактные усилия сосредоточены вдоль средней линии контактного участка. Тогда, уравнения равновесия стрингера запишутся в виде

$$\begin{split} \frac{\partial u^{(1)}(x)}{\partial x} &= -\frac{1}{E_{s}F_{s}}\int_{-a}^{a} \Theta(x-t)\tau^{(1)}(t)dt \\ &\qquad \qquad \left(|x| < a, \ |y| < a\right) \\ \frac{\partial v^{(1)}(y)}{\partial y} &= -\frac{1}{E_{s}F_{s}}\int_{-a}^{a} \Theta(y-\eta)\tau^{(2)}(\eta)d\eta \end{split}$$

где $u^{(1)}(x), \ v^{(1)}(y)$ - горизонтальные и вертикальные перемещения точек крестообразного стрингера, соответственно, а $\tau^{(1)}(x), \ \tau^{(1)}(y)$ - касательные контактные усилия, $\Theta(x)$ - функция Хевисайда.

Заметим, что имеют место условия

$$\int \tau^{(1)}(t)dt = 0, \quad \int \tau^{(2)}(\eta)d\eta = 0$$

С другой стороны, для пластины имеем

$$\frac{\partial u^{(2)}(x,y)}{\partial x}\bigg|_{y=0} = -\frac{(3-v)(1+v)}{4\pi E h} \int_{-a}^{a} \frac{\tau^{(1)}(t)}{t-x} dt + \frac{(1+v)^{2}}{4\pi E h} \int_{-a}^{a} \frac{\eta(\eta^{2}-x^{2})}{(\eta^{2}+x^{2})^{2}} \tau^{(2)}(\eta) d\eta + \frac{p}{E} - \frac{vq}{E}$$

$$\frac{\partial v^{(2)}(x,y)}{\partial x}\bigg|_{x=0} = -\frac{(3-v)(1+v)}{4\pi E h} \int_{-a}^{a} \frac{\tau^{(2)}(\eta)}{\eta-y} d\eta + \frac{(1+v)^{2}}{4\pi E h} \int_{-a}^{a} \frac{t(t^{2}-y^{2})}{(t^{2}+y^{2})^{2}} \tau^{(1)}(t) dt + \frac{q}{E} - \frac{vp}{E}$$

 $(-\infty < x, y < \infty)$

где $u^{(2)}(x,y),\ v^{(2)}(x,y)$ - горизонтальные и вертикальные перемещения точек пластины соответственно, V - коэффициент Пуассона, E - модуль упругости пластины.

Далее, имея в виду условия контакта

$$\frac{\partial u^{(1)}(x)}{\partial x} = \frac{\partial u^{(2)}(x,0)}{\partial x}, \quad |x| < a$$

$$\frac{\partial v^{(1)}(y)}{\partial y} = \frac{\partial v^{(2)}(0,y)}{\partial y}, \quad |y| < a$$

и нечетность функций $au^{(1)}(x), \; au^{(2)}(y).$ будем иметь

$$\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{1}{t-x} + \frac{1}{t+x} \right) t^{(1)}(t) dt - \frac{2A}{\pi} \int_{0}^{\pi} \frac{\eta(\eta^{2} - x^{2})}{(\eta^{2} + x^{2})^{2}} \tau^{(1)}(\eta) d\eta + R_{1} =$$

$$= -\lambda_{1} \int_{0}^{\pi} \Theta(t-x) \tau^{(1)}(t) dt \qquad (0 < x < a)$$

$$\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{1}{\eta - y} + \frac{1}{\eta + y} \right) t^{(2)}(\eta) d\eta - \frac{2A}{\pi} \int_{0}^{\pi} \frac{t^{2}(t^{2} - y^{2})}{(t^{2} + y^{2})^{2}} \tau^{(1)}(t) dt + R_{2} =$$

$$= -\lambda_{1} \int_{0}^{\pi} \Theta(\eta - y) \tau^{(2)}(\eta) d\eta \qquad (0 < y < a)$$

где

$$A = \frac{1+v}{3-v}, \quad \lambda_1 = \frac{4Eh}{E_i F_i (3-v)(1+v)},$$

$$R_1 = \frac{4h}{(3-v)(1+v)} (vq - p), \quad R_2 = \frac{4h}{(3-v)(1+v)} (vp - q)$$

Таким образом, задача свелась к решению системы сингулярных интегральных уравнений с неподвижной особенностью в нуле (1).

Плоская задача о крутильных колебаниях жесткого крестообразного включения рассмотрена в работе [1]. Решение системы уравнений (1) построим с помощью метода, изложенного в работе [2], и ищем его в классе функций равные в нуле при нулевом значении аргумента и суммируемые на отрезке $(0,\alpha)$.

Для этого запишем (1) в виде

$$\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{1}{t-x} + \frac{1}{t+x} \right) \tau_{-}^{(1)}(t) dt - \frac{2A}{\pi} \int_{0}^{\pi} \frac{\eta(\eta^{2} - x^{2})}{(\eta^{2} + x^{2})^{2}} \tau_{-}^{(2)}(\eta) d\eta =$$

$$= -\Theta(a-x) \lambda_{1} \int_{0}^{\pi} \Theta(t-x) \tau_{-}^{(1)}(t) dt - R_{1}\Theta(a-x) + g_{+}^{(1)}(x)$$

$$\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{1}{\eta - y} + \frac{1}{\eta + y} \right) \tau_{-}^{(2)}(\eta) d\eta - \frac{2A}{\pi} \int_{0}^{\pi} \frac{t(t^{2} - y^{2})}{(t^{2} + y^{2})^{2}} \tau_{-}^{(1)}(t) dt =$$

$$= -\Theta(a-y) \lambda_{1} \int_{0}^{\pi} \Theta(\eta - y) \tau_{-}^{(2)}(\eta) d\eta - R_{2}\Theta(a-y) + g_{+}^{(2)}(y)$$
(2)

где

$$\begin{split} &\tau_{-}^{(1)}(x) = \Theta(a-x)\tau^{(1)}(x), \quad \tau_{-}^{(2)}(y) = \Theta(a-y)\tau^{(2)}(y) \\ &g_{*}^{(1)}(x) = \frac{4Eh}{(3-v)(1+v)} \left(\frac{p}{t!} - \frac{vq}{t!} - \frac{\partial u^{(2)}(x,0)}{\partial x}\right) \Theta(x-a) \\ &g_{*}^{(1)}(y) = \frac{4Eh}{(3-v)(1+v)} \left(\frac{q}{E} - \frac{vp}{E} - \frac{\partial v^{(2)}(0,y)}{\partial y}\right) \Theta(y-a) \end{split}$$

Далее, произведя в (2) замену переменных $x=ae^*$, $t=ae^*$, $\eta=ae^*$, $y=ae^*$, получим

$$\frac{1}{\pi} \underbrace{\int}_{-1}^{1} \left(\frac{1}{1 - e^{v - u}} + \frac{1}{1 + e^{v - u}} \right) \tau_{-}^{(1)} (ae^{u}) du - \frac{2A}{\pi} \underbrace{\int}_{-1}^{1} \frac{\left(1 - e^{2(v - u)} \right)}{\left(1 + e^{2(v - u)} \right)^{2}} \tau_{-}^{(2)} (ae^{u}) du =$$

$$= -\lambda \Theta(-v) \underbrace{\int}_{-1}^{1} \Theta(u - v) \tau_{-}^{(1)} (ae^{u}) e^{u} du - R_{1} \Theta(-v) + g_{+}^{(1)} (ae^{v})$$

$$\frac{1}{\pi} \underbrace{\int}_{-1}^{1} \left(\frac{1}{1 - e^{v - u}} + \frac{1}{1 + e^{v - u}} \right) \tau_{-}^{(2)} (ae^{u}) du - \frac{2A}{\pi} \underbrace{\int}_{-1}^{1} \frac{\left(1 - e^{2(v - u)} \right)}{\left(1 + e^{2(v - u)} \right)^{2}} \tau_{-}^{(1)} (ae^{u}) du =$$

$$= -\lambda \Theta(-w) \underbrace{\int}_{-1}^{1} \Theta(u - w) e^{u} \tau_{-}^{(2)} (ae^{u}) du - R_{2} \Theta(-w) + g_{+}^{(2)} (ae^{w})$$
(3)

 $(-\infty < v, w < \infty)$

rge $\lambda = \lambda.a$

Теперь, применив к (3) преобразования Фурье, задачу сведем к решению системы функционально-разностных уравнений:

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(1)}(\alpha - i) = -\frac{R_1}{\alpha} + i \, \overline{g}_{+}^{(1)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\operatorname{cth} \frac{\pi \alpha}{2} \, \overline{\tau}_{-}^{(2)}(\alpha) + \frac{i(\alpha + i)A}{\operatorname{sh} \frac{\pi \alpha}{2}} \, \overline{\tau}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}^{(2)}(\alpha - i) = -\frac{R_2}{\alpha} + i \, \overline{g}_{+}^{(2)}(\alpha)$$

$$\overline{\overline{\tau}_{-}^{(k)}}(\alpha) = \int_{-\infty}^{\infty} \overline{\tau_{-}^{(k)}}(ae^{u})e^{i\alpha u}du$$

$$\overline{\overline{g}_{+}^{(k)}}(\alpha) = \int_{-\infty}^{\infty} \overline{g}_{+}^{(k)}(ae^{u})e^{i\alpha u}du$$

$$(k = 1,2)$$

 $\overline{t}_-^{(1)}(\alpha), \ \overline{t}_-^{(2)}(\alpha)$ - регулярны при ${\rm Im}\,\alpha<0$, а $\overline{g}_+^{(1)}(\alpha), \ \overline{g}_+^{(2)}(\alpha)$ - при ${\rm Im}\,\alpha>-1$.

Переходя к решению системы функциональных уравнений, сложим первое уравнение системы (4) со вторым и отнимем от первого второе. В итсге получим два независимых функциональных уравнения:

$$\overline{K}^{(1)}(\alpha)\overline{\phi}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha}\overline{\phi}_{-}^{(1)}(\alpha - i) = \frac{Q_1}{\alpha} + \overline{G}_{+}^{(1)}(\alpha)$$
(5)

$$\overline{K}^{(2)}(\alpha)\overline{\varphi}_{-}^{(2)}(\alpha) + \frac{\lambda}{\alpha}\overline{\varphi}_{-}^{(2)}(\alpha - i) = \frac{Q_2}{\alpha} + \overline{G}_{+}^{(2)}(\alpha)$$
(6)

$$(-1 < \operatorname{Im} \alpha < 0)$$

где

$$\begin{split} & Q_1 = -R_1 - R_2, \quad Q_2 = R_2 - R_1 \\ & \overline{G}_+^{(1)}(\alpha) = i \Big(\overline{g}_+^{(1)}(\alpha) + \overline{g}_+^{(2)}(\alpha) \Big), \quad \overline{G}_+^{(2)}(\alpha) = i \Big(\overline{g}_+^{(1)}(\alpha) - \overline{g}_+^{(2)}(\alpha) \Big) \\ & \overline{\Phi}_-^{(1)}(\alpha) = \overline{\tau}_-^{(1)}(\alpha) + \overline{\tau}_-^{(2)}(\alpha), \qquad \overline{\Phi}_-^{(2)}(\alpha) = \overline{\tau}_-^{(1)}(\alpha) - \overline{\tau}_-^{(2)}(\alpha) \\ & \overline{K}^{(1)}(\alpha) = \frac{\operatorname{ch} \frac{\pi \alpha}{2} + i (\alpha + i) A}{\operatorname{sh} \frac{\pi \alpha}{2}}, \quad \overline{K}^{(2)}(\alpha) = \frac{\operatorname{ch} \frac{\pi \alpha}{2} - i (\alpha + i) A}{\operatorname{sh} \frac{\pi \alpha}{2}} \end{split}$$

Сначала рассмотрим уравнение (5) и применим к нему метод Вичера-Хопфа [3]. Для этого факторизуем $\overline{K}^{(1)}(\alpha)$, представив ее в виде

$$\overline{K}^{(1)}(\alpha) = \overline{K}^{(1)}(\alpha) \, \overline{K}^{(1)}(\alpha) \tag{7}$$

$$\overline{K}_{+}^{(1)}(\alpha) = \overline{M}_{+}(\alpha)\overline{L}_{+}(\alpha), \ \overline{K}_{-}^{(1)}(\alpha) = \overline{M}_{-}(\alpha)\overline{L}_{-}(\alpha)$$

$$\overline{M}_{\star}(\alpha) = \sqrt{2} \frac{\Gamma\left(1 - \frac{i\alpha}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{i\alpha}{2}\right)}, \ \overline{M}_{-}(\alpha) = \frac{\sqrt{2}}{\alpha} \frac{\Gamma\left(1 + \frac{i\alpha}{2}\right)}{\Gamma\left(\frac{1}{2} + \frac{i\alpha}{2}\right)}$$

$$T_{-}(\alpha) = \int_{0}^{\infty} L(u)e^{i\alpha u}du, \quad T_{-}(\alpha) = \int_{-\infty}^{0} L(u)e^{i\alpha u}du$$

$$L(u) = \frac{1}{2\pi} \int_{\pi-u}^{\pi+u} \ln \left(1 + \frac{i(\alpha + i)A}{\operatorname{ch} \frac{\pi\alpha}{2}}\right) e^{-\pi u u} d\alpha \quad (-1 < \tau < 0)$$

 $\Gamma(z)$ - известная функция-гамма.

Очевидно, что $\overline{M}_{\star}(\alpha)$, $\overline{L}_{\star}(\alpha)$ регулярны при $\operatorname{Im} \alpha > -1$, а $\overline{M}_{-}(\alpha)$, $\overline{L}_{-}(\alpha)$ - при $\operatorname{Im} \alpha < 0$, и в своих областях регулярности не имеют нулей. Кроме того, $\overline{M}_{\star}(\alpha) \sim \alpha^{1/2}$, $\overline{L}_{\star}(\alpha) \sim O(1)$ при $\operatorname{Im} \alpha > -1$, $|\alpha| \to \infty$, $\overline{M}_{-}(\alpha) \sim \alpha^{-1/2}$, $\overline{L}_{-}(\alpha) \sim O(1)$ при $\operatorname{Im} \alpha < 0$, $|\alpha| \to \infty$,

Имея в виду (7), уравнение (5) можно записать в виде

$$\overline{K}_{-}^{(1)}(\alpha)\overline{\phi}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha}\overline{\Phi}_{-}^{(1)}(\alpha) - \frac{Q_{1}}{\alpha K_{+}^{(1)}(0)} + \frac{\lambda}{\alpha}\overline{\Phi}_{+}^{(1)}(0) =$$

$$= \frac{\overline{G}_{+}^{(1)}(\alpha)}{\overline{K}_{+}^{(1)}(\alpha)} + \frac{Q_{1}}{\alpha \overline{K}_{+}^{(1)}(\alpha)} - \frac{Q_{1}}{\alpha \overline{K}_{+}^{(1)}(0)} - \frac{\lambda}{\alpha} \left(\overline{\Phi}_{+}^{(1)}(\alpha) - \overline{\Phi}_{+}^{(1)}(0)\right) \qquad (8)$$

$$(-1 < \operatorname{Im} \alpha < 0)$$

rge
$$\overline{\Phi}^{(1)}(\alpha) = \overline{\Phi}^{(1)}_+(\alpha) + \overline{\Phi}^{(1)}_-(\alpha)$$

$$\overline{\Phi}_{+}^{(1)}(\alpha) = \int_{0}^{\infty} \Phi^{(1)}(u)e^{i\alpha u} du, \quad \overline{\Phi}_{-}^{(1)}(\alpha) = \int_{-\infty}^{0} \Phi^{(1)}(u)e^{i\alpha u} du$$

$$\overline{\Phi}^{(1)}(u) = \frac{1}{2\pi} \int_{\tau=-\infty}^{\tau=+\infty} \overline{\Phi}^{(1)}(\alpha) e^{-i\alpha u} d\alpha \qquad (-1 < \tau < 0)$$

$$\overline{\Phi}^{(1)}(\alpha) = \frac{\overline{\Phi}_{-}^{(1)}(\alpha - i)}{\overline{K}_{+}^{(1)}(\alpha)}$$

 $\overline{\Phi}_{+}^{(1)}(\alpha)$ регулярна при ${
m Im}\, \alpha>-1$, а $\overline{\Phi}_{-}^{(1)}(\alpha)$ - при ${
m Im}\, \alpha<0$. Функции $\overline{\Phi}_{-}^{(1)}(\alpha)$ в своих областях регулярности имеют порядок $O\left(\dfrac{\ln\alpha}{\alpha}\right)$ при $|\alpha|\to\infty$. Кроме того, $\overline{\Phi}_{-}^{(1)}(\alpha)\sim\alpha^{-1/2}$ при $|\alpha|\to\infty$, ${
m Im}\, \alpha<0$, $\overline{G}_{+}^{(1)}(\alpha)\sim\alpha^{-1/2}$ при $|\alpha|\to\infty$, ${
m Im}\, \alpha<0$, $\overline{G}_{+}^{(1)}(\alpha)\sim\alpha^{-1/2}$ при $u\to0$, а ${
m Cl}_{+}^{(1)}(u)=g_{+}^{(1)}(ue^{-u})+g_{+}^{(1)}(ue^{-u})\sim u_{+}^{-1/4}$ при $u\to+0$. В силу вышесказанного, левые и правые части равенства (8) стремятся к нулю. Тогда, а силу теоремы об аналитическом продолжении и на основе теоремы Лиувиля, будем иметь

$$\begin{split} \overline{K}_{-}^{(1)}(\alpha)\overline{\phi}_{-}^{(1)}(\alpha) + \frac{\lambda}{\alpha}\overline{\Phi}_{-}^{(1)}(\alpha) - \frac{Q_{1}}{\alpha\overline{K}_{+}^{(1)}(0)} + \frac{\lambda}{\alpha}\overline{\Phi}_{+}^{(1)}(0) = 0 \\ \frac{G_{+}^{(1)}(\alpha)}{\overline{K}_{+}^{(1)}(\alpha)} + \frac{Q_{1}}{\alpha\overline{K}_{+}^{(1)}(\alpha)} - \frac{Q_{1}}{\alpha\overline{K}_{+}^{(1)}(0)} - \frac{\lambda}{\alpha}(\overline{\Phi}_{+}^{(1)}(\alpha) - \overline{\Phi}_{+}^{(1)}(0)) = 0 \end{split}$$

$$(9)$$

Из (9) получим

$$\overline{\varphi}_{-}^{(1)}(\alpha) + \frac{\lambda \overline{\Phi}_{-}^{(1)}(\alpha)}{\alpha \overline{K}_{-}^{(1)}(\alpha)} = \frac{Q_1}{\alpha \overline{K}_{+}^{(1)}(0) \overline{K}_{-}^{(1)}(\alpha)} - \frac{\lambda \overline{\Phi}_{+}^{(1)}(0)}{\alpha \overline{K}_{-}^{(1)}(\alpha)}$$
(10)

$$\tau^{(1)}(az) + \tau^{(2)}(az) = i \sum_{k=1}^{\infty} \left(\sum_{n=0}^{\infty} (-\lambda)^n b_{nk} z^n \right) B_k z^{-i\alpha_k} + i \sum_{k=1}^{\infty} \left(\sum_{n=0}^{\infty} (-\lambda)^n b_{nk}^* z^n \right) C_k z^{i\overline{\alpha}_k}$$
(11)

$$B_k = \operatorname{Res}_{\alpha=\alpha_k} \overline{\phi}_{-}^{(1)}(\alpha), \ C_k = \operatorname{Res}_{\alpha=-\overline{\alpha}_k} \overline{\phi}_{-}^{(1)}(\alpha)$$

$$\operatorname{Res}_{\alpha=\alpha_{k}+in} \overline{\varphi}_{-}^{(1)}(\alpha) = (-\lambda)^{n} b_{nk} B_{k} \operatorname{Res}_{\alpha=-\overline{\alpha}_{k}+in} \overline{\varphi}_{-}^{(1)}(\alpha) = (-\lambda)^{n} b_{nk}^{*} C_{k}$$

$$b_{ok} = b_{ok}^* = 1 \quad b_{nk} = \prod_{l=0}^{n} \left[\overline{K}^{(1)} (\alpha_k + il) (\alpha_k + il) \right]^{-1}$$

$$b_{nk}^* = \prod_{l=0}^{n} \left[\overline{K}^{(1)} (-\overline{\alpha}_k + il) (-\overline{\alpha}_k + il) \right]^{-1}$$

Так как α_1 положительно мнимо, то из (11) можно заключить, что $\tau^{(1)}(0)=\tau^{(2)}(0)=0.$

В (11) допускается, что все α_k комплексные. В случае мнимых α_k в (11) вместо C_k надо положить нуль. Теперь приступим к определению неизвестных B_k , C_k . Для этого заметим, что $\overline{\Phi}_{-}^{(1)}(\alpha)$, в силу вышесказанного, можно представить в виде:

$$\overline{\Phi}_{-}^{(1)}(\alpha) = \sum_{k=0}^{\infty} \left[\sum_{n=0}^{\infty} \frac{(-\lambda)^{n} \left[\overline{K}_{+}^{(1)} (\alpha_{k} + in + i) \right]^{-1} b_{nk}}{\alpha - \alpha_{k} - in - i} \right] B_{k} +$$

$$+ \sum_{k=0}^{\infty} \left[\sum_{n=0}^{\infty} \frac{(-\lambda)^{n} \left[\overline{K}_{+}^{(1)} (-\overline{\alpha}_{k} + in + i) \right]^{-1} b_{nk}^{*}}{\alpha + \overline{\alpha}_{k} - in - i} \right] C_{k}$$
(12)

Тогда из (10) относительно $B_k,\ C_k$ получим следующую систему уравнений:

$$B_{k} + \frac{\lambda \overline{K}_{*}^{(1)}(\alpha_{k}) \operatorname{sh} \frac{\pi \alpha_{k}}{2}}{\beta(\alpha_{k})\alpha_{k}} \overline{\Phi}_{-}^{(1)}(\alpha_{k}) = f_{k}^{(1)}$$
(13)

$$C_{k} + \frac{\lambda \overline{K}_{*}^{(1)} \left(-\overline{\alpha}_{k}\right) \operatorname{sh} \frac{\pi \overline{\alpha}_{k}}{2}}{\beta \left(-\overline{\alpha}_{k}\right) \overline{\alpha}_{k}} \overline{\Phi}_{*}^{(1)} \left(-\overline{\alpha}_{k}\right) = f_{k}^{(2)}$$
(14)

$$(k = 1, 2...)$$

$$f_{\mathbf{k}}^{(i)} = \frac{Q_{\mathbf{k}} \overline{K}_{\mathbf{k}}^{(i)} (\alpha_{\mathbf{k}}) \operatorname{sh} \frac{\pi \alpha_{\mathbf{k}}}{2}}{\alpha_{\mathbf{k}} \beta(\alpha_{\mathbf{k}}) \overline{K}_{\mathbf{k}}^{(i)}(0)} - \lambda \frac{\overline{\Phi}_{\mathbf{k}}^{(i)} (0) \overline{K}_{\mathbf{k}}^{(i)} (\alpha_{\mathbf{k}}) \operatorname{sh} \frac{\pi \alpha_{\mathbf{k}}}{2}}{\alpha_{\mathbf{k}} \beta(\alpha_{\mathbf{k}})}$$

$$f_{k}^{(2)} = \frac{Q_{i} \overline{K}_{+}^{(1)} (-\overline{\alpha}_{k}) \operatorname{sh} \frac{\pi \overline{\alpha}_{k}}{2}}{\overline{\alpha}_{k} \beta (-\overline{\alpha}_{k}) \overline{K}_{+}^{(1)} (0)} - \lambda \frac{\overline{\Phi}_{+}^{(1)} (0) \overline{K}_{+}^{(1)} (-\overline{\alpha}_{k}) \operatorname{sh} \frac{\pi \overline{\alpha}_{k}}{2}}{\overline{\alpha}_{k} \beta (-\overline{\alpha}_{k})}$$

$$\beta(\alpha) = \frac{\pi}{2} \operatorname{sh} \frac{\pi \alpha}{2} + i A \qquad (k = 1, 2)$$

Далее, подставляя $\overline{\Phi}_{-}^{(1)}(\alpha_k)$, $\overline{\Phi}_{-}^{(1)}(-\overline{\alpha}_k)$ из (12) в (13), (14), для определения B_k , C_k получим совокупность бесконечных систем линейных алгебраических уравнений

$$B_{k} + \frac{\lambda \overline{K}_{+}^{(1)}(\alpha_{k}) \sinh \frac{\pi \alpha_{k}}{2}}{\beta(\alpha_{k})\alpha_{k}} \sum_{m=1}^{\infty} \left[K_{mk}^{(1)} B_{k} + K_{mk}^{(2)} C_{k} \right] = f_{k}^{(1)}$$
(15)

$$C_{k} + \frac{\lambda \overline{K}_{+}^{(1)} \left(-\overline{\alpha}_{k}\right) \operatorname{sh} \frac{\pi \overline{\alpha}_{k}}{2}}{\beta \left(-\overline{\alpha}_{k}\right) \overline{\alpha}_{k}} \sum_{m=1}^{m} \left[K_{mk}^{(3)} B_{k} + K_{mk}^{(4)} C_{k}\right] = f_{k}^{(2)}$$

$$(k = 1, 2...)$$
(16)

где

$$K_{\underline{-i}}^{(1)} = \sum_{n=0}^{\infty} \frac{(-\lambda)^n \left[\overline{K}_+^{(1)} (\alpha_m + in + i) \right]^{-i} b_{nm}}{\alpha_k - \alpha_m - in - i}$$

$$K_{\underline{-i}}^{(2)} = \sum_{n=0}^{\infty} \frac{(-\lambda)^n \left[\overline{K}_+^{(1)} (-\overline{\alpha}_m + in + i) \right]^{-i} b_{nm}^*}{\alpha_k + \overline{\alpha}_m - in - i}$$

$$K_{\underline{-i}}^{(1)} = -\sum_{n=0}^{\infty} \frac{(-\lambda)^n \left[\overline{K}_+^{(1)} (\alpha_m + in + i) \right]^{-1} b_{nm}}{\overline{\alpha}_k + \alpha_m + in + i}$$

$$K_{mk}^{(4)} = -\sum_{n=0}^{\infty} \frac{(-\lambda)^n \left[\overline{K}_+^{(1)} \left(-\overline{\alpha}_m + in + i\right)\right]^{-1} b_{nm}^*}{\overline{\alpha}_k - \overline{\alpha}_m + in + i}$$

Постоянная $\overline{\Phi}^{(1)}_{\scriptscriptstyle +}(0)$ определяется из (10), если положить $\alpha=-i$, то есть из уравнения

$$\overline{\varphi}_{-}^{(1)}(-i) + \frac{\lambda i \overline{\Phi}_{-}^{(1)}(-i)}{\overline{K}_{-}^{(1)}(-i)} = \frac{iQ_{+}}{\overline{K}_{+}^{(1)}(0) \overline{K}_{-}^{(1)}(-i)} - \frac{i\lambda \overline{\Phi}_{+}^{(1)}(0)}{\overline{K}_{-}^{(1)}(-i)}$$

Квазиполная регулярность совохупности бесконечных систем (15), (16) следует из оценок

$$\sum_{m=1}^{\infty} \left| \overline{K}_{mk}^{(1)} \right| < \infty, \quad \left| \frac{\overline{K}_{+}^{(1)}(\alpha_{k}) \operatorname{sh} \frac{\operatorname{\pics}_{k}}{2}}{\alpha_{k} \beta(\alpha_{k})} \right| < \frac{\operatorname{const}}{\sqrt{k}}$$

$$(k \to \infty)$$

Отметим, что при мнимых $lpha_j$ в (15) надо положить C_j = () и не рассматривать (15) при k=j.

Аналогичным образом можно получить решение уравнения (6) только в (15), (16) нули функции $\overline{K}^{(1)}(lpha)\left(lpha_{m k}, -\overline{lpha}_{m k}\right)$ надо заменить соответствующими нулями функции $\overline{K}^{(2)}(lpha)$, а индексы 1 заменить индексами 2.

В частном случае одного горизонтального стрингера задача сводится к решению функционального уравнения

$$\coth \frac{\pi \alpha}{2} \, \overline{\tau}_{-}(\alpha) + \frac{\lambda}{\alpha} \, \overline{\tau}_{-}(\alpha - i) = -\frac{R_{+}}{\alpha} + i \, \overline{g}_{+}(\alpha) \tag{17}$$

где

$$\overline{\tau}_{-}(\alpha) = \overline{\tau}_{-}^{(1)}(\alpha), \quad \overline{g}_{+}(\alpha) = \overline{g}_{+}^{(1)}(\alpha)$$

Сначала исследуем аналитические свойства функции $\overline{\tau}_-(\alpha)$. Из (17) следует, что $\alpha=0$ не является полюсом функции $\overline{\tau}_-(\alpha)$, поскольку $\overline{g}_+(\alpha)$ ограничена при $\alpha=0$. Далее, поскольку $\overline{\tau}_-(0)$, $\overline{g}_+(i)$ конечны, то отсюда следует, что $\alpha=i$ может быть простым полюсом функции $\overline{\tau}_-(\alpha)$. Тогда $\alpha=2i$ не может быть полюсом функции $\overline{\tau}_-(\alpha)$, так как $\alpha=i$ является простым полюсом для $\overline{\tau}_-(\alpha)$ и $\overline{g}_+(-2i)$ конечна. В таком случае, как следует из (17), $\alpha=3i$ будет простым полюсом для $\overline{\tau}_-(\alpha)$. Так продолжая, убедимся, что функция $\overline{\tau}_-(\alpha)$ имеет полюса только в точках $\alpha=i(2n-1)$ n=(1,2...), и притом простые. Тогда, поступая аналогичным образом, как выше, для $\overline{\tau}_-(\alpha)$ получим представления

$$\overline{\tau}_{-}(\alpha) = -\frac{\lambda \overline{\Phi}_{-}(\alpha)}{\overline{M}_{-}(\alpha)} - \frac{R_{1}}{\overline{M}_{+}(0)\overline{M}_{-}(\alpha)}$$
(18)

$$r_{\text{Re}} \ \overline{\Phi}_{-}(\alpha) = \frac{\overline{\tau}_{-}(-i)}{\overline{M}_{+}(0)\alpha} - i \sum_{n=1}^{\infty} \frac{A_{-1}^{(2n-1)}}{\overline{M}_{+}(2ni)(\alpha - 2ni)(2n)}$$

Тогда из (18) получим

$$A_{-1}^{(2m-1)} + \frac{\lambda}{2\pi} \overline{M}_{+} (i(2m-1)) \sum_{n=1}^{\infty} \frac{A_{-1}^{(2n-1)}}{\overline{M}_{+} (2ni)n} \left(n + \frac{1}{2} - m\right) = i \frac{2}{\pi} \frac{(\lambda \overline{\tau}_{-}(-i) + R_{1}) \overline{M}_{+} (i(2m-1))}{\overline{M}_{-}(0)(2m-1)} \qquad (m = 1,2...)$$
(19)

где
$$A_{-1}^{(2m-1)} = \underset{\alpha = i(2m-1)}{\text{Res}} \overline{\tau}_{-}(\alpha)$$

После замены

$$\frac{A_{-1}^{(2m-1)}}{\overline{M}_{+}(2mi)} = Y_{m}$$

система (19) запишется в виде

$$Y_{m} + \frac{\lambda}{2\pi} \beta_{m} \sum_{n=1}^{\infty} \frac{Y_{n}}{n \left(n + \frac{1}{2} - m\right)} = i \frac{2 \left(\lambda \overline{\tau}_{-}(-t) + R_{1}\right) \beta_{m}}{\pi 2m - 1}$$

$$(20)$$

$$(m = 1, 2...)$$

где
$$\beta_m = \frac{\Gamma^2 \left(m + \frac{1}{2} \right)}{m \Gamma^2 (m)}$$
 и $\beta_m \sim O(1)$ при $m \to \infty$

Таким образом, задача свелась к решению бесконечной системы (20).
Квазиполная регулярность системы следует из оценки

$$\sum_{n=1}^{\infty} \frac{1}{n |n + \frac{1}{2} - m|} = \frac{2}{2m - 1} \left(\Psi\left(m - \frac{1}{2}\right) + 2\Psi(m) - 2\Psi\left(\frac{1}{2}\right) + \gamma \right)$$

$$(m = 2, 3...)$$

где $\Psi(z)$ - функция пси, γ - постоянная Эйлера. Причем $\Psi(z)\sim\ln z$ при $|z|\to\infty$, $|\arg z|<\pi$. После определения $Y_{_{\rm R}}$ из бесконечной системы (20), контактные силы $\tau(ax)$ можно представить в виде

$$\tau(ax) = \frac{\lambda}{2\pi} \sum_{m=1}^{\infty} \left(\frac{\frac{2}{\pi} \left[\lambda \overline{\tau}_{-}(-i) + R_{1} \right] \beta_{m}}{2m-1} - i Y_{m} \right) \frac{\Gamma\left(m + \frac{1}{2}\right)}{\Gamma(m)} x^{2m-1} - \frac{\lambda \overline{\tau}_{-}(-i) + R_{1}}{4\pi} \frac{x}{\sqrt{1 - x^{2}}}, \qquad (0 < x < 1)$$

Постоянную $ar{ au}_-(-i)$ можно определить из (18), если положить lpha=-i , то есть из уравнения

$$\overline{\tau}_{-}(-i) + \lambda \left(\overline{\tau}_{-}(-i) - \frac{i}{\sqrt{2\pi}} \sum_{n=1}^{\infty} \frac{Y_n}{n(2n+1)}\right) = -R_1$$

Решение задачи об одном горизонтальном стрингере другими методами были получены многими исследователями, перечень работ которых можно найти s [7].

Литература

- Полов В.Г. Динамические и статические задачи о концентрации упругих напряжений возле пересекающихся включений. - В кн.: Смешанные задачи ¬еханики деформируемого тела. II Всесоюзн.конф. Тезисы докл. Днепропетровск, с.78-79.
- Григорян Э.Х. Об одном подходе к решению задач для упругой полуплоскости, содержащей упругое конечное включение, выходящее на границу полуплоскости. - Межвуз.сб.науч.трудов, Механика, Ереван, изд. ЕГУ. 1987, № 6, с.127-133.
- 3. *Нобл Б*. Метод Винера-Холфа. М.: ИЛ, 1962.
- Арутконян Н.Х. Контактная задача для полуплоскости с упругим креплением. ПММ, 1968, т.32, № 4, с.632-646.
- Григорян Э.Х. Об одной задаче для упругой полуплоскости, содержащей упругое конечное включение. - Уч.записки ЕГУ, естеств.науки, 1982. № 2, с.38-43.
- Партон В.З., Перлин П.И. Методы математической теории упругости. -М.: Наука, 1981.
- Григолюх Э.И., Толкачев В.М. Контактные задачи теории пластин и оболочек. - М.: Машиностроение, 1980.

Ереванский университет

Поступила в редакцию 24.05.1993