НЗВЕСТИЯ АКАДЕМИН НАУК АРМЕНИМ 2030.030.505-9-950.0505609-050.05056030-550,560,960

Մեխանիկա

44, Nº 2, 1991

Механика

MIK 539.3

К УСТОНЧИВОСТИ И КОЛЕБАНИЯМ ПРЯМОУГОЛЬНОЙ МНОГОСЛОЯНОП АНИЗОТРОИНОВ ПЛАСТИЦКИ

LABTSH A. I

Рассматривается услойчивость и ко сим. «посослони за прямосто или или гикки. Причем в одном случае слоя и ислинал сокернуты симметричны относитель о среднияой плоскости илистичка, и ч. гр. гом анты имметрично. В обонх случаях получена критическая сжимающия изо рузка и исследуется элип имость критич эли изгрузки от расположения слоев иластички отлосительно друг руга

Исследуются устойчивость и свободные колебания многослойной прямоугольной иластники Материал слоев один и ют же, ортотроиный, слои повернуты друг относительно друга на некоторын угол. Причем, в одном случае они повернуты симметрично относительно средниной плоскости иластники, а в другом --антисимметрично. Оба эти случая изучаются в отдельности.

1. В случае симметричного расположения слося уравнение устойчивости пластинки при одностороннем сжатии будет

$$\frac{\partial^2 M_1}{\partial x^4} - \frac{\partial^2 M_2}{\partial y^2} + 2 \frac{\partial^2 H}{\partial x \partial y} - P \frac{\partial^2 w}{\partial x^2} = 0$$
(1.1)

гае для моментов и язменений кривизны имеем

$$M_{1} = D_{11} + D_{12} + D_{13} z_{33}$$

$$M_{2} = D_{12} + D_{22} z_{2} + D_{13} z_{33}$$
(1.2)

$$D_{14} = D_{14} v_1 + D_{26} v_2 + D_{26} v_{12}$$

$$v_1 = -\frac{\partial^2 w}{\partial x^2}, \quad v_2 = -\frac{\partial^2 w}{\partial y^2}, \quad v_1 = -2\frac{\partial^2 w}{\partial x \partial y}$$
(1.3)

Приведенные иялиндрические жесткости определяются, как [1]

$$D_{ij} = \frac{2k^3}{3} \sum_{k=1}^{n} [k^4 - (k-1)^3] B_{ij}^{(k)}$$

$$K_{ij} = 0$$
(1.4)

где упругие коэффициенты каждого слоч выражаются через началь ные характеристики материала следующим образом [2: 3].

$$B_{11}^{(k)} = B_{11}\cos^4 z_k + 2(B_{12} + 2B_{nk})\sin^2 \varphi_k \cos^2 \varphi_k + B_{22}\sin^4 \varphi_k$$

$$B_{12}^{(k)} = B_{11}\sin^4 z_k + 2(B_{12} + 2B_{nk})\sin^2 \varphi_k \cos^2 \varphi_k + B_{22}\cos^4 \varphi_k$$

$$B_{12}^{(k)} = B_{12} + [B_{11} + B_{12} - 2(B_{12} - 2B_{nk})]\sin^2 \varphi_k \cos^2 \varphi_k$$

- 11

$$B_{64}^{(k)} = B_{aa} + [B_{11} - B_{aa} - 2(B_{12} + 2B_{ab})] \sin^2 \varphi_k \cos^2 \varphi_k$$

$$B_{10}^{(k)} = \frac{1}{2} [B_{22} \sin^2 \varphi_k - B_{11} \cos^2 \varphi_k + (B_{12} - 2B_{ab}) \cos^2 \varphi_k] \sin^2 \varphi_k \qquad (1.5)$$

$$B_{25}^{(k)} = \frac{1}{2} [B_{22} \cos^2 \varphi_k - B_{11} \sin^2 \varphi_k - (B_{12} - 2B_{ab}) \cos^2 \varphi_k] \sin^2 \varphi_k$$

Рассмотрим пластнику, все стороны которой снободно оперты

$$w=0$$
 $M_1=0$ npu $x=0$ $x=a$ (1.6)
 $M_2=0$ npu $y=0$ $y=b$ (1.7)

Решение (1.1) ищем в виде следующих тригонометрических рядов, удовлетворяющих граничным условиям (1.6) и (1.7)

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin h_{m} x \sin \mu_{n} y \qquad (1.8)$$

$$M_{1} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} b_{mn} \sin h_{m} x \sin \mu_{n} y$$

$$M_{2} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn} \sin h_{m} x \sin \mu_{n} y \qquad (1.9)$$

$$M_{2} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} d_{mn} \cos h_{m} x \cos \mu_{n} y, \qquad \mu_{n} = \frac{m\pi}{n}; \quad \mu_{n} = \frac{m\pi}{n}$$

В [4] подобная задача решена другим методом-методом малого нараметра.

При (1.8) и (1.9) все граничные условия удовлетворяются точно, однако, если исходить из (1.2) и (1.8), то соотношения (1.2) будет верны везде кроме границы.

Полставляя (1.8), (1.9) в (1.1)-(1.3), при этом учитывая, что

$$\sin i m x = \sum_{p=1}^{N} \cos i m x$$

$$\cos i m x = \sum_{p=1}^{N} \delta_{pm} \sin i m x$$

$$= \frac{2m [1 - (-1)^{p+m}]}{\pi (m^2 - p^2)}; \quad i_m = \frac{2p [1 - (-1)^{p+m}]}{\pi (p^2 - m^2)}$$
(1.10)

в окончательном виде для а_{та} получим

$$a_{rel}[(D_{11}e_{p}^{2}+D_{12}e_{q}^{2})e_{q}^{2}+(D_{12}e_{p}^{2}+D_{22}\mu_{q}^{2})e_{q}^{2}+(D_{12}e_{p}^{2})e_{q}^{2}+(D_{12$$

Критическую нагрузку волучим, приравнивая определитель этой бесконечной системы вулю. Беря конечный определитель, относитель-

но Р получим алгебранческое уравнение. Значение критической нагрузки можно уточнить, повышая порядок определителя.

Рассмотрим четырехслойную пластинку из стеклотекстолита КАСТ-В, которая имеет следующие упругие постоянные:

$$E_1 = 21.5 \text{ FHa}; \quad E_2 = 12.3 \text{ FHa}$$

 $G = 2.07 \text{ FHa}; \quad v_1 = 0.19; \quad v_2 = 0.11$
(1.12)

Так как улругие своиства материала пластники в се влоскости в различных направлениях разныс, то значение критической нагругко будет различным в завясимости от расположения слоен.

Ноэтому можно найти те положения слоев пластинки, при которых критическая нагрузка будет нанбольшей.

Tabanga !

$\pi^2 D_{11}^2$							
	0	15	30	-15	60	75	43
U	25918	25938	2+975	2,980	2+934	2+568	2.835
	25918	25937	2+976	2,981	2+935	2+566	2.835
15	3+027	3+033	3.064	3,073	34635	2.970	2,930
	3+063	3+084	3.112	3,127	3503 0	3.012	2,980
30	3+254	3+260	3+250	37298	3+262	3.195	3+167
	3+327	3+349	3+348	37391	3+314	3.276	3+245
45	3,314	3+324	3+352	3,361	3+325	3+ 25 9	3+228
	3,364	3+385	3+423	3,429	3+382	3+ 3 13	3+282
60	2,995	3+036	3+259	35072	3+035	27943	2,936
	3,012	3+058	3+259	35101	3+055	27987	2,954
75	2 - 556 2 - 560	2 574 2+581	2.610 2.691	2+617 2+624	2,581	2,503 2,509	2.475
Ω₽	2.337	2+354	2,391	2+399	2+351	2+286	2+254
	2.337	2+357	2,392	2+401	2+354	2+286	2+254

 $\overline{P} = \frac{P b^3}{\pi^2 D_{11}^3}$

В табл 1 приледены значения безразмерной критической нагрузки = В зависимости от углов поворота слоев. Вычисления проводились во втором приближении для пластники <u>в</u> = 0,7. D⁰₁₁-жесткость пластинки при совпадении координатных систем. относительно

которых рассчитываем жесткости. В каждой клетке таблицы во вторых строках помещены Р

если формально принять D. D. ~0.

Из таблицы видно, что:

а) наибольшая критическая нагрузка получается при 71-72=45.
 то есть фактический многослой превращается в один слой;

 б) ортотропное решение (преисбрежение D_m) приводит к увеличению критической нагрузки.

2. В случае витисимметрячного расположения слоев пластники, номимо моментов, в средниной плоскость появляются также тавгенциальные усилия [1], то есть пластника претерпевает изгиб и илоскую деформацию. Поэтому, здесь уравнение устойчивости (1.1) должно быть дополнено еще системой

$$\frac{\partial T_1}{\partial x} + \frac{\partial S}{\partial y} = 0, \quad \frac{\partial T_1}{\partial y} + \frac{\partial S}{\partial x} = 0$$
 (21)

Усилия и моменты выражаются формулами:

$$\begin{split} \vec{r}_1 = C_{11} \vec{z}_1 - C_{12-2} + K_1 \vec{z}_{12}, \quad \vec{r}_2 = C_{12} \vec{z}_1 + C_{12} \vec{z}_1 + K_{12} \vec{z}_1 \\ S = C_{12} \vec{v} + K_{12} \vec{z}_1 + K_{12} \vec{z}_1 \\ \end{split}$$

$$M_{1} = D_{1} + D_{1} + K_{1} + K_{2} + K_{2} + D_{1} + K_{2} + K_{2$$

$$\epsilon_{1} = \frac{\partial u}{\partial x}; \quad \epsilon_{2} = \frac{\partial v}{\partial y}; \quad w = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
(2.4)

$$K_{ij} = h^2 \sum_{k=1}^{\infty} [k^2 - (k-1)^2] B_{ij}^{(k)}, \quad C_{ij} = 2h \sum_{k=1}^{\infty} B_{ij}^{(k)}$$
(2.5)

Подставляя (2.2) - (2.5) в (1.1) в (2.1), получим

$$C_{11}\frac{\partial^{2}u}{\partial x^{2}} + (C_{12} + C_{66})\frac{\partial^{2}v}{\partial x\partial y} = \frac{\partial^{2}u}{\partial y^{2}} - 3K_{16}\frac{\partial^{3}w}{\partial x^{2}\partial y} - K_{16}\frac{\partial^{3}w}{\partial y^{2}} = 0$$

$$C_{66}\frac{\partial^{2}v}{\partial x^{4}} + (C_{18} + C_{68})\frac{\partial^{2}u}{\partial x\partial y} + C_{22}\frac{\partial^{2}v}{\partial y^{2}} - 3K_{2}\frac{\partial^{3}w}{\partial x\partial y^{2}} - K_{16}\frac{\partial^{2}w}{\partial x^{4}} = 0$$

$$(2.6)$$

$$D_{11}\frac{\partial^{4}\omega}{\partial x^{4}} + 2(D_{12} + 2D_{00})\frac{\partial^{4}\omega}{\partial x^{2}\partial y^{3}} + K_{10}\left(3\frac{\partial^{2}u}{\partial x^{2}\partial y} - \frac{\partial^{4}\omega}{\partial x^{4}}\right) - K_{22}\left(3\frac{\partial^{2}v}{\partial x\partial y^{2}} + \frac{\partial^{2}u}{\partial y^{2}}\right) + D_{22}\frac{\partial^{4}\omega}{\partial y^{4}} + P\frac{\partial^{2}w}{\partial x^{2}} = 0$$

Решение системы (2.6) ищем в виде

и=fsint_acosu.y, v=cost_msinpav, w=5sint_msinpay (2.7) удовлетворяющем граничным условням

$$u=S=0$$
 при $x=0; x=u$
 $v=S=0$ при $y=0; y=b$ (2.8)

Носле подстановки (2.7) в (2.6), получим систему алгебранческих уравнений относительно *f*;*; ⁵. Приравнивая определитель этой ситемы нулю, для сжимающего усилия получим следующее выражение:

1-

$$\frac{Pb^2}{\pi^2 D_{11}^2} = \frac{1}{D_{11}^2} \left[\frac{m^2}{c^2} D_{11} + 2(D_{12} + 2D_{66}) + D_{24} \frac{c^3}{m^2} - \frac{C_{11} \frac{m^2}{c^2} C_{66}}{(c^2)} \right] \left(3K_{16} + K_{16} \frac{m^2}{c^2} \right)^2 + \left(C_{56} \frac{m^2}{c^3} + C_{22} \right) \left(3K_{16} \frac{m^2}{c^2} + K_{25} \right)^2 \frac{c^2}{m^3} - \left(C_{11} \frac{m^2}{c^2} + C_{66} \right) \left(C_{66} \frac{m^2}{c^2} + C_{22} \right) - \left(C_{12} + C_{66} \right)^2 \frac{m^2}{c^2} - \left(C_{12} + C_{66} \right)^2 \frac{m^2}{c^2} - \frac{2(C_{66} + C_{66})(2K_{66} - K_{66})}{(2K_{66} - K_{66})(2K_{66} - K_{66})} \right) \left(2K_{66} - K_{66} - K_{66} - K_{66} \right) \left(2K_{66} - K_{66} - K_{66} - K_{66} \right) \left(2K_{66} - K_{66} - K_{66} - K_{66} \right) \left(2K_{66} - K_{66} - K_{66} - K_{66} \right) \left(2K_{66} - K_{66} - K_{66} - K_{66} - K_{66} \right) \left(2K_{66} - K_{66} \right) \left(2K_{66} - K_{66} - K_{66$$

$$=\frac{2(C_{12}+C_{66})\left(3K_{16}-K_{26}\right)\left(3K_{26}+K_{10}-\frac{1}{c^2}\right)}{\left(C_{11}\frac{m^2}{c^2}+C_{66}\right)\left(C_{66}\frac{m^2}{c^2}+C_{22}\right)-(C_{12}+C_{66})^2\frac{m^2}{c^2}}\right]$$
(2.9)

По формуле (2.9) критическая нагрузка определяется обычных образом: устанавливается число *m* для данного $c = \frac{a}{b}$. которое сообщает (2.9) минимальное значение (n = 1).

Числовой пример для четырехслойной пластинки элесь рассмотрен для материали (112); c=0.7.

TaG.maa 2

1	2	a	15	30	45	60	75	90	
	0	2,918	2 • 923 2 • 938	2+955 2+976	2+966 2+981	2+918 2+935	2,859 2,866	2+835 2+835	
	15	2+703 3+063	2,929 3,084	2+926 3+122	2,939 3,127	2+968 3+080	2+910 3+012	2+859 2+980	
	30	3 · 161 3 · 327	3+181 3+349	3+041 3+318	3+064 3+391	3+129 3+344	3.002 3.276	3 • 043 3 • 245	
	-15	37231 37364	3+201 3+385	3,220 3,423	2+850 3+429	3+284 3+382	3+156 3+313	3+155 3+282	
	60	2+862 3-012	2+853 3+058	3+111 3+289	2+868 3+301	2.789 3.055	2,783 2,987	2+832 2+954	
	75	2+501 2+560	2+504 2+581	2+525 2+619	2+489 2+624	2+417 2+584	2+350 2+509	2.439	
	40	2.337	2 · 345 2 · 357	2,370 2,392	2+386 2+401	2+340 2+354	2 -281 2-286	2+254 2+254	

$$\overline{P} = \frac{Pb^{\dagger}}{e^{2}D_{10}^{2}}$$

В табл. 2 привелены значения критической нагрузки $\overline{P} = \frac{PP}{PP}$ и как в табл. 1, во вторых строкях каждой клетки помещены \overline{P} без учета плоской задачи на изгиб ($K_{16} = K_{16} = 0$).

Как и в предыдущем пункте, ортотропное решение (препебреже пие K_{16}) дает завышенное значение критической нагрузки. Аналогичный результат получен и в [5], по там пакет ортотронный углы понорота слоен 0° или 90°.

3. Рассмотрим свободные колебания свободно опертой пластники при симметричном расположении слоев. Уравнение колебаний будет-

$$\frac{\partial^2 M_y}{\partial x^2} + 2 \frac{\partial^2 H}{\partial x \partial y} + \frac{\partial^3 M_u}{\partial y^2} = \frac{ch}{g} \frac{\partial^2 w}{\partial t^2}$$
(3.1)

где моменты и изменения кривизны определяются из (1.2) и (1.3). Решение (3.1) ищем в виде

$$w = \operatorname{sinw} t \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin t_m \sin p_n y$$

$$M_1 = \operatorname{sinw} t \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin t_n \sin p_n y$$

$$M_3 = \operatorname{sinw} t \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin t_n \sin p_n y$$

$$H = \sin w t \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} d_{mn} \cos p_n y$$

$$(3.3)$$

удовлетноряющих условням (1.6) и (1.7).

Подставляя (3.2), (3.3) в (1.2), (1.3) в (3.1), для и_{та} аналогично 1-ому пункту получим:

$$\mathbf{u}_{pq} \left[(D_{10} v_{q}^{2} + D_{12} v_{q}^{2}) v_{q}^{2} + (D_{12} v_{q}^{2} + D_{22} v_{q}^{2}) u_{q}^{2} + 4 D_{10} v_{pq}^{2} - \frac{sh}{g} v_{q}^{2} \right] = \\ = \sum_{\substack{m=1\\m \neq p}} \sum_{\substack{n=1\\m \neq p}} 2 u_{nn} v_{pm} \delta_{nn} v_{m} |D_{10}(v_{q}^{2} + v_{m}^{2}) + D_{20}(u_{q}^{2} + v_{n}^{2})|$$
(3.4)

Значение собственных частот получим, приравнивая определитель этой бесконечной системы нулю. Оно также будет записеть от орвентаций слоев пластипки.

Во вторых строках табл. З помещены значения ($\overline{u^2}$) при $D_{16} = -D_{16} = 0$.

Из таблицы нидио, что как и при задаче устойчивости:

 в) наибольшая частота собственных колебаний получается при (у1=92=45°);

б) ортотропное решение приводия и унеличению частот.

		0	15	30	45	60	75	90	
	U	11.908 11.908	11,990 11,993	12+147 12+152	12+168 92+172	11.976	11+693 11+694	11+564 11+564	
	15	12+388 12+517	13+517 13+698	12+552 12+735	12+583 2+755	12+423 12+575	11+638 11+782	12+027 12+159	
	30	13.340 13.584	13+3£0 13+672	13+342 13+658	13+534 13+133	13,381 13,655	13-106 13-367	12+988 13+238	
	15	13+573 13+738	13.0. 13.827	134736 134960	13.770 13.983	13.617 13.807	13+315 13+523	13+218 13+339	
	<u>60</u>	12+237 12+727	12+113 12+459	13+325 13+408	125861 125642	12+253 12+470	12-046 12-150	11+543 12+049	
	75	10+435 10+441	10+510 10+523	10.061 10.685	10,686	10.357 10.549	10+232 10+230	10+104 10+110	
	90	9,531	9,612	9.759	9,791	9,598	9.330	9.201	

ON BUCKLING AND VIBRATION OF RESTANGULAR MULTILAYER ANISOTROPIC PLATES

A. T. DAVTIAN

ՈՒՉՎԱՆԿՅՈՒՆ ԲԱԶՄԱՇԵՐՏ ԱՆԻՋՈՏՐՈԿ ՍԱԼԻ ԿԱՅՈՒՆՈՒԹՑԱՆ ԵՎ ՏԱՏԱՆՈՒՄՆԵՐԻ ՄԱՍԻՆ

Ա. Թ. ԴԱՎԹՑԱՆ

Ամփոփում

Գիտարկվում են բազմաշերտ ուղղանկյուն սայի կայունուՍյունն ու աա տանումները։ Լեղ որում, սայի շերտերը շրջված են սայի միջին շար ուվյուն նկատմամբ մի դեպրում սիմետրիկ, մյում դեպրում՝ ակասիմետրիկ։ Երկու դեպրում էլ ստացվել է կրիտիկական սեղմող բեռը և ուսումնասիրվել է կրիտիկական ուժի կախումը սայի շերտերի՝ միմյանց նկատմամբ զասավորու թյունից։ Սայի ազատ տատանումները դիտարկվում են շերտերի սիմետրիկ դասավորության դեպրում, Ստացված է տատանումների սեփական նաքաիտկանության կախումը սայի շերտերի՝ միմյանց նկատմամբ դատութն ան-

17

JHTEPATNPA

- Мовсисян .7 А. Пекоторые задачи вязкоупругих анизотропяных слоистых пластин и оболочек.—Пав. АН. Арм. ССР. Мехяника, 1989. 1. 42, №3, с. 37–14.
- 2. Амбарцумян С. А. Теория авизотронных оболочек. М. Физматиз. 1961. 384 с
- 3 Лехницкий С. Г. Анизотронные пластинки. М.: Гостехтеориздат. 1957. 164 с. 4. Мовенски Л. А., Саркиски В. С. Об одном слособе определения критических п.-
- Мовенсян Л. А. Саркиски В. С. Об одном слособе определения критических и грузок анизотропных яластниок — Или. АН СССР. Ниженерный журнал 1965 т. 5, вып. 4.
- Джоне Р. М. Устончивость в кольбания прямоутольных несимметричных слоисты пластинок с верекрестным армиросалием --Ракетная техника и космочавтика, 1973. т. 11. №12. с. 32—40.

Кафанский учебно-консультационовий имики ЕрПП

-

Поступила в редакцию 1 ХИ.1989