УДК 539.3

ОБ ОДНОЙ НЕЛИПЕЙНОЙ ЗАДАЧЕ ХАОТИЧЕСКИХ КОЛЕБАНИЙ КРУГОВОГО КОЛЬЦА

ГАЛОЯН В Ц. КАЗАРЯН К. Б.

В настоящей работе рассматриваются пелинейные радиальные кояебания кругового кольца под действием внешней периодической раинальной нагрузки. Рассмотрение ведется в рамках молели плоских деформаций кольца [1, 2]. При этом колебания, возбуждаемые висшней нагрузкой в разных областях пространства параметров, имеют различный характер. Основная цель данной работы- указать те области изменения параметров системы, где возможны хаотическе пединейные колебания.

§ 1. Қолебания кругового кольца при неравномерной нагрузке

Дипамические уравнения и граничные условия нелинейной теории етержиевых систем выражаются или а компонентах вектора перемещений, или же в компонентах тензорол усилий и изгибных деформаний [3]. Уравнения в перемещениях обычно являются более сложныин—они более высокого порядка—но они очень удобны в задачах о полебаниях систем. В дальнейшем мы используем именно этот полнод, при этом не булем учитывать деформации сдвига, силы и моменты инерини вращения и растяжение срединной поверхности кольца. Как показано в работе [14], эти факторы играют сравнительно несушественную роль, если длина волны рассматриваемой моды велика по сраввению с толшиной кольца.

Уравнения динамики плоских деформаций гибкого кругового кольца, находящегося пол действием перавномерной внешней нагрузки, имеют вид [1, 2]

$$-\frac{\partial N}{\partial s} + \frac{Q}{s} = q , \quad \frac{\partial Q}{\partial s} + \frac{N}{s} = q_z - q, \quad \frac{\partial M}{\partial s} = Q. \quad M = EI\left(\frac{1}{s} - \frac{1}{R}\right)$$
 (1.1)

где M, N, Q — нагибающий момент, тангенциальное и радиальное усилия и сечении кольца, у—радиус кривизны, R — радиус недеформированного кольца. E—модуль упругости, I—момент инерции поперечного сечения кольца. В уравнениях (1.1) q, и q —суммы сил инерции и трения в радиальном и тангенциальном направлениях

$$\overline{q} = m \frac{\partial^3 w}{\partial t^3} - r \frac{\partial w}{\partial t} - \overline{q} = m \frac{\partial^3 v}{\partial t^3} - r \frac{\partial w}{\partial t}$$

v—прогибы в радиальном направлении и вдоль дуги кольца, у—
коэффициент демпфирования вязкого трения, т — масса единичной
длины кольца; прогибы w и v сиязаны между собой соотношением

В дальнейшем используется полярная система координат (г, ф) с началом в центре кольна. Для кривизны используем следующее, линейное относительно w, праближение

$$\frac{1}{\varrho} = \frac{1}{R} - \frac{1}{R} \left(\omega + \omega'' \right) \tag{1.2}$$

где штрих означает дифференцирование по ϕ ($s=R\phi$). Таким образом, мы ограничимся пелинейными членами, обусловлениыми геометрией стержия.

Для внешнего периодического давления примем следующее имражение:

$$q(s, t) = q_1 \sin(ns) \cos(wt) + q_0$$

Из уравнений (1.1) после некоторых преобразований получаем следующее уравнение:

$$m\frac{\partial^{2}}{\partial t^{2}} + i\frac{\partial w}{\partial t} + P\frac{\partial^{2}}{\partial s^{2}}\left[\rho\left(a - \frac{\partial^{2}M}{\partial s^{2}}\right)\right] - \frac{1}{a}\frac{\partial^{2}M}{\partial s^{2}} - \frac{\partial(1m)}{\partial s}\frac{\partial M}{\partial s} = 0$$
 (1.3)

Уравнение (1.3)—это неоднородное уравнение в частных производных относительно w(s,t). Для перехода к конечномерной системе применим процедуру Бубнова-Галеркина. Как показано в работе [3], колебания кольца под воздействием внешней периодической нагрузки могут совершаться либо по одной, либо по лвум свизанным изгибным модам. При некоторых условиях нелинейное взаимодействие приводит к возбуждению второй моды, которая также принимает участие в движении. Но, в основном, подход, основанный на рассмотрении одной пространственной моды колебаний, оказывается достаточным и можно принять следующее приближение для прогиба:

$$w(\varphi, t) = f(t) \sin(n\varphi)$$

где и-нелое число

Тотда в кубическом приближении относительно f получим следующее обыкновенное неоднородное лифференциальное уравнение с безразмерными коэффициентами

$$A + iA - A - A^3 = i(1 + \gamma A^2)\cos(\Omega z)$$
 (1.4)

где точка обозначает лифференцирование по безразмелному аремени.

$$A = f(R) = \pi_{c}(mh^{1/2}), \ \beta = g(c(b^{3})^{1/2}, \ \gamma = bd/c, \ \Omega = w(b^{1/2})$$

$$\bar{b} = \frac{1}{m} \frac{n^{2}(n^{2} - 1)}{n^{2} + 1} \left(\frac{q_{0}}{R} - \frac{EI(n^{2} - 1)}{R^{4}} \right)$$

$$= \frac{1}{m} \frac{n^{2}(n^{2}-1)}{4(n^{2}-1)^{3}} \begin{bmatrix} q_{0} & (-3n^{4}-2n^{2}+3) - \frac{1}{n^{2}}(n^{2}-1)(3n^{2}+1) \\ a = \frac{1}{4} \frac{n^{2}(n^{2}-1)(n^{0}-n^{4}-n^{3}-1)}{1} & g = \frac{n^{2}}{n^{3}+1} \frac{q_{0}}{mR} \end{bmatrix}$$
(1.5)

Как показано в [4], при малых и учет кубической нелинейности является существенным.

В пастоящей работе рассматривается случай, когда коэффициенты уравнения (1.4) являются положительными, что паклидывает следующее ограничение на внешиюю нагрузку:

$$\frac{E}{R^2}(n^2-1) \le q_0 \le \frac{EI}{R^4} \frac{n^4(n^4-1)(3n^4+1)}{3n^4-2n^2-3}$$

Иными словами, нами ставится задача возможности существования застического режима в закритической области неустойчивости, косла величина внешией нагрузки превышает статическое критическое значение нелинейной задачи

2. Качественное иссленование основного уравнения

Основное уравнение (1.4), описывающее дипамику системы, является ислинейным уравнением типа Дуффинга. Для качественного исследования этого уравнения примения метод, основанный в работе [5] и подробно разработанный для классического уравнения Дуффинга в работе [6]. С его помощью можно указать границы области изменения параметров, где возможно хаотилеское допжение в качестве решения уравнения. При этом уравнение (1.4) мы будем рассматривать как неавтономное возмущение гамильтоновой системы, которое сохраняет некоторые черты невозмущениой системы.

При малых возмущениях (при малых а и б) уравнение (1.4) допускает периодическое решение, которое можно найти, используя метод усреднения [6].

Невозмущенная автономная система, соответствующая урависшию (1.4), имеет вид

$$x_1 = x_1, \quad x_2 = x_1 - x_1$$
 (2.1)

с гамильтонизном

$$H = \frac{1}{2} x_1^2 - \frac{1}{2} x_1^2 + \frac{1}{4} x_1^2$$

Эта система на фазовой плоскости (x, x_2) имеет неподвижные точки: (0,0), (1,0), (-1,0) первая на которых является неподвижной точкой типа седла, а две другие—центрами. При этом возмущенная система (1.4) имеет периодическое решение [-1,0] которое притягиватся при $\delta = 0$ к седловой точке

Определим характеристики этого периодического движения Перелишем (14) в виде системы уравнений

$$x_1 = x_2$$
, $x_2 = -ax_1 + x_1 - x_1^3 + c(1 + x_1)\cos(\Omega^2)$ (2.2)

Произведя замену переменных

$$z_1 = x_1 \cos(\Omega z) - \frac{1}{\Omega} x_1 \sin(\Omega z), \ z_2 = -x_1 \sin(\Omega z) - \frac{1}{\Omega} x_2 \cos(\Omega z)$$

получим уравнения относительно с, и с. Согласно теоремс о среднем, заменим правые части полученных уравнений на их усредненные по периоду выражения. Тогда получим новую, автономную систем уравнений, которая и полирной системе координат имеет простой вид

$$z = -\frac{z}{\Omega} \left(\Omega z + \frac{1}{2} \sin \theta \right), \quad \theta = \frac{1}{\Omega} \left(-\frac{\Omega^2}{4} + \frac{3}{4} z^2 - \cos \theta \right)$$
 (2.3)

Пеподвижная гочка (2°, 6°) этой системы определяется выраженнями

$$V = \arcsin(2a\Omega), \quad z^* = \left[\frac{1}{3} \Omega^2 + \frac{4}{3} (1 - a^2\Omega^2)^{1/2} \right]^{1/2}$$
 (2.4)

Следонательно, при выполнении порогового условия $\alpha^2 |\Omega|^2 < 1$ в системе установятся колебания с законом движения (2.3).

При увеличении возмущения (б и ц), входящие и выходящие сепаратрясы седловой точки не совпадают--периодическое решение разрушается. При выполнении некоторых условий эти кривые пересекаются. Как показапо в работе [5], расстояние между устойчивыми и пеустойчивыми ветвями сепаратрисы определяется некоторой функцией (функцией Мельнакова), которая в нашем случае имеет вид

$$\lambda_{n}(t_{0}) = -\int_{-\infty}^{\infty} x[\delta(1+\gamma x^{2})\cos(\Omega x) - xx]dx$$

гле $x(\tau-\tau_0)=\sqrt{2}$ sech $(\tau-\tau_0)$ -гомовининческая орбита точки (0,0) невозмущенной системы (1.5).

Вычисляя соотнетствующие интегралы, получим следующее вы ражение для $\Delta(\tau_0)$

$$\Delta_{i}(\tau_{0}) = -\frac{-1^{i}\frac{\sigma_{0}}{3}}{3}\delta\Omega\left[3 + \frac{\sigma_{0}}{3}(\Omega^{2} + 1)\right]\operatorname{sech}\left(\frac{\pi}{2}\Omega\right)\operatorname{sin}(\Omega\tau_{0}) + \frac{4}{3}z \qquad (2.5)$$

Полученная функция является периодической по т₀. Согласно [5], если функция $\Delta(\tau_0)$ имеет нули, то устоичивое и неустойчивое многообразия периодической граектории Γ пересекаются в бесконечном числе точек. В этим случае имеем гомомлиническую структуру в устойчивом множестве и, следовательно, странный аттрактор. Пехоля из (2.5), можно получить связь между критическими значениями параметров системы, которые определяют границу воявления хаотического движения

$$\frac{\pi}{2\sqrt{2}} \frac{3^* \Omega^*}{\pi^*} |_{\Upsilon^*}(\Omega^{**} = 1) + 3|\operatorname{sech}\left(\frac{\pi}{2}\Omega^*\right) = 1$$
 (2.6)

где звездочкой обозначены соответствующие критические значения. Для медного кольца кругового сечения ($E=1,23\cdot 10^{11}\mathrm{H}$) с раднусом 10^{-3} м, $R=10^{-1}$ м, $\eta=10^{-2}$ сек $^{-1}$, n=2 имеем следующее пороговое эначение: $q_{\pi}=24.84$ Н.м². Для такого кольца в табл. 1 при ведены значения параметров системы, а также критические значения σ^{2} , в зависимости от F, гле $F=\sigma_{0}$ $q_{\Phi^{2}}$ для которых возможно хвотическое движение.

Значения параметров системы и записимости от Е

Таблица Т

F	16	u ₀	(4	14	91 90
1:01	1,3008	0 · 8139 · 105	27,5496	1.060	1 -288
1:1	2,0575	2 · 5737 · 105	1,1706	14.682	1 -871
1:2	1,2591	3 · 6398 · 105	0,1914	51.388	1 -019
1:3	0,3224	4 · 4578 · 105	0,0133	308.331	0 -248

Как видио из табл. 1, экспериментально реализуемые условия возможного возникновения хаотического движения, при которых <1 и <6 имеет не очень большое значение, достигаются и узком интервале значений нараметров: 1.1 < r < 1.3 и $2.06 > F_1 > 0.32$, что может накладывать определениме трудности при их реализации. При этом граница области хаотического движения не обязательно должна точно определяться условием (2.6). Возможно существ звание области параметров (<6, <0), где имеется гомоклиническая структура, которая не является притигивающей. С другой стороны наличие гомомлинической структуры не является необходимым условием возникновения хаотического движения [7]. Окончательные ответы на эты нопросы можно получить с помощью численного моделирования уравнения (1.4).

§3. Колебания кольци при раиномерной нагрузке

Уравнения динамики плоской теформяции гибкого кругового кольца, находящегося под деиствием равномерно распределенной внешней нагрузки, примем в виде [2,8]

$$-\frac{\partial N}{\partial s} + \frac{Q}{s} = q , \qquad \frac{\partial Q}{\partial s} - p_0 R \left(\frac{1}{p} - \frac{1}{R}\right) + \frac{N}{p} = q$$

$$\frac{\partial M}{\partial s} = Q, \qquad = E \left(\frac{1}{r} - \frac{1}{R}\right)$$
(3.1)

Уравнения (3.1) можно получить из более общих уравнений (1.1), принимая, что движение кольца начивается с момента приложения внешней нагрузки p_0 .

Для периодического по времени внешнего давления примем следующее выражение: $p_0 = q_0 + q_1 \cos(m^2)$. Используя приближение (1.2) вместо уравнений (3.4), получим одно уравнение

$$m = + \eta \frac{\partial w}{\partial t} + R \frac{\partial w}{\partial s^2} \left[s \left(q - \frac{\partial^2 M}{\partial s} \right) - M \left(\frac{1}{s} - \frac{1}{R} \right) \left| -\frac{\partial}{\partial s} \left| \frac{1}{s} \frac{\partial M}{\partial s} \right| = 0 \right]$$
(3.2)

Применяя метод Бубнова Галеркина в одномодовом приближении и ограничиваясь кубическим относительно А приближением, получим г следующее уравнение с безразмерными коэффициентами:

$$A + \alpha A - A \cdot A^3 = \delta A (1 + \alpha A^3) \cos(\Omega \tau) \tag{3.3}$$

где коэффициенты х. д. ч. Ω определяются урависнием (1.5).

Уравнение (3.3) в отличие от (1.4)-однородное уравне-По его качественное исследование можно провести 10 exeме, изложенной в § 1. В частности, невозмущенияя система (случай б=0) уравиения (3.3) идентична невозмущенной системе (2.1). При ненулевой, по малой 6 система (3.3) совершает периодическое движеине с характеристиками, определяемыми (2.3) и (2.4). При увеличеини внешней нагрузки периодическое решение разрушается и на фазовой влоскости появляется множество со сложной структурой. Для его характеристики спова введем в рассмотрение функцию Мельникона, которая в данном случае имеет вид

$$\Delta_{\delta}(t_0) = -\int \dot{x} [\delta x (1 - \gamma x^2) \cos(\Omega \tau) - \tau x] d\tau \qquad (3.4)$$

где $x(t-t_0)$ гомоклиническая орбита неподвижной точки (0,0) типа седла, определяемая уравнением $x(t-t_0)=\sqrt{2\mathrm{sech}(t-t_0)}$.

Произведя соответствущие вычисления, получим следующее выражение для $\Delta_{i}(t_{0})$:

$$\Delta_1(t_0) = \pi \Omega \delta \left[\frac{2}{3} \gamma \left(1 + \frac{\Omega^2}{4} \right) - 1 \right] \operatorname{cosech} \left(\frac{\pi \Omega}{2} \right) \sin(\Omega t_0) + \frac{4}{3} z \quad (3.5)$$

Отсюда можно получить критическое для с значение

$$= \frac{4\pi}{3\pi\Omega^2} \frac{\sinh(-\Omega/2)}{\left|\frac{2\pi}{3}\left(1 + \frac{\Omega^2}{4}\right) - 1\right|}$$
(3.6)

При выполнении условия б>б функция (3.5) имеет пулв и согласно критерию Мельинкова, на фазовой плоскости появляется множество типа странного аттрактора,

Для сравнения рассмотрим модельную систему, описанную и § 1 Для нее в габл 2 приведены значения основных нараметров и крити ческих значений.

Таблици з

F	1.	(2.5)	7.4 /as	90.91
1.01	1.60	22,82	14.31	0.63
1.1	1,56	2.23	1 -43	0.71
1.2	0.49	0.35	0,72	2,46
1,3	0.09	0.04	0.45	14.05
1,32	0.04	0.02	0,45	37 - 18

Приведенные численные результаты показымают, что, как и в случае системы (1.4), экспериментально реализуемые условия возникновения хаотического движения возможны в узком интервале значений параметров. Для системы (3.3) границы этих интервалов отличаются от личений, полученных для (4.1) и кри преские условия имеют вид:

1, $0.04 < F_1 < 0.10$.

Как и для ураниения (4.4), окончательный ответ на нопрос о граниям хаотического движения можно волучить с помощью численного иоделирования уравнения (3.3).

Полученные результаты поэполяют утверждать, что описанные медельные механические системы, движения которых полчиняются детерминистическим дифференциальным уравнениям, долускают как периодическое, так и апериодическое, хлотическое движение.

ABOUT ONE NUNLINEAR PROBLEM OF CHAOTIC VIBRATION OF A CIRCULAR RING V. TS. GALOYAN, K. B. KAZARIAN

Շրջուններ օգուտ «հանցիչ հահատունների ոջ Գրևծին Մի հեցրի Մաստ

a. a. sulhand, a. p. augupand

Ամփոփում

Աշխատանքում դիտարկված է շրջանային ողակի դինամիկ ոչ գծային վարթը արտաքին շատավղային պարբերական բեռի ազգեցության ատել Հարթ դենորմայիտների մադելում թննարկվուծ են շավաստրաշափ և անհավաստրալակ բեռների դեպրերը։ Համակարդը նկարադրվում է Դուֆինզի տետի հավաստրումով, որը քնայլ է ապիս ինչպես պարբերական, այնպես էւ բառապին լուծումներ։ Վերջին դեպրում շաժակարդի ֆագային հարթեռեկյան վրա առաջանում է բարդ բազմակյան՝ տարարինակ ձղիչները։ Բերված են կրիաի կական պարամետրերի արժերների աչվարկի արդյունչները, որոնց դեպրում անդրում է կատարվում պարբերական շարժումը, դեպի թառապին։

ЛИТЕРАТУРА

- 1. Retssner E. On one-dimensional timite-strain beam theory. ZAMP, 1972 v 23, № 4.
- 2. Вольянр А. С. Устоприность пеформируемых систем. М. Наука, 1967. 984 с.
- 3. Simmonds J. G., Accurate nonlinear equations for the free vibrillons of circular elastic ring.— Trans. ASME J. Appl. Mech., 1979, v. 16, M. 1
- Ивенсен М. Нелинейные изсибане колебания топьих круговых колец.--Прикладиая механика. 1966. т. 33, № 3.
- Мельников В К Об устоиняюся пентра при периодических по премени позмущеняя.—Тр. Московского математического общества. т. 12, 1963.
- 6. Holmes P. J. A nonlinear oscillator with a strange attractor.— Phil. Trans. Roy. Soc. London, 1979, v 292A, 38 1391.

7 Неймарк Ю. И., Ланда II С. Стохастические и хвотические колебания-М.: Нау ка, 1987. 424 с. 8 Динник А. Н. Устобинвость врок.—М. ОГИЗ, 1946. 128 с.

Бюраканская астрофизическая обсерватория АН Армении

Институт механики АН Армении

> Поступила в редакции 4.XH.1989