ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯИСКОЙ ССР

УЪршърц 43, № 4, 1990 Механика

УДК 532.3

ПРОНИКАНИЕ ТОНКОГО КОНУСА В ЭДЕКТРОПРОВОДЯЩУЮ ЖИЛКОСТЬ

АВАГЯН С. Г.

В работе [1] решается задача движения копуса в сжимаемой электропроводящей жидкости и указано, как следует решать задачу провикания. Основной результат состоит в получении формулы для давления в главном порядке лаго, что ограничивает значимость результата. Данная работа содержит полное решение задачи проникания в электропроводянцую несжимаемую жидкость. В работе [2] рассматриваются задачи обтекания клина сверх вуковым потоком. В работе [3] рассматриваются течения идеального газа с бесконечной проводимостью в магингном поле, пяраллельном скорости набегающего потока.

В настоящей работе рассматринается задача о проникании гонкого твердого конуса в электропроводищую несжимаемую жидкость, находящуюся в магнитном поле. Жилкость находится в начальном H_0 магнитном поле, которое направлено по оси тела х. Для общиости, сначала рассматривается проникание тонкого оссениметричного идеально-проводящего тела в бесконечно электропроводящую несжимаемую жидкость. Уравнение магнитной гидродинамики в случае баротропной невесомой несжимаемой илеальной жизкости в векторной форме имеет вид [4]

$$\operatorname{div} \vec{V} = 0 \tag{1}$$

$$\rho \frac{dV}{dt} = -\operatorname{grad} P + \frac{1}{4\pi} \operatorname{rot} \vec{H} \times \vec{H_a}$$
 (2)

$$\frac{\partial \vec{H}}{\partial t} = \text{rol}(\vec{V} \times \vec{H_0}). \quad \text{div} \vec{H} = 0$$
 (3)

где V—скорость частиц жидкости, о-плотность, P—давление, H—
напряженность магиятного поля, H_0 —начальное матнитное поле,
Уравнение (1), (2), (3) можно записать в виде

$$\frac{\partial V_x}{\partial t} + \frac{1}{a} \frac{\partial P}{\partial x} = 0, \quad \frac{\partial V_x}{\partial t} + \frac{1}{a} \frac{\partial P}{\partial r} - \frac{H_0}{4\pi a} \left(\frac{\partial H_x}{\partial x} - \frac{\partial H_x}{\partial r} \right) = 0 \tag{4}$$

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_r}{\partial r} + \frac{V_r}{r} = 0, \quad \frac{\partial H_x}{\partial t} = -H_0 \left(\frac{\partial V_r}{\partial r} + \frac{V_r}{r} \right), \quad \frac{\partial H_r}{\partial t} = H_0 \frac{\partial V_r}{\partial x}$$

$$\frac{\partial H_x}{\partial x} + \frac{\partial H_x}{\partial r} + \frac{H_r}{r} = 0$$
(5)

Гратичные условия в пледе и на поветхности жидкости имеют вид [5, 6]

$$r = r_{k}, \quad V_{x} = -f'(t) \frac{dr_{k}}{dx}$$

$$x = 0, \quad P = \frac{H_{0}}{4\pi} h_{x} = -\frac{H_{0}}{4\pi} h_{x} \quad H_{x} = H_{0} + h_{x}$$
(6)

где h_x есть возмущенное поле вне жилкости. Первое условие соответствует условию равенства пормальной компоненты скорости жидкой частицы скорости тела по нормали, а второе—равенству пормальных компонент полного тензора напряжения Кроме этого, на границе x=0 для идеально проводящей жилкости [6] имеется непрерывность нормальной компоненты напряженности поля, $h_x = h_x'$ и можно
записать x=0, P=0. При этом (6) совналают с граничными условиями в отсутствии поля.

Задачу можно было бы решать, следуя методу [1], вводя источники по оси тела и переходя к записи преобразования Лапласа от потенциала источника через интегралы от бесселевой функции, зависящей от r и экспоненты, записящей от $x-x_1$, гле x_1 —координата источника. Однако, проще ввести в (4), (5) потенциалы скорости и поля

$$V = \operatorname{grad} \varphi, H = \operatorname{grad} \varphi$$
 (7)

При этом уравнения удовлетворяются и получаются <mark>уравнения</mark> Лапласа

$$\nabla^2 \varphi = 0, \quad \nabla^2 \varphi = 0, \quad \nabla^2 = \frac{\partial}{\partial x^2} + \frac{1}{x} \frac{\partial}{\partial x} + \frac{\partial}{\partial x^2}$$
 (8)

и соотношения

$$\frac{\partial \varphi}{\partial t} + \frac{1}{\varrho} P = 0, \quad \frac{\partial \varphi}{\partial t} = t I_a \frac{\partial \varphi}{\partial x} \tag{9}$$

где на бесконечности положено, что все функции равны нулю. Уравнение (8) для є вместе с (6) на теле и свободной поверхности соврадают є уравнениями и граничными условиями задачи провикания тонкого тела в жидкость и отсутствии поля, решение которой имеет вид [5]

$$P = -\rho \frac{\partial v_1}{\partial t} + \rho \frac{\partial v_2}{\partial t} \qquad v_2 = \frac{1}{2} \int_0^{t(t)} \frac{f'(t)r_1}{\sqrt{(x^2 - x_1)^2 - t^2}} dx_1 \tag{10}$$

Таким образом, навление в жидкости при проникании в исе тонкого тела по направлению пормали к новерхности, совпадающей с начальным магнитным полем H_0 , не зависит от поля. В силу свойств идеально проводящей жидкости, вполне приемлемо допушение, сто токи концентрируются около границ жилкости, а именно: тела и сноболной новерхности. Поэтому принято веклу, кроме указанных мест,

тотН=0. Отличие полученного в статье решение от [5] состоит и учете поверхностных токов, так же, как и в плоской задаче [6]. По нанденному магнитному полю в идеальной жилкости и непользуя уравиение Лапласа в диэлектрике, можно найти там комполенты

 h_{11} H_{12} Однако, поскольку гот H=0 в области отрицательных x, то сила Лоренца равна пулю. Поэтому, область x<0 не рассматривается. С другой стороны, поскольку жидкость идеально проводящая, на границе с телом должен быть токоной слой и скачок давления который, как и в случае обтекания клина $\{6\}$, имеет пид

$$P_{+} - P_{-} = -\frac{1}{8\pi} (H_{x_{+}}^{2} - H_{x_{-}}^{2})$$
 and $P_{-} = P_{-} + \frac{1}{4\pi} (h_{x_{+}} - h_{x_{-}})$

где знак "+" характеризует жилкость, а знак "-" — границу тела, внугри которого можно считать $h_+ = 0$, то есть магнитное поле не входит в тело, поскольку жидкость идеально проводицая [1, 6]. Тогда на теле

$$P_{-}=P_{-1}\frac{II_{0}}{4\pi}h_{x} \tag{11}$$

где P, h, —давление и компонента магнитного поля около тела. Из (9) следует

$$\frac{\partial h_c}{\partial t} = H_c \frac{\partial V_c}{\partial x} \tag{12}$$

Па (4) следует $\frac{\partial V_r}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial x}$, откуда получится с учетом (10)

$$V_{\alpha} = \frac{\partial_{\alpha}}{\partial x} - \frac{\partial_{\alpha}}{\partial x} \tag{13}$$

Тогда

$$\frac{\partial h_A}{\partial t} = h_B \left(\frac{\partial h_A}{\partial x^2} - \frac{\partial h_A}{\partial x^2} \right)$$

Исходя из обозначений $r_{1,2}$ (10), после соответствующих выкладок, для конуса получим ($r_k = r(f - x)$, где 2r - yгол раствора конуса)

$$\frac{\partial h_x}{\partial t} = H_0 \frac{f'}{2} r^2 \left[\frac{1}{(x+f)^2 - r^2} - \frac{1}{\sqrt{(x-f)^2 + r^2}} \right]$$

Отсюда

$$h_1 = H_0 \frac{1}{2} \int_0^1 \left| \sqrt{(x+f)^2 + r^2} - \frac{1}{\sqrt{(x-f)^2 + r^2}} \right| df =$$

$$= \frac{H V^2}{2} \left[\ln r - 2 \ln(x + V x^2 + r^2) + \ln(2f + V 4f^2 + r^2) \right]$$

С учетом (11) для давления P (вместо P_{-}) на теле $r=r_{k}$ получим H^{-1}

$$P = -b\frac{\partial_{x_{1}}}{\partial t} + \rho\frac{\partial_{x_{2}}}{\partial t} + \frac{H_{n}^{2}t^{2}}{8\pi} |\ln r - 2\ln(x + \sqrt{x^{2} + r^{2}})| + \\ + |\ln(2f + \sqrt{4f^{2} + r^{2}})| = \frac{t^{2}\rho f^{2}}{2} \left[2x - 2(f - x)\ln t + \\ + |\ln(\frac{f^{2} - x^{2}}{4f^{2}} + f\ln\frac{f + x}{f - x} + f\ln\frac{x^{2}f^{2} + 4x^{2}}{f^{2}} \right] + \\ + \frac{\lambda^{2}\rho f^{2}}{2} \left(\ln\frac{\lambda^{2}f^{2} + 4x^{2}}{\lambda^{2}f^{2}} + \ln\frac{f + x}{f - x} - 2\frac{x}{f} + \frac{2f^{2}}{\lambda^{2}f^{2} + 4x^{2}} \right) + \\ + \frac{H_{n}^{2}}{8\pi} \left[\ln t + \ln 4f(f - x) - 2\ln(x + \sqrt{x^{2} + \lambda^{2}}(f - x)^{2}) \right]$$

$$(14)$$

тле / - ускорение проникания конуса.

Компоненты малинтного поля получанся в энде

$$H_{s} = \frac{H_{0}/^{2}f^{2}}{4} \frac{\partial}{\partial x} \left[\frac{1}{\sqrt{x^{2} + r^{2}}} + \frac{1}{\sqrt{(x - f)^{2} + r^{2}}} \right]$$

$$H_{s} = H_{s}/^{2}f^{2} \frac{\partial}{\partial r} \frac{1}{\sqrt{(x - f)^{2} + r^{2}}}$$

Перейдем к определению силы сопротивления жидкости, которая через давления определяется по формуле

$$Q = -\int_{0}^{f(1)} 2\pi P r_{s} \frac{\partial r_{s}}{\partial x_{1}} dx$$

Для копуса, имея в виду (14), получим

$$\begin{split} Q &= 2\pi \lambda^2 \int\limits_0^f (f-x) \left\{ \frac{1}{2} \, \lambda^2 \varrho f'' \left[\, 2x - 2(f-x) \ln \lambda + \right. \right. \\ &+ x \ln \frac{f^2 - x^2}{4f^2} + f \ln \frac{f+x}{f-x} + f \ln \frac{\lambda^2 f^2 + 4x^4}{f^3} \, \left[\, + \right. \\ &+ \frac{1}{2} \, \lambda^2 \varrho f'^4 \left(\ln \frac{\lambda^2 f^2 + 4x^2}{\lambda^2 f^4} + \ln \frac{f+x}{f-x} - 2 \, \frac{x}{f} + \frac{2f^2}{\lambda^2 f^2 + 4x^2} \right) + \\ &+ \frac{H_0^4 \lambda^2}{8\pi} \left[\ln \lambda + \ln 4 f(f-x) - 2 \ln (x + y' \, x^3 + \lambda^2 (\hat{f}-x)^4) \right] \right\} dx \end{split}$$

После витегрирования будем иметь

$$Q = -\pi \rho r^4 \left[f^2 f^{*4} \ln 2r + f^2 f^2 \left(\frac{2}{3} \ln 2r + \frac{1}{3} \right) \right] +$$

$$+\frac{H_0^2\lambda^4f^2}{8}\left(\ln\lambda+\frac{5}{2}\right)$$

Как и следует, магнитное поле уменьшает силу сопротивления. Для простоты рассмотрим провикание с постоянной скоростью $f=V_0$. Тогда получим

$$Q = -\pi \rho \lambda^4 V^4 t^3 \ln 2\lambda + \frac{H(sk^4 V_0^2)^2}{8} \left(\ln k + \frac{5}{2} \right)$$

Отсюда

$$\frac{Q}{=\omega^4 V k^2} = \ln \frac{1}{2\lambda} + \varepsilon \left(\ln \lambda + \frac{5}{2}\right) \tag{15}$$

где

Как следует из (15), сила сопротивления обращается в нуль прв

$$x = \frac{\ln \frac{1}{2i}}{\ln \frac{1}{i} - \frac{5}{2}}, \quad x > 0 \quad \text{and} \quad i < e^{-\frac{\pi}{2}}.$$

Автор выражает глубокую благодарьость А. Г. Батлосву за полезное обсуждение работы.

THE THIN CONE PENETRATION INTO ELECTROCONDUCTIVE LIQUID

S. G. AVAGIAN

ՔԱՐԱԿ ԿՈՆԻ ԹԱՓԱՆՑՈՒՄԸ ԷԼԵԿՏՐԱՀԱՂՈՐԳԻՉ ՀԵՂՈՒԿԻ ՄԵՋ

บ. ว. แสนาธนา

Ամփոփում

Լուժված է էլնկտրահաղորդիչ հնղուկի մեջ րարակ պինց կոնի թեափանցման խնդիրը, մազնիսական դաշաի առկայության դեպքում։

Ստացված են հղուկի մեջ ու մարմնի վրա ընկած նկյումը և հղուկի գիմադրության ուժը։ Տույց է տրված, որ հեղուկի մեջ մագնիսական դաչտր Տնչման վրա չի ազդում։ Սակայն մակերևությալին հոսանջների առկայություն նր փոխում է ճնչումը մարմնի երկայությամբ։

Ստացված են հեղակի մեջ մազնիսական դաշաի բաղադրիլների արժեր-<mark>ները</mark>։

JIHTEPATYPA

- 1. Ависян С. Г., Багооев А. Г. Провикание зонкого конуса в магнитогоодинимическую жидкость. Изв. АН Арм ССР, Мехацика, 1984, т. 37, № 4, с. 3-12.
- 2. Куликонский А. Г. и Любимон Г. А. Магингиан гидродинамика, М.: Гостехиздат 1962.
- 3. Коган М. И. Магнитодинамика плоских и осесимметричных гечении газа с бесконечной электрической проводимостью. ПММ, 1. XXIII, № 1. 1959, с. 70-80.
- 4. Cedos Л. И. Механика силошной среды, т. 1, М. Наука, 1983, 528 с.

1145

5. Сагомомян А. Я. Провикание, Изд-ве MTV, 1974, 299 с.

No benefit and

б. Калихман Л. 🕼 Элементы магнитной гидродинамики. М.: Атомиздат, 1964, 423 с.

Ленинаканский филнал Ереванского политехнического виститута им-

К. Маркса

....

Поступная в редакцию 15.IV.1988