Մեխանիկա

42, N 5, 1989

Механика

YAK 539:534.1

ДИПАМИЧЕСКАЯ ЗАДАЧА ТЕОРНИ МПРУГОСТИ ДЛЯ ПЬЕЗОЭЛЕКТРИЧЕСКОЙ СРЕДЫ С ТУННЕЛЬНЫМИ РАЗРЕЗАМИ

ПАРТОН В. З., ФИЛЬШТИНСКИЯ М. Л.

Динамические задачи теории упругости для изотропной среды с туниельными разрезами рассматривалиль, например, в [1-3]. Ниже в условиях илоской деформации изучается динамическая задача о взаимодействии грещин в неограниченной пьезоэлектрической среде. Соответствующая краевая задача сводится к системе сингулярных ин тегродифференциальных уравнений относительно амплитуд скачков неремещений на разрезах. Проводится асимптотический анализ механического поля в окрестности вершии разрезов. Коэффициенты питеисивности получены в виде функционалов, определенных на решениях интегральных уравнений краевой задачи.

Предлагается схема приближенного численного решения системы интегральных уравнений для тех случаев, когда в теле имеется несколько разрезов. Приводятся результаты расчетов.

Полная система уравнений имеет кид: уравнения состояния пьезосреды [5]

$$c_{11} = c_{11}^{D} + c_{12}^{D} + c_{13}^{D} - h_{31}D_{3}, \quad c_{12} = c_{12}^{D} + c_{11}^{D} + h_{31}D_{3}$$
(1.1)
$$c_{13} = (c_{11}^{D} - c_{12}^{D}) c_{12}, \quad E_{3} = -h_{31}(z_{1} + z_{2}) + b_{32}D_{3}$$

уравнения движения (суммирование по))

$$\partial_j z_{ij} = p \frac{\partial^2 u_i}{\partial t^2} \quad (i, j = 1, 2) \tag{1.2}$$

уравнення Максвелла [6].

2 Известия АН Армянской ССР, Механика, N25.

17

$$\partial_1 H_2 - \partial_2 H_1 = \frac{\partial D_2}{\partial t} \tag{1.3}$$

$$\partial_2 E_3 = -\mu \frac{\partial H_1}{\partial t}, \quad \partial_1 E_3 = \mu \frac{\partial H_2}{\partial t}$$
 (1.4)

$$\partial_1 H_1 \mid \partial_2 H_0 = 0$$

В (1.1) – (1.3) H_{j} , E_{3} , D_{3} соответственно механические напряжения в деформации, магнитная и электрическая напряженности и электрическое смещение c_{ij}^{ij} , h_{21} и \Im_{i3}^{ij} – соответственно, модули упругости, пьезоэлектрическая константа и диэлектрическая, "непронизаемость", магнитная проницаемость среды.

К системе (1.1)—(1.3) необходимо присоединить соответствующие граничные условия.

Для решения поставленное задачи ввелем некторный котенциал H = гогA (здесь и ниже берутся амплитудные значения соответствующих величин. $A \in (0, 0, A_4)$). В этом случае последное уравнение (1.3) выполняется автоматически, а остальные уравнения (1.3) с учетом (1.1) дают

$$\nabla^2 A_1 = i\omega D_1, \quad i\omega_2 A_1 + h_{11} \operatorname{div} U - \mathfrak{h}_{33}^s = C \tag{1.5}$$

Здесь *U* — амплитудное значение вектора перемещения, *C* константа, которая в дальнейшем в соответствии с условиями излучения полагается равной нулю.

Из (15) получаем уравнение для векторного потенциала

$$\nabla^2 A_3 + k^2 A_3 = \frac{l \omega h_{33}}{\beta_{33}^5} \operatorname{div} U, \quad k = \frac{\omega}{c}, \quad c = \left(\frac{\beta_{33}^s}{n}\right)^{1/2}$$
 (1.6)

Величина с, имеющая смысл скорости распространения света в пьезосреде, существенно больше скорости распространения механических возбужцений. Например, для въезокерамики *PZT-4 с* $\approx 1.2 \times 10^5$ м/с. Поэтому в дальнейшем, предполагая, что длина разреза много меньше электромагнитной волим. член $^{-2}A_{+}c^{2}$ опускаем. В этом случае из (1.5), (1.6) находим

$$D_{3} = \frac{h_{31}}{\beta_{33}^{5}} \operatorname{div} U \tag{1.7}$$

Подставляя в уравнения движения (1.2) выражения для од из (1.1) и учитывая (1.7) и соотношения Конии, приходим к уравнению относительно амалитуды нектора перемещений

$$\nabla^2 U + \operatorname{sgrad} \operatorname{dtv} U + U = 0 \tag{18}$$

$$\sigma = \frac{c_{11}^* + c_{12}^*}{c_{11}^* - c_{12}^*} = \frac{\gamma_2^2}{\gamma_1^2} - 1, \quad c_{11}^* = c_{11}^{e_1} - c_{11}^*$$

$$c_{12}^{*} = c_{12}^{D} - z_{0x}^{2} \quad \gamma_{i} = \frac{m}{c_{i}} \quad (l = 1, 2)$$

$$c_{1} = \left(\frac{c_{11}}{2}\right)^{1/2}, \quad c_{2} = \left(\frac{c_{11}}{29} - c_{12}^{*}\right)^{1/2}, \quad z_{0}^{2} = \frac{h_{31}^{2}}{\beta_{32}^{2}}$$

Здесь 7,(*i* == 1.2) — волновые числа, *c_i* — скорости распространения соответствующих механических волн, величина ж характеризует пьезоэлектрический эффект.

Таким образом, задача об определении механических перемещений сводится к интегрированию уравнений Ламе для некоторой фиктивной изотропной среды с параметрами с₁₁, с₁₂ при обычных краевых условиях на берегах разрезов по изпряжениям.

При возбуждении алоских воля в неограниченном пьезоэлектрике класса бит сдвиговая механическая волна не вызывает сопряженной электромагнитной волны. Однако, чистой волны расширения и чистой злектромагнитной волны, вообще говоря не существует.

Дисперсионное уравнение, соответствующее монохроматической волне, движущейся под углом β к оси x_1 ; $\mu_{\mu} = U_{\mu} \exp[-i(\omega t + i \mathbf{x} \times n)]$ $(k = 1, 2), a_1 = A_1 \exp[-i(\omega t + i \mathbf{x} \cdot n)], \mathbf{x} = (x_1, x_2), n = (\cos 3, \sin 3)$ имеет вид

$$(\lambda^3 - \beta_1^2)(\lambda^3 - \beta_2^2)(\lambda^3 - \gamma_2^2) = 0$$
(1.9)

$$2S_{1,2} = V(\overline{(\tau_1 + k)^2 + \tau_0^2} \pm V(\overline{(\tau_1 - k)^2 + \tau_0^2}), \quad k = \frac{x_0^2 k^2}{c_{11}^2 - z_0^2}$$

Соответственно получаем связь между амплитудами U_k , A_i : при $k = \beta_i$

$$U_{1} = C_{1}A_{3}\cos 3, \quad U_{2} = C_{3}A_{3}\sin \beta$$

$$C_{1} = \frac{k^{2}h_{33}\beta_{1}}{w(\gamma_{1}^{2} - \beta_{1}^{2})(c_{11}^{D} - x_{0}^{2})}$$
(1.10)

лон /. 🚥 3,

$$U_{1} = C_{3}A_{3}\cos{3}, \quad U_{2} = C_{2}A_{3}\sin{3}$$

$$C_{2} = \frac{k^{2}h_{31}\theta_{3}}{\omega(\frac{x^{2}}{x^{2}} - \beta_{2}^{2})(c_{11}^{0} - x_{0}^{2})}$$
(1.11)

Так как $k \ll \gamma_1$, заключаем из (1.9) $\beta_1 = \gamma_1 + O(k^1)$, $\beta_1 = k + O(k^3)$ Поэтому в дальнейшем при рассмотрении механических волновых полей в ньезоэлектрике будем считать, что из бесконечности падает P или SV волна. Родственная задача для неограниченной среды с криволниейными разрезами рассматривалась в [3].

Ниже указывается процедура, позволяющая последовательно уменьшать связность области, что дася возможность неследовать взанмолействие нескольких разрезов в среде.

2. Сведение краевой задачи к интегральным уравнениям. Привле-

кая представления решений [3] для изотровной среды, приходим к системе интегральных уравнений для пьезоэлектрической среды с разрезами

$$\begin{split} \sum_{n=1}^{2} \int_{L} \left[R_{n}^{*}(\zeta) G_{nn}(\zeta, \zeta_{0}) + R_{m}(\zeta) R_{mn}(\zeta, \zeta_{0}) \right] ds &= N_{n}(\zeta_{0}) \quad (n = 1, 2) \\ G_{nm} &= \lim_{\tau \to -\frac{1}{2}} \frac{e^{d^{2}s}}{2} + \frac{\pi i}{2} F_{23} \sin(\psi_{0} - z_{0}) + \\ &+ \frac{(-1)^{2n} \pi \tau_{0}^{2}}{8} + \frac{\pi i}{2} F_{23} \sin(\psi_{0} - z_{0}) + \\ &+ \frac{(-1)^{2n} \pi \tau_{0}^{2}}{8} + \frac{\pi i}{2} F_{23} \sin(\psi_{0} - z_{0}) + \\ &+ \frac{(-1)^{2n} \pi \tau_{0}^{2}}{8} + \frac{\pi i}{2} F_{23} + \frac{\pi i}{2} F_{2$$

20

٨

$$N_{nk} = \frac{(-1)^{n} \tau_{2k}}{\tau_{2}^{2} - \tau_{1}^{2}} \exp\left[(-1)^{n} i \psi_{0} - i \gamma_{2k} \xi_{k0}\right]$$

Здесь ΔU_m (m=1.2) представляют скачки перемещений U_m на L; $\frac{1}{2}, \frac{1}{2}_0$ — угол между нормалью к левому берегу разреза и осью ox_1 , ds — элемент дуги L_{2_k} и — амплитуды вектора механических смещений при наличии P и V воли соответственно, падающих в направлении оси x_k .

К системе (2.1) необходимо присосланить дополнительные условия, выражающие отсутствие разрывов перемещений на концах разрезов

$$\int dR_m = 0, \quad m = 1, 2; \quad j = 1, 2, \dots, k$$
 (2.2)

3. Динамические коэффициенты интенсивности напряжений. Система интегральных уравнений (2.1) в совокупности с условиями (2.2) имеет единственное решение в классе функций, неограниченных на концах L_i . Полагая $\zeta = \zeta(5)(-1 < 3 < 1)$, представим искомые илотности следующим образом:

$$R_{m} = \frac{dR_{m}}{ds} = \frac{\Omega_{m}(\tilde{s})}{s'(\tilde{s})V' 1 - \tilde{s}^{2}}, \quad s'(\tilde{s}) = \frac{ds}{d\tilde{s}} > 0 \quad (2.1)$$
$$\Omega_{m}(\tilde{s}) \in H[-1,1], \quad m = 1,2$$

Асимптотический анализ интегральных представлений для напряжений [3] на продолжении за вершины разрезов L, позволяет получить динамические коэффициенты интенсивности напряжений в виде

$$K_1 = \Lambda \sqrt{\pi l} N \left[\cos(\omega t - \arg N), K_{11} = \Lambda \sqrt{\pi l} \right] T \left[\cos(\omega t - \arg T) \right]$$
(3.2)

$$N = \mp \frac{\Upsilon_{12}^{2}(c_{12}^{0} + c_{12}^{0} - 2s_{0}^{2})}{4\gamma_{2}^{2}\Lambda\sqrt{ls'(\pm 1)}} \left[e^{-i\omega(\mp 0)}\Omega_{1}(\mp 1) + e^{i\omega(\mp 0)}\Omega_{2}(\mp 1) \right]$$

$$T = \mp i \frac{\Upsilon_{12}^{2}(c_{11}^{0} + c_{12}^{0} - 2s_{0}^{2})}{4\gamma_{2}^{2}\Lambda\sqrt{ls'(\pm 1)}} \left[e^{-i\omega(\mp 0)}\Omega_{3}(\mp 1) - e^{i\omega(\mp 0)}\Omega_{2}(\pm 1) \right]$$

$$s'(\mp 1) = \frac{ds}{ds}$$

Здесь, при наличии падающей волны имеем $\Lambda = s^{\max}(s^{\max} - aмпли$ $туда напряжений в этой волне); если волны нет, то <math>\Lambda = P(P - ин$ тенсивность действующей на разрезе нагрузки). Верхний знак соответствует началу трещины <math>c = a, нижний – концу c = b, 2l - длинаразреза. 4. Дво трещины в пьезоэлектрической среде. Для исследования взаимодействия двух разрезов в среде необходимо рассмотреть систему из восьми (вещественных) интегральных уравнений. Чтобы избежать этого, поступим следующим образом. Вседем нараметризацию разрезов $1 = 1(4) \in L_1$, $\eta = \eta(\Delta) \in L_2$, -1 < 0, $\Delta \leq 1$. Соответствению систему (2.1) с учетом (2.2) сводим к линейным алгебраическим у авнениям относительно значений функций $\Omega_k(\Delta)$ и $\Lambda_k(\Delta)$ в узлах интерноляции согласно процедуре работы [7].

$$\sum_{i=1}^{n} (a_{m} \Delta_{1i} + b_{m} \Omega_{2i}) = N_{m} + \sum_{i=1}^{n} (\gamma_{im} \Lambda_{1i} + m_{m} \Lambda_{2i})$$

$$\sum_{i=1}^{n} (\gamma_{im} \Lambda_{1i} + m_{m}^{*} \Lambda_{2i}) = N_{m}^{*} + \sum_{i=1}^{n} (\chi_{im}^{*} \Omega_{1i} + b_{m}^{*} \Omega_{2i})$$

$$m = 1, 2, \dots, 2n$$

$$N_{m} = N_{m}(\delta_{2i}), \quad N_{m}^{*} = N_{m}^{*} (\Delta_{2i}), \quad \chi_{mv} = \chi_{mv}(\delta_{1i}, \delta_{2i}), \quad y_{mv} = \beta_{mv}(\delta_{1v}, \delta_{2i})$$

$$\gamma_{mv} = \gamma_{mv}(\Delta_{1i}, \delta_{2i}), \quad m_{mv} = m_{mv}(\Delta_{1i}, \delta_{2i}), \quad y_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = w_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\Delta_{1i}, \delta_{2i}), \quad w_{mv} = w_{mv}(\Delta_{1i}, \delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\Delta_{1i}, \delta_{2i}), \quad \psi_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = w_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad \psi_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad \psi_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad \psi_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{fv}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{1i}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = m_{mv}^{*} (\Delta_{1i}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}(\delta_{1i}, \delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i})$$

$$\sum_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i}), \quad w_{mv} = \gamma_{mv}^{*} (\Delta_{1i}, \Delta_{2i})$$

Здесь с_{к.}, Δ_{к.} — нули многочлена Чебышева k-го рода: х_{т.}, й, w_m — значения соответствующих лижейных комбинаций ядер и правых частей системы (2.1) в узлах интерполяции. *п* — число узлоя разбления [7].

Определим стандартные решения пераой системы уравнений и (3.1) N_m^s, т. и w_m^s так, чтобы выполнялись следующие соотнонения:

Далее. всключая с помощью (4.2) соответствующую часть неизвестных в (4.1), приходим к системе уравнений относительно второй группы неизвестных Λ_{kn} (m = 1, 2, ..., n; k = 1, 2). Фактически такой алгоритм сводится к последовательному решению двух несвязанных систем (каждая из четырех вещественных интегральных уравнений). Как показывают численые исследования на ЭВМ, указаниая процедура уменьшения связности области является эффективной и может быть обобщена на случай, когда в области имеется несколько разрезов.

В качестве примера исследуем взаимоденствие двух прямолинейных трещин $\xi^{(i)} = p_2, \ \xi^{(i)}_1 = p_3, \ \xi^{(2)}_1 = p_3 + p\Delta, \ \xi^{(2)} = p_2, \ -1 \leqslant \delta, \ <1$ в пьезокерамике PZT = 4 [5]; a_1 и — соответственно, начало и конец разреза L(j=1,2).

На фиг. 1 приведены результаты расчетов амплитуд относительных коэффициентов витенсивности напряжений N1 (кривые 2-4) и [7] (кривая 1), определяемых формулами (3.2) в зависимости от па-

раметра $q_1 = p_2/l$ при $\gamma_1 l = 0.5$. p = 1. $p_1 = p_2 = 0$. Кривые 2 н 1 построены для случаев, когда на берегах L_1 и L_2 задана нормальная $P_1 = -P_1 - P_1 = P_{COS2}$, $P_2 = -P_2^- = P_2 = P_{SIN2}$ и касательная $P_1 = -P_{SIN2}$, $P_2 = P_{COS2}$ нагрузки соответственно (при отсутствии пацающей волны); кривые 3 и 4 характеризуют действие P волны, пазающей из бесконечности илоль осей x_1 и x_1 соответственно (кривая 3 относится к L_1 , кривая 4 — к вершине a_1 разреза L_1 , j = 1,2).

Фиг. 2 иллюстрируст изменение (Кривые 2,3) и [7] (Кривая 1) и зависимости от нараметра $q_3 = p_3$ l = 2 при p = 1, $p_1 = p_2 = 0$, l = 0, l = 0.5. Кривые 2 и 1 комментируются так же, как на фиг. 1 и относятся к вершинам a_1, b_3 ; кривая 3 соответствует нершинам a_1, b_1 при действии на берсгах L_3, L_3 пормальной нагрузки.

DYNAMIC PROBLEM OF ELASTICITY FOR PIEZOELECTRIC MEDIUM WITH TUNNEL CRACKS

V. Z. PARTON, M. L. FILSHTINSKI

ԿԱՆԱԷ ՎԳՇԱՆԱԿԱՆԵՐԵՐ ՆԱԲԱԳՏԱՆ ԳԻԳԱԱԱՆ ԱՏԲՎԱՆԱՆ ԱՅԱԱՅԱՅԱՅ ԱՅՅԵՆԵՆ ԱՆԱԳԱԿԱՆԱՆԵՐԻ ՏԱԵՐՔՎԱՆԱՏՅԱՆ ԳԻՆԱԱԴԱԳԱՆ ԴԴԴԴ

վ. 2. ՊԱՐՏՈՆ, Մ. 1. ՖԻԼՇՏԻՆՍԿԻ

Ամփոփում

Հարթ դեֆորմացիայի պայմաններում ուսումնասիրված է անսա:մանափակ պիհղոկերամիկական միջավայրում շաթերի փոխազդեցության տոմար դինամիկական ինդիր։ Համապատասխան եղրային ինդիրը բերված է կարրվածբների վրա տեղափոխությունների թեղելջների ամպլիտուղների նկատմամբ ինտեզրագիֆերենցիալ Հավասարումների Համակարգիւ Բերված է կարրվածբների դագածների շրջակայրում մեխանիկական դաշտի ասիմպաստիկական վերլուծությունը։ Ինտենսիվության գործակիցները ստացված են ֆունկցիոնայների տեսթով։

Առաջարկված է ինտեդրալ Հա<mark>վասարումների լու</mark>ծման մոտավոր **Եվային** հղանակ այն դհարերի Համար, երբ մար<mark>մնում կան</mark> մի բանի կարվածբներ։

ЛИТЕРАТУРА

- 1. Партон В. З., Морозов Е. М. Механика упруго-пластического разрушения.- М. Наука. 1974. 416 с.
- Sin G. C. Loeber J. F. Wave propagation in an elastic solid Quart. Appl. Math. 1969. V. 27. N 2, P. 193-213.
- 3. Фильштинский Л. А., Волково Л. В. Динамическая задача геории убругости для области с криволинейными разредами (плоская деформация).—Докл. АН СССР. 1983. ↑. 271, № 4, с. 831—834.
- 4 Партов В З., Перлия П. И Методы математической теория упругости. М.: Наука, 1981. 688 с.
- 5. Методы и приборы ультразвуковых исследований. Филическая акустика.- Пол. ред. Мезона У.-М.: Мир. 1968. Ч. А 592 с.
- 6. Ландау Л. Д., Лифиниц Е. М. Электродинамико салошных сред М. Нолова, 1982, 624 с.
- 7. Белоцерковский С. М., Лификов И. К. Численные методы в сингулярных интеральных уравнениях.—М.: Наука, 1985. 255 с.

Сумский филиал Харьковского политехнического института

> Поступила и редакцию 19.1V.1988.