УЛК 624.075

ВЛИЯНИЕ ПОПЕРЕЧНОГО СДВИГА НА УСТОРЧИВОСТЬ УПРУГО ЗАШЕМЛЕНИОП КОЛЬЦЕВОВ ПЛАСТИНЫ

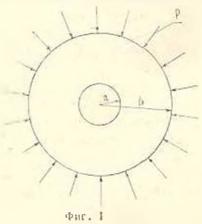
ЧЕРЕНКОВА М. В.

Устойчивости упругих кольцевых пластин посвящены работы [1—6]. Обзор некоторых из них можно найти в статье [7].

В указанных работах авторы использовали классическую теорию изгиба пластин, в которой деформации поперечного сдвига (i=r,0) считаются пренебрежимо малыми $(r,\theta,z-$ цилиндрические координаты с началом отсчета в точке пересечения срединирй плоскости с осью пластины). С применением новых конструкционных материалов, в частности, стеклопластиков, имеющих модули сдвига (i=r,0) значительно меньшие, чем модули упругости E_i (i=r,0,z), возникла необходимость оценить влияние деформаций, препебрегаемых в классической теории. Известны решения, относящиеся к подеречному изгибу и устойчивости анизотродных пластин [8-9], по до конца рассмотрен лишь случай трансверсальной анизотропии материала пластины, когда можно записать следующие соотношения для мод лей упгугости $E_r = E_x \neq E_z$ и коэффициентов Пуассова $= v_r$;

Рассмотрим кольцевую пластину, которая на внешнем контуре r=b упруго защемлена и нагружена равномерно распределенными

сжимающими усилиями $p \mid H M \mid$ (фиг. 1); предполагается, что внутренний контур r = a не закреплен и своболен от нагрузки. В нашем решении, учитывающем сданги, используется теория С. А. Амбаршумяна [8] и, в частности, принято, что касательные напряжения в сечениях r — солы меняются по параболическо му закону: $\gamma_{r2} = 1.2 \times (h^2/4 - z^2)$, где h — толщина пластины, $\varphi(r, \theta)$ — искомая функция координат r, θ .



35

Перерезывающие силы в тех же сечениях определяются интегратрованием касательных напряжений по толшине пластины:

$$Q_r = \frac{h^2}{12} \, \tilde{\varphi} \tag{1}$$

Согласно общим уравнениям, данным в [8], для рассматриваемой адесь осесимметричной формы потери устойчикости лифференциальные уравнения приобретают вид

$$\frac{1}{\varrho} \frac{d}{d\varrho} (\varrho \varphi) = -\frac{12}{h^3} Z \tag{2}$$

$$D_r \frac{d}{d\phi} \left(\rho \frac{d^2 w}{d\phi^2} \right) - D_\theta \frac{1}{\rho} \frac{dw}{d\phi} + \frac{h^2}{10} \frac{D_r}{G_{rz}} \left(\frac{D_\theta}{D_r} \frac{\varphi}{\phi} - \frac{d}{d\phi} \left(\rho \frac{d\varphi}{d\phi} \right) \right) + \frac{h^3}{12} \rho \varphi =$$

$$= \frac{h^2}{10} \left(A_2 Z - A_1 \frac{d}{d\phi} \left(\rho Z \right) \right)$$
(3)

Здесь p=r/b, w - неремещение произвольной точки срединной поверхности в направлении оси z, D_r , D_s — цилиндрические жесткости пластины в радиальном и окружном направлениях;

$$G_{z} = \frac{E_{z}}{2(1+v_{z})}$$
: $A_{z} = -\frac{E_{z}}{E_{z}} \frac{v_{ez} + v_{z}v_{yz}}{1 - v_{eb}v_{ye}}$: $A_{z} = -\frac{E_{z}}{E_{z}} \frac{v_{ez} + v_{z}v_{ye}}{1 - v_{eb}v_{ye}}$

Z—фиктивная поперечная пагрузка, вычисляемая для пеоднородного напряженного состояния кольцевой пластины.

$$Z = N_s \frac{d^2 w}{d\phi^2} + N_0 \frac{1}{\phi} \frac{d w}{d\phi} \tag{4}$$

где $N_r(\rho)$ и $N_b(\rho)$ нормальные усилия, действующие в плоскости пластины и вызнанные нагрузкой ρ в докритическом состоянии.

Строго говоря, эти усилия следует определять путем развития теории Ламе на случай анизотропии. Однако, это привело бы к несьма сложным выражениям [11] и результатам, которые во многих случаях практически мало отличаются от результатов, получаемых по обычным формулам Ламе для изотропного материала (в выполненных нами пробных расчетах для $E_{\epsilon}=0.44$ E_{η} и отношении раднусов контурных линий 0,85 различие составляет доли процента). Поэтому инже принято, как для изотропного материала, по формулам Ламе

$$N_r = -\frac{p}{1 - \eta^2} \left(1 - \frac{\eta^2}{\rho^2} \right) \tag{5}$$

$$N_{\theta} = -\frac{p}{1-\eta^2} \left(1 + \frac{\eta^2}{\rho^2}\right) \tag{6}$$

Здесь $\eta = a/b$.

Выражение для Z можно записать в более компактном виде

$$Z = \frac{1}{\varrho} \frac{d}{d\varrho} \left(\varrho \frac{dw}{d\varrho} N_r \right)$$
 (7)

Подставив (7) в (2) и произведя интегрирование полученного уравнения, можно выразить функцию ф через производную dw/dp

$$\varphi = \frac{12}{h^3} \frac{p}{1 - r^2} \frac{dw}{d\phi} \left(1 - \frac{r_i^2}{\phi^2} \right) + \frac{C_0}{\phi}$$
 (8)

где C_0 —постоянная интегрирования. На свободном внутреннем контуре иластины ($\rho=\eta$) перерезывающая сила $Q_r=0$ и, согласно (1), должно быть справедливо равенство $\varphi=0$. Отсюда из (8) следует, что $C_0=0$, то есть

$$= \frac{12}{h^3} \frac{p}{1 - r_i^2} \frac{dw}{dp} \left(1 - \frac{r^2}{p^2} \right) \tag{9}$$

или, используя (5).

$$= -\frac{12}{h^3} N \cdot \frac{dw}{ds} \tag{10}$$

Подставив (10) в (3), получим дифференциальное уравнение второго порядка относительно угла поворота пормали к срединиой илоскости $\theta = dw/bd\phi$:

$$L_{3}(\theta) + L_{2}(\theta) + L_{3}(\theta) = 0; \quad L(\theta) = \frac{1}{d\theta} + \frac{1}{d\theta} \frac{d\theta}{d\theta} - \frac{D}{D} \frac{\theta}{\theta} - \frac{N_{s}\theta^{2}}{D_{r}}\theta$$

$$L_{2}(\theta) = \frac{6}{5} \frac{1}{h} \frac{1}{G_{rz}} \left(\frac{d}{d\theta} \left(c \frac{d(N_{r}\theta)}{d\theta} \right) - \frac{E}{E_{r}} \frac{N_{s}\theta}{\theta} \right)$$

$$L_{3}(\theta) = -\frac{1}{10} \frac{1}{D_{r}} \left(A \frac{1}{2} \frac{d}{d\theta} (\theta N_{s}) - A_{1} \frac{d^{2}}{d\theta^{2}} (\theta N_{s}) \right)$$
(11)

Здесь $L_i(\theta)$ соответствует левой части дифференциального уравнения классической теории пластин; $L_i(\theta)$ — члены, характеризующие поправку к классической теории, обусловленную учетом сдвигов γ_{rz} ; $L_i(\theta)$ — члены, учитывающие влияние напряжений z_z .

Для решения уравнения (11) используем метод Бубнова-Галеркина, аппроксимируя угол 6 функцией

$$\theta = \frac{C_1}{2} + C_2 + C_3 \phi^3 \tag{12}$$

которая уже использовалась в статье [4] для исследования устойчивости кольцевой пластины по классической теории. Там же оценена погрешность приближенного решения, составляющая не более $2\frac{9}{20}$.

В рассматриваемом здесь случае упруго защемленного внешнего и свободного внутреннего контуров коэффициенты C_1 , C_2 , C_3 должны быть такими, чтобы удовлетворялись условия $M_r=0$ при p-r, и $M_r=-r$ 0 при p-r1. Здесь $M_r(p)$ внутренний изгибающий момент, который согласно [8] определяем следующим образом:

37

$$M_r = -\frac{D_r}{b}\frac{db}{da} - \frac{D_r}{b}\gamma_{,u}\frac{0}{a} + \frac{1}{b}\frac{D_r}{G_{tr}}\left(\frac{d\phi}{da} + \gamma_{tr}\frac{\phi}{a}\right) - \frac{h^2}{10}\frac{1}{b}\Lambda_1Z \tag{13}$$

c—коэффициент упругого зашемления, θ_0 —угол поворота вертикальных лементов наружного контура иластины. Принимая, что ловорот происходит вокруг контура $z{=}0$, выражение для θ_0 записываем в виде

$$\theta_0 = -\theta - \frac{1}{2G_{cs}} \frac{h^2}{4} + \tag{11}$$

Подставляя (12) в граничные условия, получим систему двух алгебранческих уравнений, из которой можно выразить постоянные C_1 и C_2 через C_2 :

$$\theta = C_2(p - m_1 - p_1 m_2 p^3) \tag{15}$$

где

$$\begin{split} & \frac{1}{V_{1}} \frac{1}{-V_{1}} : \quad m_{1} = -\left(\frac{Y_{2}}{Y_{1}} + m_{1} \frac{Y_{3}}{Y_{1}}\right) \\ & Y_{1} = \frac{1}{\gamma_{1}^{2}} \left(K_{1} \frac{h^{2}}{5p^{2}} \frac{x}{1 - \gamma_{1}^{2}} - \gamma_{r3} + 1\right) : \quad Y_{2} = K_{1} \frac{h^{2}}{5b^{2}} \frac{x}{1 - \gamma_{1}^{2}} - \gamma_{r3} - 1 \\ & Y_{3} = \left(K_{1} \frac{h^{2}}{5b^{2}} \frac{x}{1 - \gamma_{1}^{2}} - x_{3}\right) \\ & U_{1} = \frac{h^{2}}{5b^{2}} \frac{x}{1 - \gamma_{1}^{2}} \left(K_{1} + K_{2}(1 - \gamma_{1}^{2})(x_{3} - 1)\right) - \gamma_{r3} - 1 + c_{0}\left(K_{2} \frac{h_{2}}{4b^{2}} x - 1\right) \\ & U_{2} = \frac{h^{2}}{5b^{2}} \frac{x}{1 - \gamma_{1}^{2}} \left(K_{1} + K_{2}(1 - \gamma_{1}^{2})(x_{3} - 1)\right) - \gamma_{r3} - 1 + c_{0}\left(K_{2} \frac{h_{2}}{4b^{2}} x - 1\right) \\ & U_{3} = \frac{h^{2}}{5b^{2}} \frac{x}{1 - \gamma_{1}^{2}} \left(K_{1}(2 - \gamma_{1}^{2}) - K_{2}(1 - \gamma_{1}^{2})(x_{r3} - 1)\right) - \gamma_{r3} - 3 + \\ & + c_{1}\left(K_{2} \frac{h^{2}}{4b^{2}} x - 1\right) \\ & K_{1} = \frac{E}{E} \frac{2}{2} \frac{1 - \gamma_{r3}}{1 - \gamma_{r3}\gamma_{5r}} : K_{2} = \frac{1 - \gamma_{r3}}{1 - \gamma_{r3}\gamma_{5r}} \\ & K_{3} = \frac{1 - \gamma_{r3}}{1 - \gamma_{r3}\gamma_{5r}} \\ \end{split}$$

адесь $x = pb^2/D_r$ — безразмерный коэффициент нагрузки, $c_0 = cb/D_r$ — безразмерный коэффициент упругого защемления.

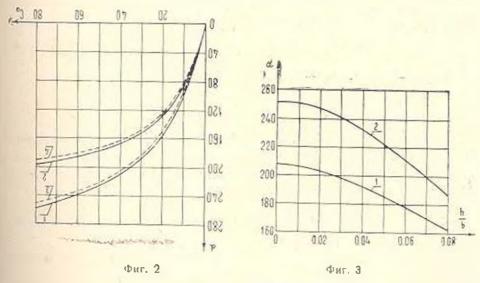
Выражение (15) удовлетворяет всем граничным условиям задачи и для завершения решения, следуя обычной процедуре метода Бубиова-Галеркина, подставим (15) в (11) и приравняем пулю интеграл:

$$(L_1(9) + L_2(6) + L_3(9))$$
 (16)

Отсюда можно найти практическое значение безразмерного коэффициента нагрузки и,

Расчеты произволнийсь при $\gamma=0.85$ для двух вариантов материала пластины: изотроиного материала с $E=2.94 \cdot 10^{10}$ Ha, $\gamma=0.3$ и внизотроиного материала с $E_r=E_s=2.94 \cdot 10^{10}$ Ha; $E_0/E_r=2.24$; $\gamma_{rr}==0.3$; $\gamma_{rr}=0.33$; $\gamma_{rr}=0.33$;

Численные результаты представлены на фиг. 2 и фиг. 3. На фиг. 2 сплошиюми кривыми показаны зависимости искомого критического значения коэффициента нагрузки α от коэффициента упругого защемления c_0 для анизотропной властины без учете сдвигов γ_{re} (кривая 1) и с их учетом (кривая 2). Несколько инже штриховыми кривыми 3 и 4 показавы соответствующие зависимости для изотропной пластины. (Относительная толщина пластины h/b при построении кривых 2 и 4 была принята равной 0,076). На фиг. 3 можно проследить для $c_0 = 40$ (кривая 1) и $c_0 = 80$ (кривая 2) влияние относительной толщины анизотронной пластины на критическое значение коэффициента нагрузки.



Значение z при h/b -0 соответствует классической теории, не учитывающей сдвиги. При построении графиков было положено, что z_z =0, так как учет нормальных напряжений осложияет вычисления, но вносит существенно меньшую поправку, чем учет сдвигов γ_{rz} .

При малых значениях коэффициента упругого защемления допустимо пользоваться упрощенной моделью кольца, основанной на исходном предположении, что $E_r = E_z = G_{rz} = \infty$, то есть считать радиальные сечения недеформируемыми. Тогда при потере устойчивости по осесимметричной формальнобой его радиус, оставаясь прямым, повернут на малый угол γ .

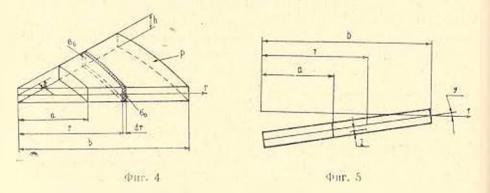
Рассмотрим секториальный элемент кольца, соответствующий центральному углу $d\pi$ (фиг. 4). В докритическом состоянии, вследствие полагливости кольца в окружном направлении (E_4 конечно), все точки элемента под действием висшней нагрузки перемещаются вдоль своих раднусов на величину Λ , так что относительная деформация в

любой точке кольца в окружном направлении равна $-\Delta/r$. При этом возникает окружное напряжение $\sigma_0 = -E_b\Delta/r$. Величину Δ находим из уравнения равновесия элемента в докритическом состоянии:

$$phd B = 2h \int_{a}^{b} E_{B} \frac{\Delta}{r} dr \frac{d\theta}{2} = 0$$

Отсюда

$$\Delta = \frac{pb}{hE_0 \ln \frac{b}{a}} \tag{17}$$



Таким образом, при потере устойчивости и повороте радиального сечения на угол ϕ точка с координатами (r,z) неремещается по радиусу на величину $z\phi - \Delta$ (фиг. 5). Соответственно этому окружное напряжение определяется выражением

$$z_{i} = E_{k} \frac{2\psi - \lambda}{\epsilon} \tag{18}$$

Момент системы этих напряжений в пределах всего сечения относительно основ можно записать следующим образом:

$$M = \int_{a}^{b} \int_{b}^{-\frac{h}{2}} [(b-r) + z] dz dr$$

Подставляя сюда (17) и (18), получим

$$\Delta I = \psi \left[\frac{pb^2}{\ln \frac{b}{a}} \left(1 - \ln \frac{b}{a} - \frac{a}{b} \right) - \frac{E_b h^3}{12} \ln \frac{b}{b} \right] \tag{19}$$

При воброте разнального сстения на угоз и внешнем контурс кольца возникиет реактивный момент, выражение которого для секгориального элемента имеет вид

$$M_1 d = -c b d \theta \tag{20}$$

Составив уравнение равновесия моментов рассматринаемого секториального элемента кольца (фиг. 6).

$$2M\frac{d\vartheta}{2} + M_1 d\vartheta = 0$$

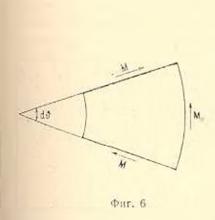
получим выражение для критической нагрузки осесимметричной формы потери устойчивости кольца

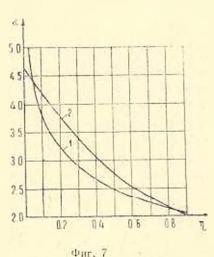
$$p := \frac{D_0}{b^2} z_0$$

рде

$$D_0=rac{E_0h^2}{12}$$
; $z_0=\lnrac{b}{a}rac{\lnrac{b}{a}+c_0}{\lnrac{b}{a}+rac{a}{b}-1}$ — безразмерный коэффициент

критической нагрузки, $c_0 = \frac{cb}{D_r}$ —безразмерный коэффициент упругого защемления.





На фиг. 7 кривой I представлена зависимость критического коэффициента нагрузки α_0 от соотношения радиусов пластины при $c_0 = 0$. Для сравнения приведена кривая 2, соответствующая изотропной пластине (см. решение Мейсснера [3], не содержащее учета сдвигов при свободном опирании внешнего контура пластины гакой учет даст весьма малую поправку). Для сопоставимости результатов значения α , найденные в [3], разделены на разность $(1-v^2)$.

Как видно, уже при $\eta = 0.6$ погрешность приближенного решения менее 4%, а при больших значеняях η точность модели увеличивается. Конечно, упругое защемление внешнего контура властины существенно уменьшает область применимости приближенного решения. Так, для $\eta = 0.6$ уже при $c_0 = 1$ погрешность достигает почти 17%; в слу-

чае жесткого защемления внешнего контура упрощенная модель липлается смысла, так как поворот раднальных ссчений невозможен.

Отметим, что решение, отпосящееся к упрощенной модели, в сущпость соответствует известному решению Р. Граммеля [12], если его распространить на случай упругого защемления одного из контуров кольца,

THE INFLUENCE OF THE TRANSVERSE SHIFT ON THE STABILITY OF THE ELASTICALLY JAMMED COIL PLATE

M. V. CHERENKOVA

ԸՆԳԼԱՅՆԱԿԱՆ ՍԱՀՔԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԱՌԱՁԳԱԿԱՆ ԱՄՐԱԿՑՎԱԾ ԾՂԱԿԱՁԵՎ ՍԱԼԻ ԿԱՅՈՒՆՈՒԹՅԱՆ ՎՐԱ

Մ. Վ. Չիբենհոնվե

Rahmanna

Ուսումնասիրված է ներբին եզրը աղատ, իսկ արտաթին եզրը առաձգական ամրակցված օղակաձև անիզոտրոպ ստլի կայունության կորստի առանցքասիժետրիկ ձևը՝ .ավասարայափ արտաջին ճնշժան գեպքուժ։ Հետադոտված է արտաթին բեռի կրիտիկական արժերի կախվածությունը սալի ռաստությունից և սալի արտաջին եղբի աժրակցժան կոշտությունից՝ առանց հայվի առնելու և հաշվի առնելով ընդլայնական սահքի դեֆորմացիաները (Հր.) և սալի անիդոտրոսլիան։ Դիտարկված է լուժման պարդեցման հնարավորությունը արտաքին եղբով աղատ հենված սալերի համար։

ЛИГЕРАТУРА

- Dean W. R. The elastic stability of an angular plate, Proceedings of the Royal Suclety, Saries A, Math. and Physical Sciences, 1924, vol. 106, 737.
- Lokchin A. G. Sur la stabilité d'une plaque renfermée entre deux cercles concenttriques, Comptes Rendus, 1929. Tome 189, № 7, p. 316—317.
- Meissner E. Über das Knicken kreisringförmiger scheiben, Schweizerishe Bauseltung, 1933, Bd. 101, s. 87-89.
- Григолюк Э. И. Устойчиность круглых кольченых пластии. Ниженерный сб., 1940. т. 5, пып. 2. с. 83—95.
- Фельдман М. Р. Устойчиность кольненой пластины. Прикладиая механика, 1955.
 № 4. с. 449—464.
- Лизарев Л. Д., Баревы Г. Н. Устойчивость упруго-защемленной кольцевой пластины при неоднородном поле напряжений. Ниженерный журнал, 1965, т. 5, пып. 3, с. 483—491.

- 7. Воробкова И. Л. Преображенский И. И. Обзор всследований по устойчивости пластинок и оболочек, ослабленных отверстиями. Сб.: Расчет пространственных конструкций.—М.: Стройнздат, вып. XV, 1973, с. 89—112,
- В. Амбарцулян С. А. Теория анизотропных пластип.—М.: Наука. 1967. 268 с
- 9. Межконии А. П., Хочатрям А. А. Об устойчивости трансверсально изотропиных кругамых пластинок—Ила АН Арм ССР Механика, 1966, т. XIX, М. 2, с. 31—39.
- 10. Тарнопольский Ю. М. Ризе А. В. Особенности расчета деталей из армированных плистиков.—Рига: Запатие, 1969. 274 с.
- 11. Лекницкий С. Г. Теория упругости анизотропного тела. М. Наука, 1977. 116 с.
- 12. Grammet R. Die Kipperscheinungen be elastichen Ringen, ZAMM, 1927, Bd. 7, Heft 3, 198-210.

Ленинградский кораблестроительный институт

.Поступила и редакцию 3.ПП.1983